ISGSR 2011 - Vogt, Schuppener, Straub & Brdu (eds) - © 2011 Bundesanstalt fiir Wasserbau ISBN 978-3-939230-01-4

Developing a LRFD Procedure for Shallow Foundations

K. Lesny

Institute of Geotechnics, Department of Building Sciences, University of Duisburg-Essen, Germany

S. G. Paikowsky

Geotechnical Engineering Research Laboratory, Department of Civil and Environmental Engineering,
University of Massachusetts Lowell and Geosciences Testing and Research Inc. (GTR), USA

ABSTRACT: The development of a Load and Resistance Factor Design (LRFD) procedure for the Ulti-
mate Limit State (ULS) design of shallow foundations for highway bridges in the U.S. is presented.
Large, high-quality databases of foundations on/in granular soils under varying loading conditions tested
to failure are the backbone of this study. A procedural and data management framework had been devel-
oped that allowed the evaluation of the LRFD parameters. The study concentrated on the evaluation of
model uncertainties associated with the bearing capacity calculation. The model uncertainties were repre-
sented by the bias defined as the ratio of measured over calculated bearing capacities using defined soil
parameters and design methods. The measured bearing capacities were identified by a unique failure cri-
terion applied to the respective load-displacement curve of the load tests. Investigation of the bearing ca-
pacity equation possible via the database identified the bearing capacity parameter N, to be the major
source of the model uncertainty. A single resistance factor was found insufficient for addressing the bear-
ing capacity equation. As different soil strength and loading conditions result in different levels of uncer-
tainties, different resistance factors were required to be developed in order to maintain a consistent level
of reliability under the varying conditions. The resistance factors were established on the basis of prob-
abilistic analyses (FOSM and Monte Carlo simulations) for vertical-centric, vertical-eccentric, inclined-
centric and inclined-eccentric loading conditions.

Keywords: Limit State Design, LRFD, shallow foundations, databases, uncertainty evaluation, resistance
factors

1 INTRODUCTION

1.1 Methodology of LRFD and scope of the study

The intent of LRFD is to separate uncertainties in loading from uncertainties in resistance, and then to use
probabilistic procedures to assure a prescribed margin of safety. In the methodology of LRFD the safety
is represented by partial factors which are applied separately to the load effects and the resistance. Load
effects Q; are increased by multiplying characteristic or nominal values with load factors y;. The resis-
tance is reduced by multiplying the nominal value R, by a resistance factor ¢ < 1,0. The nominal resis-
tance results from a specific, calibrated design method and is not necessary the mean of the resistance. It
then has to be ensured that the factored resistance is not smaller than a linear combination of the factored
load effects:

O Ry 270 Q; (1)

LRFD represents a Resistance Factor Approach (RFA) where the resistance factor is applied to the result-
ing resistance calculated with the characteristic values of the strength parameters as well as characteristic
values of load components if the geotechnical resistance is defined as a function of the load effects. In
opposite to the RFA the Material Factor Approach (MFA) includes the direct application of the partial
factors to the characteristic values of the material, i.e. the resistance is calculated using the design values
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of the material strength. Eurocode 7 (e.g. DIN EN 1997-1, 2010) generally allows both procedures in
three design approaches, the member states specify in their National Annexes which design approaches
finally are to be used. The RFA format in Eurocode 7 also differs slightly from the one given in equation
(1) as the nominal resistance R, is divided by a resistance factor ygr > 1.0.

In the United States design specifications published by AASHTO (American Association of State
Highway and Transportation Officials) are traditionally used for all federally aided highway projects and
are generally viewed as the national code of highway practice. In the past two decades these specifica-
tions were gradually changed from Working Stress Design using global factors of safety (last edition of
the ‘standard’ specifications are AASHTO, 1987) to LRFD within the Limit State Design (LSD) concept.
While original changes mostly relied on back analysis (LSD from Working Stress Design (WSD)) and
probabilistic approach, the recent development was focused on calibrations utilizing databases. In this
context the NCHRP (National Cooperative Highway Research Program) research project 24-31 “LRFD
Design Specifications for Shallow Foundations” was initiated with the objective to thoroughly modify
Section 10 of the AASHTO LRFD Bridge Design Specifications to implement LRFD for the ULS design
of shallow bridge foundations. The results of the NCHRP 24-31 research study were reported by Pai-
kowsky et al. (2010). The major findings relevant to the bearing capacity of shallow foundations on
granular soils are presented here.

1.2 Implementation procedure

The implementation of LRFD to highway bridge foundations which has been adopted in this research fol-
lows a two-step strategy:

Step 1: Assembly and assessment of knowledge and data, including:

- Defining design methods used for the calibration procedures

- Establishing databases of case histories, large and small scale model tests

- Selecting typical bridge foundation structures and case histories

- Defining expected load ranges and their distributions

Step 2: Analysis of data and methods assembled in step 1, including:

- Establishing the uncertainty of the design methods and parameters, investigation of their sources

- Developing resistance factors and their examination in design cases

- Defining final resistance factors and conditions of implementation

- Developing new design specifications

The major task within step 1 and a very important part of the research was the compilation of large,
high-quality databases of foundations tested to failure. This was combined with the development of a pro-
cedural and data management framework that would enable LRFD parameter evaluation for the ULS of
shallow foundations. This study is the first which introduces large-scale reliability-based design calibra-
tion of shallow foundations utilizing databases. One database includes 549 cases of field and model tests
on shallow foundations in or on granular soils, predominantly subjected to vertical-centric loading, with a
sizeable component of foundations subjected to combined loading. A second database provides 122
model tests of foundations on or in rock.

