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SUMMARY 

This study compares the results of a new slender body formulation for shallow water applications with two other well 
established methods for a Wigley hull. For the slender-body method for shallow water, the velocity potential is decom-
posed into a double-body potential and a perturbation potential. Using an order of magnitude analysis, the three-
dimensional governing equation for the flow field around a slender hull is reduced into a series of two-dimensional prob-
lems in cross-flow planes as in the 2D+t methods. An Eulerian-Lagrangian approach is then used to satisfy the free sur-
face condition. An implicit unsteady solver modeling and VOF model are used for the CFD simulations, using Star-
CCM+.  The numerical results obtained from these two methods for a Wigley hull are then compared with the new re-
sults. In addition the wave elevation and wave resistance results are compared against the predictions of Dawson method 
and experimental data. The effect of shallow water on resistance trim and squat are calculated and a ceiling for speed in 
shallow water is observed. 

NOMENCLATURE 

B Beam of a ship 

CFD Computational Fluid Dynamics 

D Draft of a ship 

L Length of a ship 
V Velocity of the ship (m/s) 

Rw Wave resistance (N) 

P Pressure (N/m2)  

g Gravitational acceleration (m/s2) 

x, y, z Coordinates as in figure 1. 

n Normal vector 

t Time (s) 
η Wave elevation (m) 

𝛷𝛷 A potential function 

υ kinematic viscosity (m2/s) 

r Density of water (kg/m3) 

letter subscripts denote differentiation along that direc-
tion 

1 INTRODUCTION 

For decades the experimental testing has been the main 
tool for research and development in ship hydrodynam-
ics. However this started to change with the improve-
ments of computers since 1970’s. Nowadays the compu-
tational tools are extensively used in hydrodynamics, as: 

• Building and testing of a ship model is expensive.
• Numerical hydrodynamic studies of ship models

are becoming cheaper and faster with improved
software and hardware.

• Computational methods provide detailed, visual
information about the flow field around the
hulls.

Most of the early numerical methods such as Michel 
integral, 2D+t formulation [1] and Dawson methods [14] 
are based on the potential flow theory. They are fast and 
provide a relatively good estimation of wave resistance. 
As the potential flow methods do not take into account 
the viscosity, the viscous resistance is normally calculat-
ed using empirical methods.  However in the past dec-
ades, CFD methods based on RANS simulations become 
more popular as the computational power improved. This 
paper is focused on comparing three numerical methods 
for ship hydrodynamics for shallow water. A new Slen-
der-body method, an approach based on the Dawson 
algorithm and a CFD methodology are first explained. 
Then the wave profiles and wave resistance and shallow 
water effects are compared against the experimental 
values for a Wigley hull with principal dimensions 
Length 𝐿𝐿=2 m, Beam 𝐵𝐵=0.2 m and Draft D=.123 m. 

2  NEW SLENDER–BODY FORMULATION 

The Slender-body methods have been adopted extensive-
ly for flow calculation around slender hulls. Numerous 
researchers at the University of British Columbia did the 
ground breaking work for what is now called as 2D+t 
formulation in recent  publications for  wave pattern and 
resistance and vortex shedding of slender hulls (see [1, 
2], [3], [4, 5]). Maruo and Song [6, 7] used this method 
to calculate the bow impact and deck wetness on a 
Wigley hull.  Tulin and Wu [8] numerically calculated 
the divergent waves generated by a Wigley hull using a 
Slender-body method. 
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Development of the new Slender-body methods was a 
result of the desire to apply 2D+t method for shallow 
water and include some upstream influence in the calcu-
lations, assuming that such additions will be improving 
the results, especially for shallow water applications. 
This was done by including a double body potential ex-
plicitly in the formulation. Using an order of magnitude 
analysis, the three-dimensional flow problem is then 
converted into a series of two-dimensional problems 
which are easier to solve than the original problem. 
The free-stream potential is taken as the base potential in 
the studies mentioned above. However at very low 
Froude numbers, the flow around a hull can be approxi-
mated by the flow around a double-body consisting of 
the submerged part of the hull and its image about mean 
free surface [9]. In the new Slender-body formulation 
presented here, the double-body potential is used as the 
base potential because it is considered to be a better rep-
resentation of the actual flow potential than the free-
stream potential especially at low Froude numbers and 
shallow water applications. 
 

