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ABSTRACT: The objective of this paper is to investigate the degree of deviation from the target reliabil-
ity index produced when LRFD/MRFD equations are applied to a database of forty-two actual drilled 
shafts installed in soil profiles underlying the city of Taipei, which contain clay, sand, gravel and rock 
layers or some partial combination thereof. In general, for soil profiles with multiple layers, conventional 
formats containing resistance and load factors are unable to achieve the prescribed target reliability index 
with the same consistency as that reported for homogeneous soil profiles. For the drilled shaft examples 
considered in this study, the direct application of quantiles in the RBD equation (uniform quantile –  ap-
proach), rather than converting the quantiles to conventional resistance and load factors (uniform quantile 
– standard approach), appears to deliver the most consistent and most robust performance. There is a 
practical drawback associated with the application of the uniform quantile –  approach. The engineer is 
required to perform Monte Carlo simulation to estimate the  quantile of lumped random variables such 
as the total side resistance. This drawback is not present if the uniform quantile –  approach is applied to 
appropriate parameters where the probability distribution is known analytically or empirically. 

Keywords: drilled shafts, axial compression, LRFD, MRFD, reliability code calibration, FORM design 
point method, uniform quantile method, calibration domain 

 
1 INTRODUCTION 

The objective of reliability-based design (RBD) is to adjust a set of design parameters such that a pre-
scribed target probability of failure is achieved or at least not exceeded. For example, the depth of a 
drilled shaft is a practical design parameter that can be adjusted readily. In principle, it is possible to ad-
just the shaft diameter but it is less practical to constantly change the diameter of a rotary auger within a 
single site. These practical considerations apply to the current working stress design (WSD) method. In 
fact, from a mechanical calculation perspective, there is no difference between RBD and WSD. The for-
mer considers a design to be satisfactory if a target probability of failure, say one in a thousand, is 
achieved. The latter considers a design to be satisfactory if a target global factor of safety, say three, is 
achieved. The substantive advantage of using the probability of failure (or an equivalent reliability index) 
in place of the global factor of safety has been discussed elsewhere (Phoon et al. 2003a). 

Using the classical example of a drilled shaft under axial compression, the objective of RBD can be 
stated formally as follows: 

 
TpL)Prob(Q   (1) 

 
in which Q = shaft capacity, L = axial load, and pT = target probability of failure. EN1990:2002 (British 
Standards Institute, 2002) prescribes pT = 7.2 × 10-5 (or reliability index,  = 3.8) for a reliability class 2 
(RC2) structure (ultimate limit state). Note that it is straightforward to convert  to pT and vice-versa us-
ing the following convenient EXCEL functions: pT = NORMSDIST(-) and  = NORMSINV(1pT). It is 
worthy to observe in passing that Q and L are typically modeled as independent lognormal variables in a 
number of geotechnical RBD code calibration exercises. This assumption is largely a matter of computa-
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tional convenience because the left hand side of Eq. (1) can be evaluated in closed-form using the follow-
ing classical lognormal formula: 
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in which Q, L = mean shaft capacity and mean axial load, respectively and Q, L = coefficient of varia-
tion of shaft capacity and coefficient of variation of axial load, respectively. This lumped capacity as-
sumption is convenient from a reliability calculation perspective, but it is rarely emphasized that it could 
be inconvenient from a physics perspective. The shaft capacity is typically related to side resistance and 
tip resistance. These resistances are related to geotechnical parameters that can be measured in the labora-
tory or in the field for obvious practical reasons. The statistics of these geotechnical parameters can be es-
timated directly from the measured data. Based on this physics perspective, the shaft capacity is a func-
tion of more basic random variables (geotechnical parameters). This function is generally nonlinear and 
the statistics of Q can only be estimated using Monte Carlo simulation. More fundamentally, Q is not a 
lognormal random variable even if all basic random variables are lognormally distributed and Eq. (2) is 
no longer valid. It could be argued that there are insufficient data to decide which approach is more cor-
rect. Nevertheless, it is the position of the authors that one should conform with the best physical model 
available to date, assign the simplest probability models consistent with measured laboratory/field data 
and known physical bounds, and live with the resulting complexity in reliability calculations. In short, a 
physics-centered approach is better than a reliability-centered approach.  

For geotechnical problems where simple models are adequate, which is indeed the case for shaft ca-
pacity, it is relatively simple to evaluate the left hand side of Eq. (2) using Monte Carlo simulation. More 
complex problems requiring numerical solution models such as FEM can also be analyzed probabilisti-
cally using Monte Carlo simulation, but the computational cost is onerous for common PC platforms. 
Monte Carlo simulation is a completely general technique. The main disadvantage is tedium, because tens 
of thousands of design checks (i.e. Q < L?) are needed. In contrast, WSD only requires a single check per 
trial design. There are clever mathematical short-cuts such as the First-Order Reliability Method (FORM) 
that can reduce tens of thousands of design checks to less than ten design checks at the cost of loss of 
generality, more complex calculation steps, and occasionally hard-to-detect erroneous solutions. An al-
ternate method called subset simulation (Au & Beck 2001) is gaining popularity, because it is almost as 
general as Monte Carlo simulation, but requires only about two thousands design checks to achieve a rea-
sonably accurate estimate of the probability of failure. It is accurate to say that very few practitioners are 
comfortable to perform reliability analysis beyond Monte Carlo simulation which is physically appealing 
and requires very limited knowledge of probability theory as long as random number generators are avail-
able (it is available under “Data Analysis” > “Random Number Generation” in EXCEL). In fact, most 
practitioners do not find it worthwhile to perform Monte Carlo simulation even when it is available in 
commercial geotechnical softwares. 

Simplified RBD equations in the form of Load and Resistance Factor Design (LRFD), Multiple Resis-
tance Factor Design (MRFD), and partial factor approach (PFA) are popular because practitioners can 
comply with Eq. (1), albeit approximately, while retaining the simplicity of performing one check per 
trial design. To the authors’ knowledge, this simplified RBD approach is adopted in all geotechnical RBD 
codes to date. The practical challenge is to calibrate a set of resistance factors or soil partial factors that 
would produce designs that comply with Eq. (1) approximately over a range of representative design sce-
narios. Needless to say, one would prefer the smallest possible set of factors (generating a humungous list 
like a phonebook would be impractical) covering the widest possible design scenarios that would produce 
the least deviation from the target reliability index. Phoon et al. (2003a) explicitly recognized this chal-
lenge and proposed the following RBD calibration approach to balance pragmatism and compliance with 
Eq. (1): 

1. Perform a parametric study on the variation of the reliability level with respect to each determinis-
tic and statistical parameter in the design problem. Examples of deterministic parameters that con-
trol the design of foundations include the diameter (width) and depth to diameter (width) ratio. 
Examples of statistical parameters for foundations loaded under undrained conditions include the 
mean and coefficient of variation (COV) of the undrained shear strength. 
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2. Partition the parameter space into several smaller domains. An example of a simple parameter 
space is shown in Fig. 1. The reason for partitioning is to achieve greater uniformity in reliability 
over the full range of deterministic and statistical parameters. For those parameters identified in 
Step (1) as having a significant influence on the reliability level, the size of the partition clearly 
should be smaller. In addition, partitioning ideally should conform to existing geotechnical con-
ventions. 