Different design methods for predicting the bearing capacity of shallow foundations in or on soil or
rock in the ULS were compiled based on a questionnaire developed and distributed to all state bridge de-
sign agencies across the US and Canada as well as an evaluation of existing design methods based on a
literature review. As a result, a set of design methods was established as the basis for the probabilistic
analyses. Unique failure criteria for foundations on/in soil or rock had been defined, which were consis-
tently used to interpret the failure loads from all load tests in the databases, thus maintaining a consistent
failure interpretation for the following probabilistic analyses.

The analysis of the uncertainties associated with bearing capacity predictions was the most important
task within step 2. The model uncertainties were expressed inclusively by a bias which is defined as the
ratio of measured to calculated bearing resistances.

Based on the results of the uncertainty analyses for the resistances and known load uncertainties,
Monte Carlo (MC) simulation as well as a simplified solution derived from First Order Second Moment
(FOSM) method, have been used to determine the resistance factors for a predefined reliability index.
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2 LOAD DISTRIBUTION AND LOAD FACTORS

The loads and load combinations followed those presented by AASHTO (2007) and demonstrated in ex-
amples compiled by Kimmerling (2002). In lack of better data, the uncertainty of the foundation loading
has been assumed in this study as that attributed to the design of the structural element. The load factors
and uncertainties for vertical live loads and dead loads on the foundation structure have been selected
based on Nowak (1999) by Paikowsky et al., 2004, and are summarized in Table 1.

Table 1. Load factors and uncertainties in vertical live load and dead load

Load type Load factor Bias Cov
Live Load (LL) y, =175 1.15 0.20
Dead Load (DL) y, =125 1.05 0.10

The horizontal dead loads on bridge foundation structures mainly result from earth pressures due to soil
and surcharge. The associated sources of uncertainty are, therefore, the variations in the soil unit weight
and the soil friction angle. Live loads mainly result from impact, wind, snow, temperature variations,
shrinking, creep, etc.

An analysis of the uncertainties related to lateral earth pressures suggested the load factors and uncer-
tainties for horizontal loads as given in Table 2. A lognormal distribution is assumed with these values.
The uncertainties of the dead loads are valid for a bias of the soil unit weight of 1.00 and a related COV
of 0.10 for natural soil conditions and of 0.08 for engineered backfill.

Table 2. Load factors and uncertainties in horizontal live load and dead load

Load type Load factor Bias COV
Live Load (LL) Y. =100 1.00 0.15
Dead Load (DL):

At-rest earth pressure ¥ g0 =1.35  1.00 0.30
Active earth pressure ¥, =1.50  1.00 0.30

3 BEARING CAPACITY OF HIGHWAY BRIDGE FOUNDATIONS

3.1 Bearing capacity formulation utilized for the predicted strength limit state

The analysis was based on the procedure for the bearing capacity prediction specified in the AASHTO
LRFD Bridge Design Specifications (2008). Accordingly, the general bearing capacity formulation by
Vesi¢ (1975) was used:

dn :C'Ncm+YI'Df'qu+O'5'YZ'B'Nym (2)

in which:

Ncm = Nc Sc¢ 'dc 'ic (3a)
qu =Nq “Sq 'dq ~iq (3b)
Nym =N, s, -d, -1, (3¢)

In Eq. (2) and elsewhere, c is the undrained shear strength c, in a total stress analysis or the effective
shear strength ¢’ in an effective stress analysis. Parameters y; and v, are the moist or submerged unit
weight of the soil above and below the footing base, respectively, whereas Dy is the embedment depth of
the footing. The bearing capacity factors N, Ng and N, are summarized in Table 3, the shape factors s, sq
and s, are presented in Table 4. The depth factors d., dq and d,, if applicable, as well as the inclination
factors i, 1 and 1, are given in Table 5 and Table 6, respectively.
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The parameter n in Table 6 is defined as:

oo [%}-cosz e{%}-siﬁ 0

In Eq. (4) the angle 0 is the angle between the resultant load and the footing length L (or L’) projected in
the footing area. Eq. (2) and (4) as well as Tables 4-6 are valid either for the physical footing dimensions
B and L in case of centric loading or for the effective footing dimensions B'=B-2-e; and
L'=L-2-¢; in the case of eccentric loading.

The inclination factors in Table 6 and the effective footing dimensions are calculated with unfactored
loads.