2.1 MATHEMATICAL FORMULATIONS OF THE 
SLENDER-BODY METHOD 

 
The coordinate system for a ship moving at constant 
speed U through otherwise undisturbed water is shown in 
Figure 1. It is fixed on the ship with 𝑥𝑥 and 𝑦𝑦 axes on the 
waterline plane and the origin at amidships and on the   
center plane. The equation for the Wigley hull geometry 
in this coordinate system is: 

 
𝑦𝑦 = 𝑌𝑌(𝑥𝑥, 𝑧𝑧) = ±

𝐵𝐵
2
�1 −

4𝑥𝑥2

𝐿𝐿2 ��1 −
𝑧𝑧2

𝐷𝐷2�         (𝐸𝐸𝐸𝐸 1) 

 

 
 
Figure 1. Coordinate system fixed to the hull 
 
The fluid is assumed to be inviscid and incompressible 
and the fluid motion irrotational. The flow is represented 
by a velocity potential 𝜓𝜓 which satisfies the Laplace’s 
equation 
 𝜓𝜓𝑥𝑥𝑥𝑥 + 𝜓𝜓𝑦𝑦𝑦𝑦 + 𝜓𝜓𝑧𝑧𝑧𝑧 = 0                   (𝐸𝐸𝐸𝐸 2) 

 
The kinematic and dynamic boundary conditions for the 
steady free surface represented by 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑦𝑦) are: 

𝜓𝜓𝑥𝑥𝜂𝜂𝑥𝑥 + 𝜓𝜓𝑦𝑦𝜂𝜂𝑦𝑦 − 𝜓𝜓𝑧𝑧 = 0                   (𝐸𝐸𝐸𝐸 3) 
 

1
2
�𝜓𝜓𝑥𝑥

2 +  𝜓𝜓𝑦𝑦
2 + 𝜓𝜓𝑧𝑧

2 − 𝑈𝑈2� + 𝑔𝑔𝜂𝜂 = 0               (𝐸𝐸𝐸𝐸 4) 
 

The impermeable boundary condition on the hull with 
normal vector 𝒏𝒏 (positive pointing outwards) is 

𝜓𝜓𝑥𝑥𝑐𝑐𝑥𝑥 + 𝜓𝜓𝑦𝑦𝑐𝑐𝑦𝑦 + 𝜓𝜓𝑧𝑧𝑐𝑐𝑧𝑧 = 0                    (𝐸𝐸𝐸𝐸 5) 

   
Next we assume that the velocity potential 𝜓𝜓 is com-
posed of a perturbation wave potential 𝜙𝜙 and the double-
body  potential 𝜙𝜙�, i.e. 

 𝜓𝜓 = 𝜙𝜙 + 𝜙𝜙�                                 (𝐸𝐸𝐸𝐸 6) 
 
   
where the double-body potential 𝜙𝜙� satisfies Laplace’s 
Equation 2), then the perturbation potential 𝜙𝜙 must satis-
fy Laplace’s  equation 

 𝜙𝜙𝑥𝑥𝑥𝑥 + 𝜙𝜙𝑦𝑦𝑦𝑦 + 𝜙𝜙𝑧𝑧𝑧𝑧 = 0                      (𝐸𝐸𝐸𝐸 7) 
 

Using an order of magnitude analysis for a slender hull 
(see Appendix A) and assuming that  𝜙𝜙𝑥𝑥𝑥𝑥 is much small-
er than 𝜙𝜙𝑦𝑦𝑦𝑦and 𝜙𝜙𝑧𝑧𝑧𝑧, the governing equation 7 simplifies 
into : 
 𝜙𝜙𝑦𝑦𝑦𝑦 + 𝜙𝜙𝑧𝑧𝑧𝑧 = 0                             (𝐸𝐸𝐸𝐸  8) 

. 

Equation 8 denotes that the flow around a slender hull 
can be seen as a two-dimensional problem in the cross 
flow planes along the 𝑥𝑥 axis, which is easier to solve than 
the original three-dimensional problem (7). A sketch of a 
cross flow plane is shown in Figure 2. 
 

 
Figure 2. Sketch of a cross flow plane 
 
An order of magnitude analysis of the individual terms in 
the free surface equations and hull boundary condition 
results in (see Appendix A)  : 

 �𝜙𝜙�𝑦𝑦 + 𝜙𝜙𝑦𝑦� 𝜂𝜂𝑦𝑦 − �𝜙𝜙�𝑧𝑧 + 𝜙𝜙𝑧𝑧� = 0              (𝐸𝐸𝐸𝐸 9) 
 
             
1
2
�𝜙𝜙�𝑥𝑥

2 + 𝜙𝜙�𝑦𝑦
2 + 𝜙𝜙�𝑧𝑧

2 − 𝑈𝑈2� +
1
2
�𝜙𝜙𝑦𝑦

2 + 𝜙𝜙𝑧𝑧
2�

+ �𝜙𝜙�𝑦𝑦𝜙𝜙𝑦𝑦 + 𝜙𝜙�𝑧𝑧𝜙𝜙𝑧𝑧� + 𝑔𝑔𝜂𝜂 = 0 
                                                              (Eq 10) 
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   𝜙𝜙𝑦𝑦𝑐𝑐𝑦𝑦 + 𝜙𝜙𝑧𝑧𝑐𝑐𝑧𝑧 = −�𝜙𝜙�𝑦𝑦𝑐𝑐𝑦𝑦 + 𝜙𝜙�𝑧𝑧𝑐𝑐𝑧𝑧�                  (𝐸𝐸𝐸𝐸 11) 
 