3. Select a set of representative points from each domain. Note that each point in the parameter space 
denotes a specific set of parameter values (Fig. 1). Ideally, the set of representative points should 
capture the full range of variation in the reliability level over the whole domain. 

4. Determine an acceptable foundation design for each point and evaluate the reliability levels in the 
designs. Foundation design is performed using the set of parameter values associated with each 
point, along with a simplified RBD format and a set of trial resistance factors. The reliability of 
the resulting foundation design then is evaluated using Monte Carlo simulation, FORM, or other 
algorithms.  

5. Quantify the deviations of the reliability levels from a prescribed target reliability index, T. The 
following simple objective function can be used: 

  (3)  
n

1=i

2
Ti321 ) - ( = ),,(H 

in which H() = objective function to be minimized, i = partial/resistance factors that are being 
calibrated, n = number of points in the calibration domain, and i = reliability index for the ith point 
in the domain. 

6. Adjust the resistance factors and repeat Steps (4) and (5) until the objective function is minimized. 
The set of partial/resistance factors that minimizes the objective function (H) is the most desirable 
because the degree of uniformity in the reliability levels of all the designs in the domain is maxi-
mized. The following measure can be used to quantify the degree of uniformity that has been 
achieved: 

 
 H/n =   (4) 

  
in which  = average deviation from the target reliability index in the calibration domain. 

7 . Repeat Steps (3) to (6) for the other domains. 
Comparable calibration methods have been adopted elsewhere (e.g., CIRIA 1977, Ellingwood et al. 1980, 
Moses and Larrabee 1988). The effectiveness of applying these simplified RBD equations to more realis-
tic ground conditions containing multiple strata has not been studied, despite its obvious practical impor-
tance. The objective of this paper is to investigate the degree of deviation from the target reliability index 
produced when LRFD/MRFD equations are applied to a database of forty-two actual drilled shafts in-
stalled in the city of Taipei. The effect of the RBD calibration method (design point method, quantile-
based method) and number of calibration points are also studied. 
 

 
Figure 1. Partitioning of parameter space for calibration of resistance factors. 
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2 DRILLED SHAFT DATABASE 

2.1 Overview of database 
Table 1 summarizes the basic shaft and geotechnical information for forty-two drilled shafts installed in 
the city of Taipei. The shaft diameter, B, varies between 0.8 m and 2.5 m with an average of 1.24 m. The 
shaft length, D, varies between 20.7 m and 76 m with an average of 48.8 m. The D/B ratio varies between 
18.8 and 63.3 with an average of 40.3. The compression capacity interpreted using the slope-tangent 
method varies between 6172 kN an 15372 kN with an average of 10772 kN. More details are reported 
elsewhere (Ching et al. 2011). 
 
Table 1. Basic shaft and geotechnical information for drilled shafts installed in the city of Taipei. 

Shaft No. Site Location Diameter 
B (m) 

Depth 
D (m) 

Water Ta-
ble 
(m) 

D/B Soil Description QST* 
(kN) 

QL2*
(kN) Group

CT-02 Xinyi District 1.2 29.2 - 24.3 Silty clay over sandstone 6172 11237 CR 

CT-04 Da'an District 2.0 37.5 - 18.8 Interbeded silty clay and silty sand  
over gravel - - CSG 

CT-05 Xinyi District 1.0 53.5 - 53.5 Silty clay over gravel & sandstone 10069 13047 CGR 

CT-07 Xinyi District 1.2 59.0 - 49.2 Interbeded silty clay and silty sand  
over gravel & mudstone 17638 17658 ALL 

CT-09 Xinyi District 1.2 47.7 - 39.8 Interbeded silty clay and silty sand 
 over sandstone 15990 17168 CSR 

CT-10 Zhongshan  
District 1.0 55.5 - 55.5 Interbeded silty clay and silty sand  

over gravel 17040 21680 CS 

CT-11 Beitou District 1.0 44.5 - 44.5 Silty clay over sandstone 6293 7456 CSR 

CT-13 Taipei County 1.2 43.0 - 35.8 Interbeded silty sand and silty clay 
 over gravel 13337 17291 CSG 

CT-14-1 Xinyi District 1.2 76.0 - 63.3 32226 35542 ALL 
CT-14-2 Xinyi District 1.5 66.0 - 44.0 36572 42948 ALL 
CT-14-3 Xinyi District 1.5 65.0 - 43.3 37769 46499 ALL 
CT-14-4 Xinyi District 1.5 56.0 - 37.3 25790 34266 ALL 
CT-14-5 Xinyi District 1.2 59.0 - 49.2 26634 34835 ALL 
CT-14-6 Xinyi District 2.5 70.3 - 28.1 

Interbeded silty clay and silty sand  
over gravel & mudstone 

66414 75213 ALL 

CT-15 Shilin District 1.0 29.0 - 29.0 Interbeded silty sand and silty clay 
 over sandstone 6959 7652 CSR 

CT-16 Xinyi District 1.5 66.0 - 44.0 Interbeded silty clay and silty sand 
 over gravel & mudstone 15892 36336 ALL 

CT-17 Da'an District 1.5 48.0 3.6 32.0 Interbeded silty sand and silty clay  
over gravel 19483 25280 CSG 

CT-18 Zhongzheng Dis-
trict 1.2 29.4 - 24.5 13214 16304 CSR 

CT-19 Xinyi District 1.2 59.0 - 49.2 28917 36336 CSR 

CT-20 Zhongzheng Dis-
trict 1.2 64.4 3.6 53.6 

Interbeded silty sand and silty clay  
over sandstone 

15127 17550 CSR 

CT-21 Xinyi District 1.2 52.0 - 43.3 Interbeded silty clay and silty sand  
over gravel & mudstone - - ALL 