Table 3. Bearing capacity factors N, (Prandtl, 1921), N, (Reissner, 1924) and N, (Vesi¢, 1975)

Friction angle N [-] N [-] N, [-]
¢, =0°: 247 1.0 0.0
o, >0°: (Nq ~1)-cot ¢, exp(n-tan¢f)~tan2(45°+¢7fj 2-(Nq +1)-tan ¢,

Table 4. Shape factors (Vesic, 1975)

Friction angle s [-] Sq [-] sy [-]
¢, =0°: 1+0.2-% 1.0 1.0

. B N B B
d; >0°: l+f-N—j 1+—-tan ¢, 1-04.-—

Table 5. Depth factors (Brinch Hansen, 1970)
Friction angle de [-] dq [-] d, [-]

D
b, =0°: DfsB:1+o.4-?f 1.0 1.0

D
D, >B: 1+0.4-arctan[?fj

1-d D
o >0°: dq—N ‘*l DfSB:1+2~tan¢f-(l—sin(])f)2~§f 1.0

q

D, >B:1+2-tan¢, -(l—sin(l)f )2 -arctan(%] 1.0

Table 6. Inclination factors (Vesi¢, 1975)

Friction angle ic [-] iq [-] iy [-]
¢, =0° _—nH 1.0
¢-B-L-N,
l—i H n H n+l
br > 0% i {1_V+C~B~L~cot¢ } {1_V+C-B-L-c0t¢ }
q f f
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3.2 Selection of soil parameters

Selected correlations were chosen in order to obtain a consistent interpretation of the soil parameters used
for the bearing capacity predictions. Where SPT results were available, the soil friction angle has been
correlated to the corrected SPT-N value (N))eo using a procedure proposed by Peck, Hanson and Thorn-
ton as mentioned in Kulhawy & Mayne (1990):

dp ~ 54—27.6034-exp(- 0.014(N, ), ) [7] (5a)

(Ngo = .| 22N (5b)

!
\'

In Eq. (5b) pa is the atmospheric pressure, o', the effective vertical stress and Ngo the corrected SPT blow
count.

For load tests conducted on medium to coarse, sharp-edged silica sand at the University of Duisburg-
Essen in Germany, a correlation of the soil friction angle to the soil bulk density has been established on
the basis of numerous direct shear tests. Eq. 6 is a revision of the original correlation given in Perau
(1995) and was used in this study.

Op =3.824-7-21.527 [°] (6)
where v is in kN/m”.

In cases where the unit weight was not specified, but SPT results were available the soil unit weight has
been correlated to the SPT blow count according to Eq. (5b) by a procedure suggested in Paikowsky et al.
(1995):

y=0.88-(N)s, +99 [pcf] fory <146 pef (7)

4 DATABASE AND DETERMINATION OF FAILURE LOADS

4.1 Database for shallow foundations in or on soils

The UML-GTR ShalFound07 database assembled in the present research study includes 549 load tests for
shallow foundations mostly in or on granular soils. The database was constructed in Microsoft ACCESS
2003. The majority of the cases are load tests to failure under vertical centric loading but a sizeable data-
set of foundations under combined loading conditions is also included. Tests under vertical centric load-
ing were either field or laboratory tests. Field tests, for which SPT blow counts were available, usually
were carried out on larger foundation sizes and were categorized as tests under natural soil conditions.
The tests under combined loading were mainly small scale laboratory model tests performed in controlled
soil conditions. For these, the mechanical properties of the tested soils (such as unit weight, density, and
shear strength) were determined in advance and were controlled in the tests; such that all the tests from
one source could be compared.

The majority of the tests were carried out in Germany, USA, France and Italy. The large number of
German tests originated from two sources, tests performed at the DEGEBO in Berlin (Deutsche For-
schungsgesellschaft fuer Bodenmechanik) in the 1960-ies and 1970-ies and tests carried out or compiled
in various research projects at the University of Duisburg-Essen during the past 25 years. Table 7 pre-
sents the content of the database classified by foundation type defined by the width of the foundation,
predominant soil type below the footing base and country.

As can be seen in Table 7, there is limited number of large scale foundation tests as typically the ser-
viceability limit is exceeded for these foundations prior to the strength limit state mobilization (i.e. bear-
ing capacity failure). Most tests in the database are plate load tests with a width of less or equal to 1.0 m
which include numerous small scale model tests under controlled laboratory conditions as mentioned
above.
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Table 7. Overview of cases in the UML-GTR ShalFound07 database

Predominant Soil Type Country
Foundation Type Cohe- Total
Sand  Gravel sive Mixed Others Germany _ Others
Plate load tests, B< 1 m 346 46 -- 2 72 466 253 213
Small footings, | m<B <3 m 26 2 -- 4 1 33 -- 33
Large footings, 3 m<B <6 m 30 -- -- 1 -- 31 -- 31
Rafts & Mats, B > 6 m 13 -- -- 5 1 19 1 18
Total 415 48 0 12 74 549 254 295
Note:

“Mixed” are cases with alternating layers of sand or gravel and clay or silt
“Others” are cases with either unknown soil types or with other granular materials like Loamy Scoria

The existing site conditions in the load tests were classified as shown in Figure 1. The database further

includes information on the footings, the subsoil conditions, laboratory test results, field tests, details of
the loading as well as the results of the load tests as load-displacement curves.
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Figure 1. Classification of various site conditions employed in the UML-GTR ShalFound07 database

4.2 Failure criteria and determination of failure loads from model tests

In order to evaluate the uncertainties of the bearing capacity model provided by the formulation presented
in section 3.1, a consistent procedure is required to identify the measured capacity, i.e. to define the fail-
ure loads from the load-displacement test results.