 
The kinematic and dynamic boundary conditions are 
non-linear equations and are applied on the free surface 
at 𝑧𝑧 = 𝜂𝜂(𝑥𝑥,𝑦𝑦) which is unknown a priori. These equa-
tions were linearized by expanding them about the undis-
turbed free surface at 𝑧𝑧 = 0. Since 𝜙𝜙�𝑧𝑧 = 0 on the free 
surface, the free surface boundary conditions become:  

              𝜙𝜙�𝑦𝑦𝜂𝜂𝑦𝑦 − 𝜙𝜙𝑧𝑧 = 0        𝑎𝑎𝑐𝑐 𝑧𝑧 = 0    (𝐸𝐸𝐸𝐸 12)  
                                 

1
2
�𝜙𝜙�𝑥𝑥

2 + 𝜙𝜙�𝑦𝑦
2 + 𝜙𝜙�𝑧𝑧

2 − 𝑈𝑈2� + 𝜙𝜙�𝑦𝑦𝜙𝜙𝑦𝑦 + 𝑔𝑔𝜂𝜂 = 0 

 
  

                                                    at   z=0             (Eq 13) 

Solving equation 8 in a cross flow plane requires specify-
ing the boundary conditions on the side walls and at the 
bottom boundaries. Here they are assumed to be imper-
meable. For the calibration purposes of the new results 
the side walls are placed 30B away from the body in 
order to ensure the waves do not reflect into the compu-
tational domain. The bottom boundary is specified at 
various locations and for infinitely deep condition at 30𝐷𝐷 
from the body to minimize the bottom effect.  

2.2 SOLUTION APPROACH  

The time-stepping approach developed by Longuet-
Higgins and Cokelet [10] is used for the implementation 
of the Slender-body method. It involves a two-step pro-
cedure divided into an Eulerian boundary element meth-
od and a Lagrangian stepping procedure following parti-
cles. 

2.2 (a) Boundary Element Method 

The first step involves solving the two-dimensional La-
place Equation 8 in a cross flow plane using the body 
boundary condition and the velocity potential 𝜙𝜙0 known 
on the free surface from the previous time step. Applying 
Green’s third identity to the Laplace Equation 8 gives an 
integral equation for the perturbation potential at a field 
point 𝐸𝐸 in the cross flow plane (see [11] and [12]) 

𝜙𝜙(𝐸𝐸) =
1

2𝜋𝜋
�(
𝜕𝜕𝜙𝜙
𝜕𝜕𝑐𝑐

ln 𝑟𝑟 − 𝜙𝜙 
𝜕𝜕
𝜕𝜕𝑐𝑐

ln 𝑟𝑟) 𝑑𝑑𝑐𝑐
𝑆𝑆

     (𝐸𝐸𝐸𝐸 14) 

Where 𝑟𝑟 is the distance from a source point p to a field 
point q and 𝑆𝑆 is the boundary for the cross flow plane. 
In order to calculate the unknown boundary values, the 
boundary 𝑆𝑆 is divided into a series of panels with con-
stant singularity distributions. Applying boundary condi-
tions to equation 14 gives the system of linear equations: 

�𝐴𝐴𝑖𝑖𝑖𝑖
𝜕𝜕𝜙𝜙
𝜕𝜕𝑐𝑐
�
𝑖𝑖

+ 𝐵𝐵𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖 = 0           
𝑁𝑁

𝑖𝑖=1

 
𝑖𝑖 = 1,⋯ ,𝑁𝑁  
 

(𝐸𝐸𝐸𝐸 15) 

Where 𝑁𝑁 is the number of panels on the boundaries and 
coefficients 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐵𝐵𝑖𝑖𝑖𝑖 are defined as: 

𝐴𝐴𝑖𝑖𝑗𝑗 =
1

2𝜋𝜋
� ln 𝑟𝑟 𝑑𝑑𝑐𝑐 ;
𝑗𝑗

𝐵𝐵𝑖𝑖𝑗𝑗  =
1

2𝜋𝜋
�   

∂
∂n

ln 𝑟𝑟 𝑑𝑑𝑐𝑐 
𝑗𝑗

  

                                                                                 (𝐸𝐸𝐸𝐸15 − 𝑏𝑏) 
 
The coefficient 𝐴𝐴𝑖𝑖𝑖𝑖 (𝐵𝐵𝑖𝑖𝑖𝑖) represents influence of a panel j 
with a source (doublet) distribution of unit strength on a 
panel 𝑖𝑖 [12]. 