CT-22 Xinyi District 1.2 54.0 - 45.0 - - CSG 
CT-23 Xinyi District 1.0 53.0 4.0 53.0 - - CSR 
CT-24 Xinyi District 1.2 54.0 3.0 45.0 

Interbeded silty clay and silty sand  
over gravel or mudstone 

- - CSG 

CT-25-1 Da'an District 1.5 45.2 5.5 30.1 Interbeded silty clay and silty sand  
over sandstone 19465 24280 CSR 

CT-27 Xinyi District 1.2 76.0 - 63.3 Interbeded silty clay and silty sand  
over gravel & mudstone 27263 37327 ALL 

CT-30 Zhongshan  
District 1.0 47.5 - 47.5 9609 11644 CSR 

CT-31 Beitou District 1.0 46.6 - 46.6 6253 7720 ALL 
CT-32 Beitou District 1.0 31.4 - 31.4 5960 5690 CSR 
CT-33 Shilin District 1.0 31.4 - 31.4 

Interbeded silty clay and silty sand  
over sandstone 

7173 7917 CSR 

CT-34-1 Zhongzheng Dis-
trict 0.9 42.0 - 46.7 Interbeded silty clay and silty sand 

 over gravel 6355 7120 CS 
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Shaft No. Site Location Diameter 
B (m) 

Depth 
D (m) 

Water Ta-
ble 
(m) 

D/B Soil Description QST* 
(kN) 

QL2*
(kN) Group

CT-35-1 Zhongzheng Dis-
trict 1.2 46.4 - 38.6 11903 13381 CSG 

CT-36-1 Zhongzheng Dis-
trict 0.9 47.6 - 52.9 6642 7161 CSG 

CT-37-1 Taipei County 1.2 34.2 - 28.5 7808 8584 CSG 
CT-38-1 Taipei County 1.8 48.5 3.8 26.9 32227 40643 CSG 

CT-39-1 Songshan 
 District 1.8 49.5 0.2 27.5 Interbeded silty sand and silty clay  

over gravel & clay layer 12724 23014 CSG 

CT-40-1 Taipei County 0.8 29.1 6.0 36.4 7624 9584 CS 
CT-41 Zhongshan District 1.3 54.9 3.0 42.2 15733 18763 CSG 

CT-42 Zhongzheng Dis-
trict 1.2 47.4 - 39.5 14056 17854 CSG 

CT-43 Zhongshan  
District 1.0 46.2 0.2 46.2 

Interbeded silty sand and silty clay  
over gravel 

11836 15629 CSG 

CT-44 Beitou District 1.0 32.0 0.2 32.0 6523 7014 CR 
CT-45 Shilin District 1.0 20.7 0.2 20.7 

Silty clay over sandstone 
15372 20012 CR 

*Measured compression capacity from load test: QST = capacity interpreted using the slope-tangent method, QL2 = capacity in-
terpreted using the L1-L2 method. 
 
It is useful to observe that common drilled shaft diameters are covered in the database. However, based 
on D/B ratio, the database covers predominantly long friction shafts. More importantly, all the shafts are 
installed in non-homogeneous layered soils. Based on the strata that provide the side resistances, the 
shafts are classified into five groups: (a) Group ALL: the strata include clay, sand, gravel, and rock layers 
(11 shafts); (b) Group CSR: the strata include clay, sand, and rock layers (11 shafts); (c) Group CSG: the 
strata include clay, sand, and gravel layers (13 shafts); (d) Group CGR: the strata include clay, gravel, 
and rock layers (1 shaft); (e) Group CR: the strata include clay and rock layers (3 shafts); and (f) Group 
CS: the strata include clay and sand layers (3 shafts). It is apparent that this database covers a fairly com-
prehensive range of layered soil profiles. 

2.2 Axial compression capacity and its associated uncertainties 
The axial compression capacity of a drilled shaft is the sum of side resistances along the shaft and end 
bearing at the tip minus its own self-weight. For the long friction shafts shown in Table 1, it is adequate 
to assume that the shaft capacity (Q) is approximately equal to the total side resistance (S). For shafts in-
stalled in multiple strata with possible appearance of clay, sand, gravel, and rock layers, the total side re-
sistance is expressed as:  

 
 S S S SS rgsc   (5) 

 
in which Sc , Ss, Sg, and Sr = side resistances for the clay, sand, gravel, and rock layers, respectively. The 
side resistance in a given layer, denoted by Sx (the subscript ‘x’ denotes either ‘c’, ‘s’, ‘g’, or ‘r’, depend-
ing on the stratum type of interest), can be computed as: 
 

 tfB= S
N

1i
isix 


  (6) 

 
in which B = shaft diameter. For calculation purposes, each stratum is discretized into N layers, with fsi 
being the unit side resistance for the ith layer and ti being the thickness of the ith layer. Note that Eq. (6) 
assumes that there is only one layer per geomaterial type (clay, sand, gravel, or rock). It is rather common 
to have interbeds consisting of different geomaterials, particularly clay, sand and gravel, in actual pro-
files. Eq. (6) can be easily generalized to more complex profiles. The models for unit side resistances in 
clay, sand, gravel, and rock are summarized in Table 2. They are developed from the -method for clay 
and rock and -method for sand and gravel. The model uncertainties, Sc, Ss, Sg, Sr, are described by 
zero-mean normal random variables with standard deviations given in Table 2. Details on calibration of 
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these unit side resistance models and estimation of associated model statistics are given by Ching et al. 
(2011). 

In addition, the measured soil parameters are modeled as the actual parameters contaminated with 
measurement errors: 

 
   
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 (7) 

 
in which ’vs,m, ’vg,m, su,m, qu,m = measured values of average vertical effective stress of sand layer, aver-
age vertical effective stress of gravel layer, undrained shear strength of clay layer, unconfined compres-
sion strength for rock layer, respectively and esu, e’vs, e’vg, equ. = measurement errors associated with the 
subscripted soil parameters. These measurement errors are modeled as zero-mean normal random vari-
ables with the following standard deviations: 0.20 for esu, 0.10 for e’vs and e’vg, and 0.47 for equ. 
 
Table 2. Models for unit side resistances in clay, sand, gravel, and rock. 

Geomaterial Correlation model for 
unit side resistance (kN/m2) 

Standard deviation of model 
uncertainty  

Clay   
csuc sln30.070.2expf   0.32 

Sand     
ssvs lnzln66.008.1expf   

0.54 

Gravel     
gsvg lnzln75.018.2expf   

0.67 

Rock   
rsur qln41.003.3expf   0.72 

Note: su = undrained shear strength, ’v = vertical effective stress, and qu = unconfined compression strength. 