The bearing capacity equation given in Eq. (2) is valid only for a general shear failure and therefore is
limited to the foundation’s relative depth of D/B < 2. In general shear, the failure pattern is completely
developed and reaching the surface beside the foundation (see Figure 2). General shear failure is indi-
cated by a distinctive peak in the load-displacement curve and can therefore be clearly identified. Usu-
ally, footings in homogenous, nearly incompressible soils with finite shear strength fail in general shear
failure as shown in Figure 2. Out of the cases in the database, especially the plate load tests show this
failure pattern, i.e. the small scale model tests conducted under controlled laboratory conditions where the
homogeneity of the soil and its density could have been adjusted.
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In field tests in inhomogeneous soils, the resultant load-displacement curves do not show a prominent
peak indicating a general shear bearing capacity failure. For non-dense soils, the foundation fails in local
or punching shear. Depending on the actual mode of failure, a clear peak or at least an asymptote value
may not exist at all, so that the failure load needs to be interpreted. Such interpretation requires a load test
to be conducted to sufficiently large displacements. Large scale field tests were typically performed to
limited displacements where a bearing capacity failure could not be developed or identified. This led to a
reduction in the number of load tests available for the reliability analyses.

Load

General shear

Settlement

general shear failure
Figure 2. Bearing capacity failure as a general shear failure (Vesi¢, 1975)

The following criteria for interpreting the failure loads from load-displacement curves have been investi-
gated in this study:

- Minimum slope criterion (Vesi¢, 1963)

- Limited settlement criterion (Vesié, 1975)

- Interpretation from the log-log plot of the load-displacement curve (De Beer, 1967)

- Two slope criterion (e.g. NAVFAC, 1986)

With the minimum slope criterion (Vesi¢, 1963) the failure load is defined at the point where the slope of
the load-displacement curve first reaches zero or a minimum steady value. For footings in or on soils with
high relative density which are more likely to fail in general shear failure the starting point of the mini-
mum slope usually is clearly defined. For footings in or on soils with lower densities the definition of the
failure load may sometimes be arbitrary. In this case, a semi-log scale with the load in logarithmic scale
may help to identify the failure load.

The limited settlement criterion introduced by Vesi¢ (1975) includes the definition of the failure load
at a limited settlement of 10% of the footing width.

If the load-displacement curve is presented in a logarithmic scale with loads and displacements either
as normalized or as absolute values, the failure load can be interpreted as the point of break in the load-
displacement curve (De Beer, 1967).

The two slope criterion (e.g. NAVFAC, 1986) is a variation of the minimum slope criterion or De
Beer’s criterion and can be applied by constructing the asymptotes at the initial portion as well as at the
end portion of the load-displacement curve which is plotted either in a linear or a logarithmic scale. The
load at the intersection point of both asymptotes represents the failure load. A range of failure load may
be identified if the location of the end asymptote is not unique.

The application of these failure criteria to the UML-GTR ShalFound07 database was examined for the
tests on vertical-centric loading. Out of these tests, 196 cases could have been interpreted using the mini-
mum slope criterion and 119 using De Beer’s criterion based on the log-log plot of the load-displacement
curves. Most of the footings, especially in small scale model tests on very dense soils, failed before reach-
ing a settlement of 10% of the footing width. This criterion could therefore only be applied to 19 cases.

In order to examine and compare the failure criteria and to establish the uncertainty of the criterion se-
lected for defining the bearing capacity of shallow foundations on soils, a single “representative” value of
the relevant measured capacity was assigned to each footing case. This was done by taking an average of
the measured capacities interpreted using the minimum slope criterion, the limited settlement criterion of
0.1B (Vesi¢, 1975), the log-log failure criterion, and the two-slope criterion (shape of curve). The values
obtained by each of the failure criteria were then compared case by case to the representative value. The
statistics of the ratios of this representative value over the interpreted capacity using the minimum slope
criterion and the log-log failure criterion were comparable with the mean of the ratio for the minimum
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slope criterion being 0.98 versus that for the limited settlement criterion being 0.99. Due to the simplicity
and versatility of its application, the minimum slope criterion was selected as the failure interpretation
criterion to be used for all cases of footing, including those with combined loadings. Figure 3 shows the
histogram for the ratio of the representative measured capacity to the interpreted capacity using the mini-
mum slope criterion. Figure 3 represents, therefore, the uncertainty associated with the use of the selected
criterion, suggesting that the measured capacity interpreted using the minimum slope criterion has a slight
overprediction.
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Figure 3. Histogram for the ratio of representative measured capacity to interpreted capacity using the minimum slope criterion
for 196 footing cases in granular soils under vertical-centric loading.