2.2 (b) Lagrangian –Eulerian method 

The second step involves a Lagrangian method to calcu-
late the perturbation potential and the free surface loca-
tion at the next cross-flow plane. This marching from one 
cross-flow plane to the next one can be viewed as a time-
domain problem with a time step: 

 
𝑑𝑑𝑐𝑐 =

𝑑𝑑𝑥𝑥
𝜙𝜙�𝑥𝑥

 (Eq  16) 

where 𝑑𝑑𝑥𝑥 is the spatial step along the longitudinal axis. It 
is set to 𝑑𝑑𝑥𝑥 = 0.001 𝑚𝑚 in this study. 
 
For obtaining the kinematic and dynamic boundary con-
ditions in the Lagrangian form, the derivative is defined 
as: 

𝑑𝑑
𝑑𝑑𝑐𝑐

= 𝜙𝜙�𝑦𝑦
𝜕𝜕
𝜕𝜕𝑦𝑦

                             (𝐸𝐸𝐸𝐸 16 − 𝑏𝑏) 

 
Therefore the kinematic and dynamic boundary condi-
tions and in the Lagrangian form can be written as: 

𝑑𝑑𝜂𝜂
𝑑𝑑𝑐𝑐

= 𝛷𝛷𝑥𝑥   𝑎𝑎𝑐𝑐 𝑧𝑧 = 0          (𝐸𝐸𝐸𝐸 17) 

 
𝑑𝑑𝜙𝜙
𝑑𝑑𝑐𝑐

=
1
2
�𝑈𝑈2 − �𝜙𝜙�𝑥𝑥

2 + 𝜙𝜙�𝑦𝑦
2�� − 𝑔𝑔𝜂𝜂   𝑎𝑎𝑐𝑐 𝑧𝑧 = 0   (𝐸𝐸𝐸𝐸 18) 

 
  

The Lagrangian form of the flow velocity in 𝑦𝑦 direction 
then becomes: 
 𝑑𝑑𝑦𝑦

𝑑𝑑𝑐𝑐
= 𝜙𝜙�𝑦𝑦 (Eq 19) 

Using the two step Adams-Bashforth method, the values 
for the perturbation potential and free surface location at 
a new cross flow plane are obtained as : 

 
𝜂𝜂(𝑐𝑐 + 𝑑𝑑𝑐𝑐) = 𝜂𝜂(𝑐𝑐) + (

3
2
𝜂𝜂𝑐𝑐(𝑐𝑐) −

1
2
𝜂𝜂𝑐𝑐(𝑐𝑐 − 𝑑𝑑𝑐𝑐))𝑑𝑑𝑐𝑐 

𝜙𝜙(𝑐𝑐 + 𝑑𝑑𝑐𝑐) = 𝜙𝜙(𝑐𝑐) + (
3
2
𝜙𝜙𝑐𝑐(𝑐𝑐) −

1
2
𝜙𝜙(𝑐𝑐 − 𝑑𝑑𝑐𝑐))𝑑𝑑𝑐𝑐 

𝑦𝑦(𝑐𝑐 + 𝑑𝑑𝑐𝑐) = 𝑦𝑦(𝑐𝑐) + (
3
2
𝑦𝑦𝑐𝑐(𝑐𝑐) −

1
2
𝑦𝑦𝑐𝑐(𝑐𝑐 − 𝑑𝑑𝑐𝑐)) 𝑑𝑑𝑐𝑐 

 

                                                                              (Eq 20) 

where 𝜂𝜂𝑐𝑐, 𝜙𝜙𝑐𝑐and  𝑦𝑦𝑐𝑐are determined from equations 19. 
The wave resistance 𝑅𝑅𝑤𝑤 is calculated by integrating the 
pressure field over the still water hull surface: 

 

𝑅𝑅𝑤𝑤 = � 𝑑𝑑𝑥𝑥 � 𝑝𝑝 ⋅ 𝑐𝑐𝑥𝑥𝑑𝑑𝐴𝐴
𝑆𝑆𝐵𝐵

𝐿𝐿/2

−𝐿𝐿/2

 (Eq 21) 
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where 𝑆𝑆𝐵𝐵 represents the girth of the hull section, and 𝑝𝑝 is 
the pressure obtained from the Bernoulli’s equation: 

  
𝑝𝑝 = −𝜌𝜌 �𝑈𝑈𝜙𝜙𝑥𝑥 +

1
2
�𝜙𝜙𝑦𝑦

2 + 𝜙𝜙𝑧𝑧
2 + 𝑔𝑔𝑧𝑧�� (Eq 22) 

The wave resistance coefficient 𝐶𝐶𝑤𝑤 is determined using 
the formulation: 

 
𝐶𝐶𝑤𝑤 =

𝑅𝑅𝑤𝑤
0.5𝜌𝜌𝑈𝑈2𝐿𝐿2                            (𝐸𝐸𝐸𝐸 23) 

 
For the results presented in this paper, the starting cross 
section was at 𝐿𝐿/4 upstream of the bow. The perturbation 
potential and wave elevation values were set to zero on 
this cross section. We defined 75 panels on the free sur-
face at the starting section. The size of these panels in-
creased toward the impermeable wall in a geometric 
progression with the initial size 𝐷𝐷/10. We used 10 panels 
on the hull surface when the cross section intersects the 
hull. 
 