3 RELIABILITY CALIBRATION 

3.1 Performance function 
The performance function, G, is an arbitrary function that is less than zero when its arguments result in a 
failure state. For drilled shafts considered in this study, it is natural to define the performance function as: 
 

 L-L-S S S SG LDrgsc   (8) 
 
in which LD = dead load and LL = live load. It is clear that the ultimate limit state is exceeded when G < 
0. The basic random variables describing the uncertainties in the side resistances are the unit side resis-
tance model errors shown in Table 2 (Sc, Ss, Sg, Sr) and the soil parameter measurement errors (esu, 
e’vs, e’vg, equ) mentioned in Section 2.2. If N = 1 in Eq. (6), the side resistance contributed by the clay 
layer is: 
 

   cssm,uccc tesln30.070.2expBtBfS
cu

   (9) 
 
It is clear that Sc is a lognormal random variable in this special, because ln(Sc) = constant – 0.3esu + Sc is 
a normal variable by hypothesis. For the more general case in which N > 1, Sc is a sum of lognormal ran-
dom variables and hence, it is not a lognormal random variable. The total side resistance S = Sc + Ss + Sg 
+ Sr is not a lognormal variable even if Sc, Ss, Sg, Sr are individually lognormal variables for the same rea-
son. The dead load is modeled as a lognormal random variable with mean = LD and coefficient of varia-
tion = LD = 0.10.  The live load is also modeled as a lognormal random variable with mean = LL and 
coefficient of variation = LL = 0.25. The ratio LL/LD = 0.5 unless stated otherwise. 
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Given that the capacity (S) and the load (LD + LL) are not lognormal variables, Eq. (2) cannot be applied. 
The probability of failure, Prob(G < 0), is computed using Monte Carlo simulation in this study. 

3.2 Simplified RBD equations 
Four simplified RBD equations are considered: LRFD, MRFD2, MRFD3, and MRFD4. They are defined 
in Table 3 below. 
 
Table 3. Simplified RBD equations. 
RBD equation Definition Comment 
LRFD    LLS S S S *

LL
*
DD

*
r

*
g

*
s

*
ctotal   Calibrate 1 resistance factor: total 

MRFD2    LLS S S S *
LL

*
DD

*
rr

*
g

*
s

*
ccsg   Calibrate 2 resistance factors: csg, r 

MRFD3    LLS SS S *
LL

*
DD

*
rr

*
gg

*
s

*
ccs  Calibrate 3 resistance factors: cs, g, r 

MRFD4  LLS SSS *
LL

*
DD

*
rr

*
gg

*
ss

*
cc  Calibrate 4 resistance factors: cs, s, g, r 

Note: Asterisk denotes nominal resistances or nominal loads. Nominal resistances, Sc
*, Ss

*, Sg
*, and Sr

*, are computed by as-
suming the model errors and soil parameter measurement errors are zero. Nominal loads, LD

* and LL
*, are computed at their 

mean values.  

3.3 RBD calibration method 1: FORM design point 
Two RBD calibration methods are considered in this study: (1) FORM design point method and (2) uni-
form quantile method. The first method is described in this section. 

 The First-Order Reliability Method (FORM) involves seeking for a design point lying on the per-
formance function G that is closest to the origin in standard normal space. An illustrative example con-
taining two standard normal random variables, U1 and U2, is shown in Fig. 2. It is possible to transform a 
set of non-normal physical random variables to a set of standard normal random variables. The probabil-
ity of failure estimated using FORM is Prob(GL < 0) = (-), in which () = standard normal cumula-
tive distribution function evaluated using say NORMSDIST in EXCEL. By definition, the reliability in-
dex of a design satisfying the equation below is approximately equal to  (error due to linearization in 
FORM, GL  G): 
 
    0x,xGu,uG d

2
d
1

d
2

d
1   (10) 

 
in which X1, X2 = physical random variables. Examples of physical random variables are given below. 

This FORM design point method is described in Ang & Tang (1984). It is rarely emphasized that Eq. 
(10) forces the performance function to be coupled to the simplified RBD equation. For example, the 
LRFD format shown in Table 3 can only be calibrated using this design point method by stating the per-
formance function in the following form: 
 

 L-L-SG LD  (11) 
 
in which S is the total side resistance. There are three physical random variables: X1 = S, X2 = LD and X3 
= LL. Applying Eq. (10), it can be seen that: 
 

0 x-x-x d
3

d
2

d
1   (12) 

 
Eq. (12) can be re-written in the LRFD format as follows: 
 

0 x-x-x *
3L

*
2D

*
1total   (13) 

 
in which x1

*, x2
*, x3

* = nominal values of S, LD, and LL, respectively. The resistance and load factors are 
calibrated using: total = x1

d/ x1
*, D = x2

d/ x2
* and L = x3

d/ x3
*.  

For MRFD2, the performance function is stated in the following form: 
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 L-L-SSG LDrcsg   (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

U2 

U1  

Design point: 
ud = (u1

d, u2
d) 

GL < 0 

GL > 0 

Approx. GL = 0 

Actual G = 0 

fu1,u2(u1,u2) 

Figure 2. Definition of design point in First-Order Reliability Method (FORM). 

 
in which Scsg = Sc + Ss + Sg. There are four physical random variables: X1 = Scsg, X2 = Sr, X3 = LD and X4 
= LL. Applying Eq. (10), it can be seen that: 
 

0 x- x-x-x d
4

d
3

d
2

d
1   (15) 

 
Eq. (15) can be re-written in the MRFD2 format as follows: 
 

0 x-xxx *
4L

*
3D

*
2r

*
1csg   (16) 

 
in which csg= x1

d/ x1
*, r = x2

d/ x2
*, D = x3

d/ x3
* and L = x4

d/ x4
*. 

Based on the above LRFD and MRFD2 examples, the nature of the coupling is clear. The physical ran-
dom variables must be defined such that the resistance/load factor can appear as i = xi

d/ xi
*. For 

LRFD/MRFD, it is apparent that this is only possible when the resistances and loads are separable. A 
simple example where the resistance and the load cannot be separated is the bearing capacity of a shallow 
foundation subjected to inclined loading. The inclined load factor in the bearing capacity equation is a 
function of both the vertical and horizontal loads for drained loading (e.g., Annex D, BS EN1997-
1:2004). It could be possible to circumvent this problem by assuming that the bearing capacity is corre-
lated to the vertical load. Nonetheless, a second ad-hoc assumption that the non-normal bearing capacity 
and non-normal vertical load are correlated using a translation procedure is practically necessary at pre-
sent (Phoon 2006). The adequacy of this ad-hoc assumption as applied to code calibration has not been 
examinued thus far. 