5 EVALUATION OF MODEL UNCERTAINTIES

5.1 Definition of the bias

The uncertainty of the geotechnical resistance model controls the resistance evaluation of the foundation
due to the assumptions and empirical data utilized in its formulation. To evaluate the model uncertainty
the bearing capacity model presented in section 2.2 was calibrated as a complete unit while other associ-
ated sources of uncertainty were reduced by applying specific procedures, e.g. the soil parameter estab-
lishment as previously discussed. This approach, while may be in dispute, was proven effective when ap-
plied to the design of deep foundations (see example in Paikowsky et al., 2010) or when examined
theoretically against a case study (Teixeira et al., 2011).

The uncertainty associated with the bearing capacity calculation was evaluated on the basis of the test
results in the databases by comparing the bearing capacities measured in the load tests with the calculated
bearing capacities using the calculation methods defined in section 2.2. The ratio of measured over calcu-
lated bearing capacity is defined as the bias Ag:

_ measured bearing capacity

(8)

R calculated bearing capacity

This lump-sum procedure includes all sources of uncertainties related to the bearing capacity prediction
such as scale effects, variation in soil properties, etc.

The statistics of the bias, especially its mean value and its coefficient of variation (COV), were used to
analyze the model uncertainties.
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5.2 Uncertainties in the bearing capacity of footings subjected to vertical-centric loading

Figure 4 summarizes the results of the statistical analysis for the vertical-centric loading cases. The over-
all mean bias was 1.59 for all 173 cases which indicates a systematic bearing capacity underprediction.
The mean bias for footings in controlled soil conditions was 1.64 and higher, with a COV of 0.267, and

therefore significantly different than that for footings in natural soil conditions (mean bias = 1.00, COV =
0.329).

Vertical Centric Loading
n =173; mean bias = 1.59, COV =0.291

Natural soil conditions Controlled soil conditions
(¢¢ from SPT-N counts) (D, 2 35%)
n = 14; no. of sites = 8 n=159; no. of sites =7
mean = 1.00 mean = 1.64
COV =0.329 COV =0.267
| |
| | |
B>1.0m 0.1<B<1.0m B<0.lm 0.1 <B<1.0m
n=6 n=238 n=138 n=21
no. of sites =3 no. of sites =7 no. of sites =5 no. of sites =3
mean = 1.01 mean = 0.99 mean = 1.67 mean = 1.48
COV =0.228 COV =0.407 COV =0.245 COV =0.391

Figure 4. Summary of the bias for vertical-centric loading cases

The higher mean bias in controlled soil conditions is attributed to the conservatism in the theoretical pre-
diction of the bearing capacity formulation as outlined in section 3.1. This conservatism especially results
from the bearing capacity factor N, proposed by Vesi¢ (1973) (see Table 3).

The uncertainty related to N, has been analyzed on the basis of load tests carried out on the surface of
granular soils. Under such conditions, the bearing capacity only depends on the weight of the soil as the
embedment and cohesion term in Eq. (2) are equal zero.

N, can, therefore, be back-calculated from the load tests and the obtained values can be related to the
theoretical value proposed by Vesi¢ (1973). With that the bias of the bearing capacity factor N, is defined
as:

e N.Exp _ qu/(O.S-y-B-sy)
N, NWesiC 2-(Nq+1)-tan¢f

€
Figure 5 presents the bias A as a function of the soil friction angle ¢r. A clear trend of the bias increas-

ing beyond 1.0 for friction angles ¢ > 42.5° can be observed in Figure 5.

The best fit line of the bias }“Ny in Figure 5 is expressed as:

N,y = €xp(0.205- ¢ —8.655)-N for 42.5° < ¢ < 46° (10)

YExp yVesic

with a coefficient of determination of R? = 0.351 indicating a large scatter.
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Figure 5. Bias of the bearing capacity factor N, as a function of the soil’s friction angle ¢¢

Figure 6 shows the bias of the calculated bearing capacity Ar and the bias of the bearing capacity factor
Ay, for the considered range of soil friction angle. The overlapping biases suggest that the bias in the
bearing capacity factor N, is the dominant factor affecting the uncertainty in the bearing capacity predic-
tion whereas the shape factor has only a negligible influence considering that most foundations were of
limited L/B ratio. This has been confirmed by the analysis of footings under vertical-eccentric, inclined-
centric and inclined-eccentric loading which revealed a similar trend although the biases did not overlap
as cases involving eccentric and/or inclined loading are also sensitive to the loading conditions and their
effect on the bearing capacity.
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Figure 6. Bias of the bearing capacity prediction compared to the bias of the bearing capacity factor N, as a function of the
friction angle for footings under vertical-centric loading