2.3 CALCULATION OF DOUBLE-BODY  

POTENTIAL 
 
The double-body potential is calculated using the bound-
ary element method developed by Hess and Smith [13]. 
The governing equation for this potential is the three-
dimensional Laplace equation 

 ∇2𝜙𝜙� = 0 (Eq 24) 

subject to the impermeable hull boundary condition 

 ∇𝜙𝜙� ∙ 𝒏𝒏 = 0 (Eq 25) 

Similar to the methodology described above, the equa-
tion (Eq) is converted into a system of linear equations 

�𝐶𝐶𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖 = 𝑼𝑼 ∙ 𝒏𝒏   𝑓𝑓𝑐𝑐𝑟𝑟 𝑖𝑖 = 1,⋯ ,𝑀𝑀     (𝐸𝐸𝐸𝐸 26)
𝑀𝑀

𝑖𝑖=1

 

 
where M is the number of quadrilateral panels on the hull 
surface and its image around the undisturbed free sur-
face, and 𝜎𝜎𝑖𝑖 is the source strength of a panel j. The coef-
ficient 𝐶𝐶𝑖𝑖𝑖𝑖 obtained from the relation 

𝐶𝐶𝑖𝑖𝑖𝑖 =
1

4𝜋𝜋
� 𝛻𝛻(

1
𝑟𝑟𝑖𝑖

) . 𝑐𝑐𝑑𝑑𝑆𝑆                (𝐸𝐸𝐸𝐸 26 − 𝑏𝑏) 

 
and represents effect of a source panel j with unit 
strength on a panel i [12]. 
The double-body potential is calculated in this study 
using 50 panels in the 𝑥𝑥 direction and 20 panels in the 𝑧𝑧 
direction. 

3 DAWSON METHOD 
 
Hess and Smith developed a boundary element method in 
1967 for computing the flow around a submerged body 
in an infinite domain [13]. Dawson modified this method 
in 1977 for a surface-piercing body. One may refer to the 
thesis by Raven for a comprehensive explanation on this 
method [14]. 
 
The theoretical essence of Dawson method is based on 
the low-Froude-number theory. Similar to the method 
explained in the previous section, the total velocity po-
tential is decomposed into a double-body and a perturba-
tion potential (see equation 6). The double-body potential 
𝜙𝜙 ̅ is regarded as a “slowly varying potential” and hence 
its derivatives are of the order of (𝑈𝑈).  Newman [15] 
showed that the perturbation potential 𝜙𝜙 = O(ε2) and 
wave elevation 𝜂𝜂 = 𝑂𝑂(𝜀𝜀) with ε ≡ U2/2g≪1. In another 
study Calisal et al. showed that 𝜂𝜂 = O(Fr2) which is paral-
lel to Newman’s finding [16]. Based on this analysis the 
kinematic and dynamic free surface conditions are com-
bined into a single linearized equation with respect to 𝜙𝜙: 

∇𝜙𝜙� ⋅ ∇[−(∇𝜙𝜙�)2 + ∇𝜙𝜙� ⋅ ∇𝜙𝜙] +
1
2
∇𝜙𝜙 ⋅ ∇(∇𝜙𝜙�)2 + 𝑔𝑔𝜙𝜙𝑧𝑧

= 0 
          at z = 0                                                     (Eq 27) 

 
By adopting the definition of derivatives along a stream-
line, Dawson expressed the above equation as 

�𝜙𝜙�𝑙𝑙
2𝜙𝜙𝑙𝑙�𝑙𝑙 + 𝑔𝑔𝜙𝜙𝑙𝑙 = 2𝜙𝜙�𝑙𝑙

2𝜙𝜙�𝑙𝑙𝑙𝑙    𝑎𝑎𝑐𝑐 𝑧𝑧 = 0             (𝐸𝐸𝐸𝐸 28) 
 

 where 

𝛷𝛷�𝑙𝑙 = |𝛻𝛻𝛷𝛷� | = �𝛷𝛷�𝑥𝑥
2 +  𝛷𝛷�𝑙𝑙𝑦𝑦

2         (𝐸𝐸𝐸𝐸 28 − 𝑏𝑏) 