For the drilled shaft example considered in this study, it is possible calibrate LRFD and MRFD for-
mats using the FORM design point method. However, there is an important practical difficulty that is not 
highlighted in previous studies. Although Eq. (8), Eq. (11) and Eq. (14) are mathematically equivalent, 
the probability distributions of S and Scsg are not lognormals as explained in Section 3.1 and cannot be 
derived analytically even for the relatively simple drilled shaft example in this study where the model and 
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parametric errors are assumed to be lognormally distributed. However, the probability distributions of S 
and Scsg can be derived empirically using Monte Carlo simulation. In general, these empirical probability 
distributions will not fit classical closed-form probability distributions commonly found in standard texts. 
The authors found that the FORM algorithm is not stable when the physical random variables such as S 
and Scsg are defined using empirical distributions (known only at discrete sample points and likely to be 
inaccurate at probability tails where the design point is located). This FORM computational difficulty is 
currently being studied. 

It is possible to take the pragmatic approach of assuming the resistances S and Scsg as lognormals, ra-
ther than assuming that the model and parametric errors are lognormals as in Section 3.1. Nonetheless, it 
has been pointed out in Section 1 that it is not judicious to make probabilistic assumptions for the conven-
ience of reliability calculations and in the same vein, certainly not for the convenience of code calibra-
tions. Probability distributions should be fitted to measured laboratory/field data, comply with known 
physical upper and/or lower bounds, and respect the accumulated knowledge base on correlations be-
tween various soil properties. It may not be possible to identify an appropriate probability distribution for 
a basic soil parameter exactly, because of insufficient data and/or imperfect knowledge. However, a prob-
ability distribution that fits known data and state-of-the-art knowledge is “best” at a particular point in 
time. It can be revised when more data and/or state of knowledge improves – this is true for all aspects of 
scientific pursuit; not merely probabilistic analysis. In some past critiques of RBD, the inability to iden-
tify “correct” probability distributions has been used as a reason for doubting the practical relevance of 
RBD. While it may be fair to critique undue probabilistic simplifications made to suit computational con-
venience, it appears unreasonable to demand perfect knowledge of probability distributions (which is 
merely a mathematical model of reality) and it is against the grain of evolving scientific progress. 

 In this study, the basic physical random variables characterized in Section 3.1 are assumed to be 
“correct”, because they are based on actual measured data. To apply the FORM design point method to 
LRFD/MRFD, it is necessary to use lumped variables such as S and Scsg. To circumvent potential numeri-
cal instability of FORM associated with the use of empirical distributions for S and Scsg, it is assumed that 
these lumped variables are lognormally distributed. However, the second-moment statistics (mean and 
standard deviation) of these lumped variables are correctly estimated using Monte Carlo simulation. Note 
that this ad-hoc lognormal assumption is only applied to calibrate the various resistance and load factors 
in the LRFD/MRFD formats. These calibrated formats are validated by evaluating the reliability indices 
of drilled shafts outside the calibration domain in Section 4. The reliability indices computed during vali-
dation in Section 4 are based on the “correct” probability models given in Section 3.1. 

 Finally, it is of interest to observe that the calibration of resistance and load factors using Eq. (12) 
and Eq. (13) for LRFD is carried out to conform to the historical practice of producing a simplified RBD 
design equation with the same “look and feel” as existing working stress design equation. This calibration 
method is termed “FORM-standard” in this study. It is possible to consider an alternate FORM-based 
calibration approach using the design point in standard normal space (u1

d, u2
d, u3

d): 
 

0 u-u-u d
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d
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d
1   (17) 

 
In this approach, the design point (u1

d, u2
d, u3

d) determined from a single calibration shaft is assumed to 
apply to all other shafts. The LRFD equation is now written as: 
 
      0ux-ux-ux d

33
d
22

d
11   (18) 

 
in which xi(ui

d) = value of ith physical variable for a validation shaft calculated using the value of the ith 
standard normal variable at the design point of the calibration shaft. This calibration method is termed 
“FORM-u” in this study. 

3.4 RBD calibration method 2: uniform quantile 
The uniform quantile calibration method was proposed by Ching & Phoon (2011). The procedure is illus-
trated below using the LRFD format. Theoretical details are given in the above cited paper. 

The  quantile of the total side resistance, S, is defined by: 
 
   SSobPr  (19) 
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in which  = number between 0 and 1, but typically order of 0.01 for practical problems. S is also called 
the 100% exclusion limit. For example, for a normal random variable, the 5% quantile, S0.05 = S (1 - 
1.645S), in which S and S are the mean and coefficient of variation of S, respectively. This definition 
is sensible for resistances, because S is a conservative value less than the mean value. For loads, it is 
natural to consider the (1-) quantile. For example, the (1-) quantile of the live load, , is defined 
by: 

1
LL

 
 
  






1
LL

1
LL

LLobPr

1LLobPr
 (20) 

 
Hence, the probability of LL exceeding is .  is also called the 1/ return period load if LL is 
defined as the annual maximum load and LL varies independently from year to year.  For a normal ran-
dom variable, the (100-5)% = 95% quantile, LL

0.95 = LL (1 + 1.645LL), in which LL and LL are the 
mean and coefficient of variation of LL, respectively. This definition is sensible for loads, because LL

1- 
or LD

1- is a conservative value greater than the mean value. 

1
LL 1

LL

 For LRFD, the uniform quantile calibration method produces the following simplified RBD equa-
tion: 

 
 LLS 1

L
1
D

   (21) 
 

Comparing with the LRFD format shown in Table 3, it is clear that total = S/S*, D = LD
1-/LD

*, and L = 
LL

1-/LL
*. The resistance and load factors for the MRFD formats in Table 3 can be calibrated in a similar 

way. For example, the resistance and load factors for the MRFD2 format can be derived from the follow-
ing quantile equation: 
 

 LLSS 1
L

1
Drcsg

   (22) 
 
in which Scsg

, Sr
 =  quantile of Scsg and Sr, respectively. 