5.3 Uncertainties in the bearing capacity of footings subjected to combined loading

The uncertainty analysis for footings subjected to combined loading, i.e. vertical-eccentric, inclined-
centric and inclined-eccentric loading, was based on results from small scale model tests under controlled
laboratory conditions performed by DEGEBO (see e.g. summary in Weil, 1978), Gottardi (1992), Mon-
trasio (1994) and Perau (1995).
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The uncertainty of the bearing capacity prediction for footings subjected to vertical-eccentric loading was
based on the results from load tests with a radial load path, i.e. where a constant ratio e = M/V was main-
tained during the test as the vertical load was applied at a constant eccentricity. A total number of 43 tests
were examined. The resulting histogram and PDF of the bias as well as the relationship between meas-
ured and calculated bearing capacities are presented in Figure 7.
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Figure 7. Histogram and probability density function of the bias (a) and relationship between measured and calculated bearing
capacity (b) for all footings subjected to vertical-eccentric loading

The analysis shows a mean bias of 1.83 and a COV of 0.351 for all load tests. However, the DEGEBO
tests conducted on larger footings (0.5 m < B <1.0 m) lead to a significantly larger bias of 2.22 than the
small scale model tests with 0.05 m < B < 0.5 mand a mean bias between 1.43 and 1.71 indicating a de-
pendency of the bias on the footing size.

The available tests on foundations subjected to inclined-centric loading were either conducted with a
radial load path (DEGEBO; Gottardi, 1992; Montrasio, 1994) or a step-like load path (Gottardi, 1992; Pe-
rau, 1995). In the latter, the vertical load was increased to a certain value and then kept constant while the
horizontal load was increased to failure. The difference in the applied load path did not have an influence
on the bias statistics. As can be seen in Figure 8, a mean bias of 1.43 for all 39 tests was determined with
a COV of 0.295. For this load combination, the DEGEBO tests lead to biases of similar magnitude as the
small scale model tests.
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Figure 8. Histogram and probability density function of the bias (a) and relationship between measured and calculated bearing
capacity (b) for all footings subjected to inclined-centric loading

Bias, A = qu,meas / Yu,calc

57



Figure 9 shows the histogram and PDF of the bias as well as the relationship between measured and cal-
culated capacity for the 29 tests on foundations subjected to inclined-eccentric loading. These tests were
conducted with a radial or a step-like load path. Significant differences in the results due to the different
load paths could not be identified in this case as well.

A mean bias of 2.43 with a COV of 0.508 was calculated for all tests. However, detailed examination
revealed that the direction of the applied moment or load eccentricity in relation to the direction of the ho-
rizontal load affects the measured failure loads.

A resultant moment, which acts in the opposite direction to the horizontal load and causes a negative
eccentricity (see Figure 10 top), induces rotations which counteract the horizontal displacements by the
horizontal load. The resulting resistance, i.e. the failure load, is higher as compared to inclined-centric
loading. A moment which acts in the same direction as the horizontal load and causes a positive eccen-
tricity (see Figure 10 bottom) induces rotations which enforce the horizontal displacements, and hence,
the resulting failure load is smaller as compared to inclined-centric loading.
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Figure 9. Histogram and probability density function of the bias (a) and relationship between measured and calculated bearing
capacity (b) for all footings subjected to inclined-eccentric loading
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Figure 10. Loading directions for the case of inclined-eccentric loadings

58



Figures 11 and 12 show a significant difference in the bias when the different loading directions are con-
sidered. For cases with a negative eccentricity the mean bias is 3.43 compared to a mean bias of 2.16 for
the cases with positive eccentricity. The results suggest that the loading direction needs to be considered
in the evaluation of the resistance factors. It should, however, be noticed that the effect is less pronounced
when the vertical load is relatively high, i.e. the load inclination is relatively small. Lesny (2001) demon-
strated that for a vertical load level equal or greater than 0.3 the effect of the loading direction is negligi-
ble. The vertical load level is defined as the ratio of the vertical load to the vertical failure load under ver-
tical-centric loading. While the findings clearly demonstrate an important physical effect, the practical
ramification of this finding is yet to be investigated.
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Figure 11. Histogram and probability density function of the bias (a) and relationship between measured and calculated bear-
ing capacity (b) for footings subjected to inclined-eccentric loading with a positive eccentricity
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Figure 12. Histogram and probability density function of the bias (a) and relationship between measured and calculated bear-
ing capacity (b) for all footings subjected to inclined-eccentric loading with a negative eccentricity
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6 DERIVATION OF RESISTANCE FACTORS

6.1 Probabilistic analysis procedures

The partial factors used in the LRFD are derived in this research using so-called Level 2 approaches in
which the uncertainties of the design variables are expressed by their mean, standard deviation and/or co-
efficient of variation. The limit state of the foundation is evaluated by using the First Order Second Mo-
ment (FOSM) method as an approximate iterative procedure as well as the more accurate Monte Carlo
Simulation (MCS) procedure.

According to the FOSM as originally proposed by Cornell (1969) the mean and the variance of a limit
state function g(e) are defined as:

mean: m, ~g(m;, m,, ms,...m,) (1la)
2
n
variance: G; ~ Z[;ng o 012 (11b)
i=1 1

In Eq. (11) m; and o; are the means and the standard deviations of the basic variables (design parameters)
Xi.