 
The potential flow problem is now reduced into solving 
the three dimensional Laplace equation ∇2𝜙𝜙 ̅ = 0 subject 
to boundary conditions 𝜙𝜙 ̅n = 0 on the body and free sur-
face condition 28. The radiation condition is fulfilled in 
this method by a 4-point backward differentiation 
scheme. The implementation of this method involves 
distributing panels on the plane z = 0 and on the hull 
surface as shown in Figure 3. The solution is then ob-
tained by employing the Hess and Smith’s method which 
uses source panels with constant strength. The wave 
elevation and pressure in this method are calculated from 
equations: 
 

𝜂𝜂 =
1

2𝑔𝑔
�𝑈𝑈2 + 𝜙𝜙�𝑙𝑙

2 − 2𝜙𝜙�𝑙𝑙𝜙𝜙𝑙𝑙�              (𝐸𝐸𝐸𝐸 29) 

  
 𝑝𝑝 = −

𝜌𝜌
2

[𝑈𝑈2 + (∇𝜙𝜙�)2 − 2∇𝜙𝜙� ⋅ ∇𝜙𝜙]        (𝐸𝐸𝐸𝐸 30) 

 
The wave resistance is also computed by integrating the 
pressure over the hull surface (see equation 22). 
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Figure 3. Distribution of panels on the hull and  

free surface 
 
4 CFD METHOD 

The usage of Computational Flow Dynamics (CFD) 
based on RANS equations is rapidly increasing for ma-
rine applications due to the improvements of computers. 
Here we implemented the CFD method for the Wigley 
hull by conducting simulations in the Star-CCM+ soft-
ware.   The corresponding coordinate system is at  amid-
ships on the undisturbed free surface (see Figure 1). As 
the hull is symmetric about its center plane of symmetry, 
only half of it is considered in the simulations. The do-
main based on hull length L extends from: 

• 3.5L to -6.5L in longitudinal direction 
• 1L to -3L in vertical direction 
• 0 to 3L in lateral direction 

 
The applied boundary conditions are: 

• Symmetry plane at the hull centerplane. 
• Symmetry plane at the side of domain 
• Hydrostatic pressure corresponding to undis-

turbed water surface at the outlet boundary  
• Inlets with prescribed velocity and volume frac-

tion at the upstream, top and bottom boundaries 
 

The mesh used contains 372212 hexahedral cells. In 
order to obtain accurate results, we used local refine-
ments and prism layers along the wetted surface of hull. 
The calculations used  a  mesh structure on the hull sur-
face and the symmetry plane. In addition we had  mesh at 
the still water level with refinements in the wake region. 
An implicit unsteady solver with k-omega turbulence 
modeling and VOF wave’s model is used for simulations. 
The time step is set based on the inlet velocity from the 
equation: 
 
 

dt =
L

50U
                                (𝐸𝐸𝐸𝐸 31) 

   

5 VALIDATION IN DEEP WATER 
 
One of the main objectives of this study is to estimate the 
shallow water effects on the sinkage and trim of a ship.  
A critical and the target case is the sailing of tankers in 
Vancouver harbor Canada .  For these reasons an existing 
formulation that is 2D+t method is modified and a for-
mulation suitable for shallow water studies is developed. 
The new code is first tried for deep water studies of the 
resistance, waterline profile. Once validated the code is 
then used for finite depth conditions. 
 
Comparisons of different numerical calculations are 
reported below. The methods described above are im-
plemented for the Wigley hull with dimensions given at 
section 1.  
 

 
 
Figure 4. Comparison of numerical wave resistance 

coefficients with Dawson, new formulation 
and  experimental values 

 
The new code is validated with using the results of other 
codes for resistance and wave profile first. The general 
agreement of the resistance prediction with the new for-
mulation with experimental resistance data could be 
considered as acceptable Figure (4). This is in view of 
the dispersion of such data coming from different towing 
tanks. Aanesland  [18] gave averaged values from towing 
tank databases where the Wigley hull was towed fixed 
and free to trim and squat. Aanesland’s numerical results 
were obtained by a three dimensional linear potential 
flow formulations similar to Dawson’s method. However 
Kelvin sources were distributed in the outer domain  to 
satisfy wave radiation conditions. 
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Figure 5. Wave elevation on the Wigley hull side at 