The distinctive feature of the uniform quantile approach is that the same quantile, , is applied to all 
resistance and load components, regardless of the number of components. In fact, it is also possible to ap-
ply the uniform quantile approach to the partial factor format, although this format is not included in the 
present study. The quantile is simply applied on more basic soil parameters such as the undrained shear 
strength in this instance. Examples of partial factors calibrated using the uniform quantile approach are 
given in Ching & Phoon (2011). Ching & Phoon (2011) also demonstrated theoretically that a single 
quantile applied in the manner illustrated by Eq. (21) or Eq. (22) can be found such that the probabilistic 
RBD objective given in Eq. (1) is achieved. This unique relationship between  and pT exists for a single 
set of design parameters. For this relationship to be useful for RBD code calibration, it should be insensi-
tive to changes in the design parameters over a range of practical values. For example, almost the same 
relationship should apply for undrained shear strength varying from 25 kPa (soft clay) to 200 kPa (very 
stiff clay). Ching & Phoon (2011) presented four common geotechnical examples to demonstrate the rela-
tive stability of this  and pT relationship empirically. They did not study the effect of changes in soil pro-
files. This important variation in the design scenario is studied in Section 4. It is worthy to note in passing 
that the change in soil profile must not result in a change of the failure mechanism (or performance func-
tion). For example, the failure mechanism for a shallow foundation resting on a thin layer of dense sand 
overlying soft clay is not the same as the classical Buisman-Terzaghi mechanism for homogeneous soils. 
It is obvious that the   pT relationships are distinctively different for different performance functions.  

Note that the probability distributions of S and Scsg are not available in analytical forms as mentioned 
in Section 3.3. They can only be characterized empirically using Monte Carlo simulation. Nonetheless, 
there is an important computational difference between using empirical distributions in FORM or using 
empirical distributions to compute quantiles. The former creates potential numerical instabilities while 
the latter can be carried out in a very robust non-parametric way using ranks. In this study, S, Scsg

, and 
similar statistics are estimated correctly using Monte Carlo simulation. The ad-hoc lognormal assumption 
adopted in Section 3.3 is not applied in the uniform quantile approach. Similar to the FORM design point 
calibration approach, two variations are considered. The first variation is termed “uniform quantile – 
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standard”, which calibrates the usual resistance and load factors that would be applied to drilled shafts 
outside the calibration domain for validation. The second variation is termed “uniform quantile – ”, 
which applies the calibrated quantile  directly to drilled shafts outside the calibration domain for valida-
tion. 

 It is worth emphasizing here that the uniform quantile approach bears no theoretical resemblance to 
the application of quantile in characteristic/nominal values. The latter refers to Eq. (19) or Eq. (20). The 
quantile is prescribed by design codes without reference to the target probability of failure. For example, 
a quantile between 5% and 10% is typically prescribed for the concrete compressive strength, fcu, in struc-
tural design codes. The main purpose of this definition is to produce a suitably conservative compressive 
strength that varies consistently with the coefficient of variation of fcu. The same quantile is applied to 
different performance functions, for example moment/shear capacity of a beam or compression capacity 
of a column. The quantile appearing in Eq. (21) or Eq. (22) is fundamentally different. It is calibrated 
rather than prescribed to achieve a specific target probability of failure. It decreases in a relatively unique 
way with the target probability of failure for a given performance function. It is intrinsically related to the 
performance function. Hence, the quantile for a given soil property, say undrained shear strength, will 
vary when the property is applied within the context of different performance functions, even for the 
same target probability of failure. 

4 VALIDATION STUDIES 

4.1 FORM-standard versus uniform quantile-standard 
In this section, resistance and load factors are calibrated using the “FORM – standard” approach and the 
“uniform quantile – standard” approach. These approaches have been presented in Section 3.3 and Sec-
tion 3.4, respectively. A single drilled shaft from Group ALL is selected for calibration. Note that Group 
ALL contains drilled shafts installed in soil profiles with clay, sand, gravel, and rock layers. The cali-
brated resistance and load factors are applied to determine the mean dead load corresponding to each 
drilled shaft in Table 1 in the following way for LRFD: 

 LD

Stotal

LD

LL
LD

Stotal
LD 5.0 








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








  (23) 

in which TOTAL, D, L = resistance and load factors computed from a single shaft in Group ALL using the 
FORM – standard/uniform quantile – standard approach, S = mean total side resistance for any valida-
tion shaft in Table 1, and LD = mean dead load required to satisfy the LRFD format corresponding to an 
assumed mean live load to mean dead load ratio of 0.5. It is easy to generalize Eq. (23) to the MRFD for-
mats shown in Table 3. 

It is more common to compute the shaft depth for a given set of loads in actual foundation engineering 
practice. However, the foundation depths are already given in Table 1. Hence, the mean dead load im-
plied by the LRFD format is computed. This “design” approach is rather unorthodox, but it has no impact 
on the evaluation of the performance of the LRFD/MRFD formats presented in Table 4 below. In other 
words, the ability of the LRFD/MRFD formats to achieve a uniform target reliability index of 3 for the 
validation shafts can be evaluated by computing the foundation depth from a given set of loads or vice-
versa. The latter approach has been applied by Phoon et al. (2003b) as well. The effect of varying the co-
efficients of variation in the basic random variables is studied in Section 4.4. The effect of varying the 
mean live load to mean dead load ratio is studied in Section 4.5. It is of interest to note that there are only 
11 shafts in Group ALL. The rest of the shafts (31 shafts) are installed in soil profiles with 3 or less soil 
layers. In short, 31/42 = 74% of the validation shafts are installed in soil profiles that are distinctively dif-
ferent from the 4-layer profile in Group ALL. 

 Once the mean dead load is computed using Eq. (23), the “actual” reliability index of each validation 
shaft can be estimated using Monte Carlo simulation. Note that the same nonlinear performance function 
and the same set of basic random variables (model and measurement errors) presented in Section 3.1 are 
applied to estimate the “actual” reliability indices for all validation shafts, regardless of the code formats 
under study. It has been emphasized in Section 3.3 that the performance function and basic random vari-
ables presented in Section 3.1 constitute our current best understanding of “reality”. Hence, the reliability 
indices estimated using these realistic physical and probabilistic models are described as “actual” in this 
sense. For brevity, the term “actual” is dropped from hereon, because all reliability indices reported in 
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Section 4 are “actual”. The ad-hoc lognormal assumption occasionally used in the FORM design point 
method is purely applied at the calibration stage. Once the resistance and load factors are calibrated, it is 
no longer relevant to the validation studies presented herein. 