The FOSM was later used by Barker et al. (1991) to develop closed form solutions for the calibration
of geotechnical resistance factors ¢ that appear in previous AASHTO LRFD specifications:

(S 1+con
Vi
fle FCOVR )

g -exp{B |In _(1 ¥ COVR)- 1+ covg)

—_—

In Eq. (12) Q; are the loads, Ar is the resistance bias factor defined as the mean ratio of measured resis-
tance over calculated resistance, mq 1s the mean of the loads, COVr and COVj, are the coefficients of
variation of the resistance and the load, respectively, y; are the load factors and [ is the target reliability
index.

The approach adopted in this research differs from the original Level 2 approach as the load factors and
related uncertainties used in the analysis are previously selected (see section 2) and then utilized to de-
termine the resistance factors for a given target reliability index and a given range of loads.

MCS involves the numerical integration of the failure probability defined as:

1 n
pr =P g<0—§ D gs (13)
i=1

In Eq. (13) I is an indicator function which is equal to 1 for g; <0, i.e., when the resulting limit state is
exceeded (failure), and equal to 0 for g; > 0 when the limit state is not exceeded. N is the number of simu-
lations carried out.

In order to evaluate equation (13) the basic variables and their distributions first need to be defined.
Then N random samples for each design variable based on their distributions, i.e. using the statistics of
loads and resistances, are generated. The limit state function is evaluated N times taking a set of the de-
sign values previously generated and the number Ny is counted for which the indicator function is equal to
1, i.e. failure occurred. The failure probability is finally obtained as the ratio N¢/N.

The resistance factor based on the MCS can be calculated using the fact that to attain a target failure
probability prr, the limit state must be exceeded N¢r times. As in the current LRFD concept only one re-
sistance factor needs to be determined for one limit state, while keeping the load factors constant, a suit-
able choice of the resistance factor shifts the limit state function so that failure occurs N¢t times.
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It has to be noticed that the results of a MCS is only as good as the determination of the distributions of
loads and resistance. This means, the statistical parameters need to be defined as good as possible.

6.2 Definition of the target reliability index

Instead of the failure probability, the safety of a system often is expressed by the reliability index 3 which
describes the margin of safety by the number of standard deviations of the probability density function
for the limit state g, separating the mean of g from the failure zone beginning at g = 0. The reliability in-
dex is related to the failure probability by the error function @ as given in Eq. (14).

pr =®(-B) (14)

Accordingly, the target reliability index is the safety margin to be implemented in the design. It can be
derived either from the reliability levels implicit in the current WSD codes or by a cost-benefit analysis
with an optimum reliability based on minimum costs including costs of economic losses and conse-
quences due to failure. The latter is a difficult process as especially costs related to human injuries or loss
of life are hard to determine and therefore not adopted in this research.

Using a target reliability derived from WSD represents the acceptable risks in the current design prac-
tice and may therefore be an adequate starting point for a code revision. However, such reliability levels
can have considerable variations as various studies have shown (e.g. Phoon and Kulhawy, 2000; Honjo
and Amatya, 2005).

It seems to be logical and convenient, therefore, to assign a target reliability index for the foundations
equal to that assigned for the superstructure to maintain a comparable reliability level, although the actual
reliability level of the combined system of super- and substructure remains unknown. For foundations
in/on granular soils a target reliability index of Bt = 3 has been selected in the probabilistic analyses.

7 RECOMMENDED RESISTANCE FACTORS

7.1 General

The aforementioned investigations of the bearing capacity equation vs. shallow foundations load test da-
tabases lead to the conclusion that one single resistance factor for the bearing capacity is not sufficient to
address the different loading conditions leading to different levels of uncertainties. Consequently, differ-
ent resistance factors were established based on the probabilistic analyses, each for vertical-centric, verti-
cal-eccentric, inclined-centric and inclined-eccentric loading conditions. These resistance factors are va-
lid only with the calculation methods specified previously for the respective resistances.

7.2 Vertical-centric loading

For vertical-centric loading the bias change with the soil’s friction angle as described in section 5.2 had to
be considered in developing the resistance factors. For this, subsets of the database based on the magni-
tude of ¢r were analyzed for possible outliers to improve the quality of the database and to achieve a bet-
ter fit of the assumed probability distribution. In the end, only one outlier had been removed, so that 172
cases were available for the resistance factor calibration. Further on, a lognormal distribution of the bias
has been defined for the whole range of ¢.

The MCS calculations are based on a mean bias of:

Apc =0.398exp(0.0372- ¢ ) (15)

with a COV,, of 0.25 for controlled soil conditions and 0.35 for natural soil conditions. From the results of
the calculations the resistance factors presented in Table 8 finally have been recommended specified for
natural soil conditions and controlled soil conditions. The values are valid for soils with a relative density
of 35% and greater.