Fr= 0,267 
 

 
Figure 6. Wave elevation on the Wigley hull side at 

Fr=0,316 
 
 Figure 5 and Figure 6 show the comparison of the wave 
profiles along the hull at Froude numbers 𝐹𝐹𝑅𝑅=0.267 and 
𝐹𝐹𝑅𝑅=0.316. The experimental results for 𝐹𝐹𝑅𝑅=0.267 are 
from a testing at the department of Naval Architecture 
and Ocean Engineering at the Yokohama National Uni-
versity [17], while the results for 𝐹𝐹𝑅𝑅=0.316 are obtained 
by Maruo and Song from tests on a 6-meter Wigley hull 
model [6]. The wave profiles of the CFD method are in a 
good agreement with experiments at both Froude num-
bers. The CFD predictions for the position and magni-
tudes of the wave peaks and troughs have a good match 
with the experimental results. On the other hand, the 
wave profiles for the Slender-body and Dawson methods 
have similar trends to the experiments; however there are 
some discrepancies between them and experimental 
values, especially around the bow section. The first wave 
peak is underestimated by both of the potential flow 

methods which might be due to linearization of the free 
surface boundary conditions. Also, the Dawson method 
has a better prediction of the location of wave peaks and 
troughs than the Slender-body method. This is possibly a 
result of the order of magnitude analysis used in the 
development of the Slender-body method. A new way for 
the start of the calculation is to be implemented soon.  
 
6 FINITE DEPTH EFFECTS 
 
Figure 7 shows that the depth effect for resistance is 
significant as the depth Froude number increases. Simi-
larly the figure 6 shows that that the trim increases sig-
nificantly with depth Froude number while the squat 
coefficient remains almost constant. 
 

 
Figure 7. Wave making resistance deep and shallow  

water comparisons with new formulation 
compared to averaged experimental values 
of Aanesland 

 
The results for wave resistance with the new formulation 
with finite depth or shallow water are reported in figure 
7. The shallow water effect becomes significant as the 
clearance becomes smaller.  Deep water sinkage and trim 
values by the 2D+t method  are by Wong and Calisal [5] 
and shown in Figure 8. Sinkage is nondimensionalized 
with 𝑈𝑈2/2𝑔𝑔 and trim is given as a percentage of the ship 
length. the results are then compared with averaged val-
ues reported by Aanesland [18]. The nondimensional 
sinkage calculated by the 2D+t method is in good agree-
ment with the experimental data however it seems to 
underestimate at higher Froude numbers. In contrast the 
trim is over estimated in the Froude number range of 
0.27 to 0.35. The trim and squat in shallow water at rela-
tively high Froude number with the new formulation are 
reported in Figure 9 and 10. 
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Figure 8. Computed and measured trim and sinkage 

for Wigley hull deep water with 2D+t for-
mulation 

 
The sinkage and trim angle are calculated assuming the 
Wigleyhull has a weight eqaul to 10.3 kgf. The pressure 
distribution is first obtained from the Bernoulli’s 
equation. Then the hull sinkage by  is calculated  by 
balancing the hull weight with the hydrodynamic force in 
the vertical direction. The trim angle is similarly 
calculated by balancing the hull moment around the y-
axis with the y-moment of hydrodynamic forces.  
 

 
Figure 9. Computed trim variation with new 

formulation in shallow water with ship 
Froude number 

 

 
Figure 10. Water depth and Froude number effect on 

squat for Wigley hull with new formula-
tion. 

 

7 CONCLUSIONS 
 
A new slender body formulation and two existing  nu-
merical methods for ship hydrodynamics were compared 
with the experimental values available for  Wigley hull. 
The New Slender-body and Dawson methods, which are 
based on the potential flow theory, were easier and faster 
to implement than the CFD method. However the CFD 
method, which is based on RANS equations, had the best 
agreement with the experimental values in the validation 
in deep water. The CFD method was able to predict the 
magnitude and location of the wave peaks and troughs 
more accurately than the potential methods. The CFD 
results for wave resistance coefficients were also a better 
match with experimental values than the results obtained 
from Slender-body and Dawson methods.   Some numer-
ical challenge was faced as poor convergence when the 
depth Froude number is close to 1.  A ceiling of ship 
operational speed is seen as the sinkage and trim 
increases with increasing speed. Application to shallow 
water of the new Slender body is expected to improve the 
earlier results reported above. 
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10 APPENDIX A: ORDER OF MAGNITUDE 

ANALYSIS 
 
Replacing the potential 𝜓𝜓 from Equation 6 in the kine-
matic and dynamic boundary conditions Eq. 3 and Eq. 4 
gives 

   
�𝜙𝜙�𝑥𝑥 + 𝜙𝜙𝑥𝑥�𝜂𝜂𝑥𝑥 + �𝜙𝜙�𝑦𝑦 + 𝜙𝜙𝑦𝑦� 𝜂𝜂𝑦𝑦 − �𝜙𝜙�𝑧𝑧 + 𝜙𝜙𝑧𝑧� = 0 

 
1
2
��𝜙𝜙�𝑥𝑥 + 𝜙𝜙𝑥𝑥�

2
+ �𝜙𝜙�𝑦𝑦 + 𝜙𝜙𝑦𝑦�

2
+ �𝜙𝜙�𝑧𝑧 + 𝜙𝜙𝑧𝑧�

2
− 𝑈𝑈2�

+ 𝑔𝑔𝜂𝜂 = 0 

(A1-A2) 