For each calibration shaft in GROUP ALL, 42 reliability indices can be determined. This calibra-
tion/validation exercise is carried out for all the 11 shafts in GROUP ALL, resulting in 42 × 11 = 462 re-
liability indices. The mean, coefficient of variation, highest value and lowest value of these reliability in-
dices are reported in Table 4 under the column heading “1 shaft”. It is worthy to clarify here that Eq. (23) 
is the same regardless of the RBD calibration approach (FORM – standard or uniform quantile – stan-
dard) used. The RBD calibration approach only affects the specific numerical values of the resistance and 
load factors used in Eq. (23). Note that the reliability index = 4.75 (corresponding to a probability of fail-
ure = 10-6) appearing in Table 4 is an error flag indicating that the probability of failure is too small and 
cannot be estimated using the Monte Carlo simulation sample size = 106 adopted in this study. This right 
censorship will affect the mean and coefficient of variation reported in Table 4. In addition, statistical er-
rors associated with Monte Carlo simulation increase with increasing reliability index. For example, 
probabilities of failure smaller than 10-5 are considered unreliable for a sample size = 106. Nonetheless, 
the performance data presented in Table 4 are useful in a qualitative sense to evaluate the performance of 
LRFD and MRFD formats. The LRFD format calibrated using FORM – standard is commonly adopted in 
numerous RBD codes in North America. The associated data are shaded in grey, because they provide 
useful benchmarks to measure the performance of other code formats and other calibration approaches. 

Focusing on the column headings “1 shaft” in Table 4, it is apparent that the FORM approach is infe-
rior to the uniform quantile approach. For LRFD, the mean reliability index is larger than 3 because of the 
ad-hoc lognormal assumption imposed on lumped random variable, S, during RBD calibration. This sys-
tematic bias is not present in the uniform quantile calibrated LRFD, because the ad-hoc lognormal as-
sumption is not necessary during RBD calibration. For the FORM approach, the mean reliability index 
also decreases monotonically in the order LRFD, MRFD2, MRFD3, and MRFD4. It is postulated that this 
effect is caused by the increasing random dimension in the performance function. This undesirable effect 
is not present in the uniform quantile approach. The coefficient of variation (c.o.v.) of  is generally 
higher for the FORM approach as well. It is interesting to observe that the c.o.v. of  reduces more sig-
nificantly with the size of the calibration domain when the MRFD format is applied. 
 
Table 4. Comparison between FORM – standard and uniform quantile – standard RBD calibration method. 

FORM – standard Uniform quantile – standard RBD Eq. 
1 shaft 14 shafts 41 shafts 1 shaft 14 shafts 41 shafts 

LRFD       
 mean  3.29 3.38 3.46 2.77 3.03 3.03 
 c.o.v.  0.23 0.16 0.16 0.18 0.16 0.15 
 highest  4.75 4.75 4.26 3.85 4.01 3.69 
 Lowest  1.41 1.80 1.99 1.41 1.62 1.74 
MRFD2       
 mean  3.17 3.23 3.25 2.80 3.05 3.01 
 c.o.v.  0.25 0.18 0.13 0.20 0.14 0.12 
 highest  4.75 4.75 4.01 4.26 4.26 3.54 
 Lowest  0.97 0.30 1.90 1.12 1.59 1.72 
MRFD3       
 mean  2.49 3.19 3.19 2.50 3.03 3.02 
 c.o.v.  0.21 0.21 0.13 0.21 0.15 0.11 
 highest  3.62 4.75 4.26 3.63 4.75 3.55 
 Lowest  0.92 -0.32 2.06 1.00 1.53 1.86 
MRFD4       
 mean  2.41 3.03 3.13 2.63 3.01 3.01 
 c.o.v.  0.21 0.21 0.08 0.14 0.09 0.04 
 highest  3.28 4.75 3.78 3.45 4.75 3.25 
 Lowest  0.70 -0.45 2.19 1.53 2.10 2.72 

*Note: Target reliability index = 3;  = 4.75 (corresponding to a probability of failure of 10-6) is just an error flag indicating 
that the probability of failure is too small and cannot be estimated using the Monte Carlo simulation sample size = 106 adopted 
in this study. 
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From a practical engineering perspective, the most important index in Table 4 is the lowest reliability in-
dex produced by the population of validation shafts. This index describes the departure from the desired 
target reliability index for the most unconservative design. Both RBD calibration approaches are compa-
rable based on this index. The clear exception is MRFD4, where the uniform quantile approach performs 
significantly better than the FORM approach. Overall, the degree of reliability control may be deemed 
unsatisfactory, but this is hardly surprising given that there is only one shaft in the calibration domain and 
the soil profiles in the validation domain are diverse. It is possible to view the performance under “1 
shaft” as worst case, given the rather unreasonable demand of using one shaft to capture the range of di-
verse shaft and soil conditions. 

4.2 Effect of number of shafts in calibration domain 
It is more realistic to evaluate the performance of the LRFD and MRFD formats using more than one 
shaft in the calibration domain. Two calibration domains are studied in this section: (1) 14 shafts are se-
lected randomly from the population of 42 shafts for calibration and the resulting resistance and load fac-
tors are validated using the remaining 42-14 = 28 shafts and (2) 41 shafts are selected randomly from the 
population of 42 shafts for calibration and the resulting resistance and load factors are validated using the 
remaining 42-41= 1 shaft. The former calibration domain (“14 shafts”) can be viewed as a practical case, 
while the latter calibration domain (“41 shafts”) is probably a “best case”. In contrast, the “1 shaft” ex-
ample discussed in Section 4.1 is a “worst case”. 

 In general, the resistance and load factors are functions of the shaft and soil conditions. When there is 
more than one shaft in the calibration domain, it is necessary to deal with the variations in the resistance 
and load factors arising from individual calibration of different shafts. In this study, the resistance and 
load factors produced by the calibration shafts are predicted via linear regression using the relative side 
resistance contribution (Sc/S, Ss/S and Sg/S) as explanatory variables. The coefficients of determination of 
these regression equations are typically higher than 0.9. These regression equations are then applied to es-
timate the appropriate resistance and load factors for the validation shafts. Note that Phoon et al. (2003b) 
apply a different strategy of calibrating all the shafts in a group using optimization, rather than calibrating 
each shaft individually and then applying regression or other methods to reduce the resistance/load fac-
tors to a practical form that can be applied to validation shafts. 

For each calibration group consisting of 14 shafts, 28 reliability indices can be determined from the 
validation shafts. This calibration/validation exercise is carried out 20 times by drawing 14 shafts from 
the population of 42 shafts repeatedly in a random way, resulting in 28 × 20 = 560 reliability indices. The 
mean, coefficient of variation, highest value and lowest value of these reliability indices are reported in 
Table 4 under the column heading “14 shafts”. For each calibration group consisting of 41 shafts, 1 reli-
ability index can be determined from the remaining validation shaft. This calibration/validation exercise 
can only be carried out 42 times, resulting in 1 × 42 = 42 reliability indices. The mean, coefficient of 
variation, highest value and lowest value of these reliability indices are reported in Table 4 under the col-
umn heading “41 shafts”.  