For loose soils with a smaller relative density and friction angles less than 30° it is recommended to
consider either ground improvement or ground replacement in the zone of influence beneath the footing
or to choose an alternative foundation.
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Table 8. Recommended resistance factors for vertical-centric loading

Soil friction angle [°]

Recommended resistance factor ¢ (Bt = 3)

natural soil conditions controlled soil conditions

30-34 0.40 0.50
35-36 0.45 0.60
37-39 0.50 0.70
40 - 44 0.55 0.75
=45 0.65 0.80

7.3 Vertical-eccentric loading

Analysis of the cases under vertical-eccentric loading revealed that a clear unique correlation between the
bearing capacity bias and the soil’s friction angle as in case of vertical-centric loading does not exist (see
Figure 13). Derivation of resistance factors depending on the soil friction angle assuming a lognormal
distribution of the bias lead to values around 1.0 and are far greater than the values presented in Table 8.
This is not consistent as the uncertainties involved with vertical-eccentric loading should not be less than
those with vertical-centric loading. Further analysis indicated that the footing size affects the bearing ca-
pacity bias, too, but with the available data it was not possible to isolate the effects of the footing size
from the effect of the soil friction angle. Thus, it seems to be justified and appropriate to extend the data-
set for vertical-eccentric loading by the dataset for vertical-centric loading for deriving the resistance fac-
tors because (i) when the source of the lateral load is not permanent, the foundation supports vertical-
centric loading in some situations, and (ii) very often the magnitude of the lateral load and with that the
eccentricity is not known in the design phase of the bridge foundation.
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Figure 13. Bias of the bearing capacity prediction versus soil friction angle for footings under vertical-eccentric loading (seven
cases for ¢;=35° have been ignored as outliers for obtaining the best fit line)

As a result of the above, the same resistance factors used for vertical-centric loading and presented in Ta-
ble 8 are recommended for vertical-eccentric loading, too. These are verified by resistance factors ob-
tained on the basis of Figure 13 with a constant mean bias of 1.60 for friction angles between 40° and 46°
and a COV for natural and controlled soil conditions of 0.35 and 0.30, respectively:

Natural soil conditions, for all ¢:
Controlled soil conditions, for all ¢y

¢ = 0.65 (from MCS: ¢ = 0.687)
¢ =0.75 (from MCS: ¢ = 0.796)
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7.4 Inclined-centric loading

For footings under inclined-centric loading no clear trend of the bias associated to the load inclination and
the orientation of the horizontal load or the footing size exists. Thus, the resistance factors again have
been obtained based on the variation of the bearing capacity bias on the soil friction angle:

Ape =1.25+0.0041- ¢; (16)

Eq. (16) has been derived as a best-fit line from an evaluation of the bearing capacity bias versus the soil
friction angle. A COV of 0.35 has been adopted for controlled soil conditions and a COV of 0.40 for
natural soil conditions. The resistance factors resulting from the MCS calculations needed to be adjusted
to guarantee a safe design. Table 9 summarizes the finally recommended resistance factors.

Table 9. Recommended resistance factors for inclined-centric loading

Soil friction angle [°] Recommended resistance factor ¢ (Br = 3)
natural soil conditions controlled soil conditions

30-34 0.40 0.40

35-36 0.40 0.40

37 -39 0.40 0.45

40 - 44 0.45 0.50

>45 0.50 0.55

7.5 Inclined-eccentric loading

Due to the limited available datasets resistance factors for inclined-eccentric loading can only be given as
guidance. For a positive loading eccentricity as indicated in Figure 10 (bottom) the probabilistic analysis
results in a resistance factor of ¢ = 0.55 for all eight investigated cases with 44.5° < ¢¢ < 45°. For a nega-
tive loading eccentricity according to Figure 10 (top) the analysis lead to a resistance factor of ¢ = 0.85
for all seven cases with 44.5° < ¢¢ < 45°. On this basis the resistance factors presented in Table 10 are
recommended.

Table 10. Recommended resistance factors for inclined-eccentric loading

Soil friction angle [°] Recommended resistance factor ¢ (Bt = 3)

natural soil conditions controlled soil conditions
positive negative  positive  negative

30-34 0.35 0.65 0.40 0.70
35-36 0.35 0.70 0.40 0.70
37-39 0.40 0.70 0.45 0.75
40 - 44 0.40 0.75 0.50 0.80
245 0.45 0.75 0.50 0.80

& CONCLUSIONS

The resistance factors recommended in this research are soundly based on the quantified uncertainties of
the design methods and follow the parameters that control them. These parameters present a radical
change to the existing design specifications for bridge foundations as the bearing capacity of shallow
foundations on granular soils is calibrated according to the soil placement (natural vs. controlled condi-
tions) and the magnitude of the angle of internal friction. Further, all possible loading conditions were ca-
librated, namely vertical-centric, vertical-eccentric, inclined-centric and inclined-eccentric.

The implementation of the developed LRFD procedure is expected to provide a safe design of shallow
foundations with a consistent level of reliability for the different design conditions.

The application of these findings in the design of shallow foundations needs, however, to be imple-
mented in the context of a total design including all limit states, especially the serviceability limit state.
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