Similarly the hull boundary condition 5 changes to 

𝜙𝜙𝑥𝑥𝑐𝑐𝑥𝑥 + 𝜙𝜙
𝑦𝑦
𝑐𝑐𝑦𝑦 + 𝜙𝜙𝑧𝑧𝑐𝑐𝑧𝑧 = −�𝜙𝜙�𝑥𝑥𝑐𝑐𝑥𝑥 + 𝜙𝜙�𝑦𝑦𝑐𝑐𝑦𝑦 + 𝜙𝜙�𝑧𝑧𝑐𝑐𝑧𝑧� 

(A3) 

In order to simplify the above equations, non-
dimensionalized variables are defined:  

𝑥𝑥� =
𝑥𝑥
𝐿𝐿

 𝑦𝑦� =
𝑦𝑦
𝐵𝐵

 𝑧𝑧� =
𝑧𝑧
𝐷𝐷

 

The order of magnitude of the individual terms in the 
governing equation 8 and boundary conditions A1-A3 
are: 

𝜙𝜙𝑥𝑥𝑥𝑥 = 𝑂𝑂(
𝜙𝜙

𝐿𝐿2𝑥𝑥�2) 𝜙𝜙𝑦𝑦𝑦𝑦 = 𝑂𝑂(
𝜙𝜙

𝐵𝐵2𝑦𝑦�2) 𝜙𝜙𝑧𝑧𝑧𝑧 = 𝑂𝑂(
𝜙𝜙

𝐷𝐷2𝑧𝑧�2) 

𝜙𝜙𝑥𝑥 = 𝑂𝑂(
𝜙𝜙
𝐿𝐿𝑥𝑥�

) 𝜙𝜙𝑦𝑦 = 𝑂𝑂(
𝜙𝜙
𝐵𝐵𝑦𝑦�

) 𝜙𝜙𝑧𝑧 = 𝑂𝑂(
𝜙𝜙
𝐷𝐷𝑧𝑧�

) 

𝑐𝑐𝑥𝑥 = 𝑂𝑂(
𝑐𝑐
𝐿𝐿𝑥𝑥�

) 𝑐𝑐𝑦𝑦 = 𝑂𝑂(
𝑐𝑐
𝐵𝐵𝑦𝑦�

) 𝑐𝑐𝑧𝑧 = 𝑂𝑂(
𝑐𝑐
𝐷𝐷𝑧𝑧�

) 

𝜂𝜂𝑥𝑥 = 𝑂𝑂(
𝜂𝜂
𝐿𝐿𝑥𝑥�

) 𝜂𝜂𝑦𝑦 = 𝑂𝑂(
𝜂𝜂
𝐵𝐵𝑦𝑦�

)  

𝜙𝜙�𝑥𝑥 = 𝑂𝑂(
𝜙𝜙�
𝐿𝐿𝑥𝑥�

) 𝜙𝜙�̅𝑦𝑦 = 𝑂𝑂(
𝜙𝜙�
𝐵𝐵𝑦𝑦�

) 
 

One can conclude that for a slender hull where 
O(𝐷𝐷)≈𝑂𝑂(𝐵𝐵) and 𝐵𝐵/𝐿𝐿≪1 

𝜙𝜙𝑥𝑥𝑥𝑥 ≪ 𝜙𝜙𝑦𝑦𝑦𝑦,𝜙𝜙𝑧𝑧𝑧𝑧  𝜙𝜙𝑥𝑥𝜂𝜂𝑥𝑥 ≪ 𝜙𝜙𝑦𝑦𝜂𝜂𝑦𝑦 

𝜙𝜙𝑥𝑥
2 ≪ 𝜙𝜙𝑦𝑦

2,𝜙𝜙𝑧𝑧
2  𝜙𝜙𝑥𝑥𝑐𝑐𝑥𝑥 ≪ 𝜙𝜙𝑦𝑦𝑐𝑐𝑦𝑦,𝜙𝜙𝑧𝑧𝑐𝑐𝑧𝑧 

𝜙𝜙�𝑥𝑥𝜂𝜂𝑥𝑥 ≪ 𝜙𝜙�𝑦𝑦𝜂𝜂𝑦𝑦  𝜙𝜙�𝑥𝑥𝜙𝜙𝑥𝑥 ≪ 𝜙𝜙�𝑦𝑦𝜙𝜙𝑦𝑦 

𝜙𝜙�𝑥𝑥𝑐𝑐𝑥𝑥 ≪ 𝜙𝜙�𝑦𝑦𝑐𝑐𝑦𝑦,𝜙𝜙�𝑧𝑧𝑐𝑐𝑧𝑧   
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