For the FORM approach, the systematic bias in the mean reliability index cannot be mitigated by in-
creasing the number of shafts in the calibration domain. This is rather obvious as the bias is caused by the 
ad-hoc lognormal assumption in the case of LRFD and the decreasing mean reliability index from LRFD 
to MRFD4 is caused by the increasing random dimension. It is also rather obvious that the performance 
of the LRFD/MRFD formats improves with the number of shafts in the calibration domain. For the uni-
form quantile approach, the mean, highest  and lowest  converge almost monotonically to the target  
with the calibration domain size. This is a desirable result. It provides an assurance that the departures 
from the target  can be diminished if one is willing to spend efforts to populate the calibration domain. 
In contrast, the lowest  for the “14 shafts” domain calibrated using FORM can become negative, indicat-
ing a probability of failure larger than 50% for the most unconservative validation shaft! This is worse 
than the lowest  produced by the “1 shaft” calibration domain. 

4.3 FORM – u versus uniform quantile –  
It has been pointed out that resistance and load factors were developed purely for the practical reason of 
producing a simplified RBD design equation with the same “look and feel” as existing working stress de-
sign equation. For FORM, it is possible to apply the following alternate LRFD approach as given in Eq. 
(12): 
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in which the lognormal parameters (i and i) are related to the mean (i) and standard deviation (i) of 
the physical variable as: 
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The design point in standard space (u1
d, u2

d, u3
d) is determined from a single shaft in Group ALL. The 

mean dead load for each validation shaft is then computed as: 
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in which S = mean total side resistance of the validation shaft. The design point in standard space (u1

d, 
u2

d, u3
d) is a vector quantity. At present, there is no simple method of applying the FORM-u calibration 

approach to more than 1 shaft in the general case. Hence, the results in Table 5 for FORM – u are re-
stricted to the “1 shaft” case. 

For the uniform quantile approach, it is possible to apply the following alternate LRFD approach as 
given in Eq. (21): 
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in which k = -1() and k1- = -1(1-). The quantile  can be calibrated from a single shaft. For a cali-
bration domain containing more than one shafts,  can also be predicted via linear regression using the 
relative side resistance contribution (Sc/S, Ss/S and Sg/S) as explanatory variables. The coefficients of de-
termination of these regression equations are typically higher than 0.9. The mean dead load for each vali-
dation shaft is then computed as: 
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Eq. (27) and Eq. (28) are presented for conceptual clarity only and for comparison with Eq. (26). In prac-
tice, the  quantile of S is estimated directly from Monte Carlo simulation in this study, rather than using 
the ad-hoc lognormal fit in the above equations. 

 From the performance data presented in Table 5 below, it is clear that the FORM – u method is 
slightly better than the FORM – standard method. The margin of improvement is probably not practically 
significant. On the other hand, the uniform quantile –  is significantly better than the uniform quantile – 
standard method. It is of practical interest to examine the performance of the “14 shafts” calibration do-
main. The mean  is almost equal to the target , the c.o.v is small, and perhaps most importantly, the 
lowest  is consistently above two. This level of lowest  cannot be achieved consistently even with the 
best case “41 shafts” calibration domain in Table 4. In Table 5, the performance of the “41 shafts” cali-
bration domain is close to perfect. 

 There is a practical cost associated with the application of the uniform quantile –  approach that 
should be highlighted. The engineer is required to perform Monte Carlo simulation to estimate the  
quantile of lumped random variables such as S and Scsg. The sample size for quantile estimate is typically 
smaller than that for the probability of failure estimate. For example, if  = 0.05, a sample size of 10/ = 
200 is quite adequate. Hence, the computational cost is not beyond the reach of a PC platform. Nonethe-
less, the engineer is expected to be comfortable with Monte Carlo simulation. The uniform quantile – 
standard approach does not require the engineer to perform any Monte Carlo simulation. The code writer 
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must perform Monte Carlo simulation to produce the resistance and load factors, but once these factors 
are available, the user only need to calculate a single set of nominal resistances and loads. It is possible to 
use the uniform quantile –  approach by making an ad-doc lognormal assumption for the lumped resis-
tance, S, as shown in Eq. (28). This obviates the need for the user to carry out Monte Carlo simulation, 
but the resulting mean  will not be unbiased such as that shown in Table 5. The optimum code format 
associated with the uniform quantile –  approach is possibly the partial factor approach in which the 
quantile is applied on measured soil parameters, rather than lumped resistance components such as the to-
tal side resistance. The quantile for a soil parameter can be estimated directly from a set of measurements 
without the need to perform Monte Carlo simulation.  
 
Table 5. Comparison between FORM – u and uniform quantile –  RBD calibration method. 

FORM – u Uniform quantile –  RBD Eq. 
1 shaft 14 shafts 41 shafts 1 shaft 14 shafts 41 shafts 

LRFD       
 mean  3.50   2.95 3.00 3.00 
 c.o.v.  0.12   0.03 0.03 0.03 
 highest  4.75   3.15 3.18 3.15 
 Lowest  2.86   2.60 2.67 2.68 
MRFD2       
 mean  3.01   2.84 3.02 3.00 
 c.o.v.  0.14   0.14 0.06 0.03 
 highest  4.11   3.67 4.75 3.22 
 Lowest  1.04   2.02 2.65 2.65 
MRFD3       
 mean  2.62   2.59 3.00 3.01 
 c.o.v.  0.15   0.15 0.06 0.05 
 highest  3.54   3.55 4.11 3.32 
 Lowest  1.02   1.68 2.18 2.66 
MRFD4       
 mean  2.41   2.63 3.01 3.01 
 c.o.v.  0.21   0.14 0.06 0.04 
 highest  3.31   3.53 4.75 3.25 
 Lowest  0.69   1.53 2.35 2.74 

*Note: Target reliability index = 3;  = 4.75 (corresponding to a probability of failure of 10-6) is just an error flag indicating 
that the probability of failure is too small and cannot be estimated using the Monte Carlo simulation sample size = 106 adopted 
in this study. 

4.4 “Unexpected” change in the coefficients of variation 
The validation studies conducted in Section 4.1, 4.2, and 4.3 are based on a single set of coefficients of 
variation for the model errors (Sc, Ss, Sg, Sr) and the measurement errors (esu, e’vs, e’vg, equ). It is of 
practical interest to evaluate the performance of the code formats calibrated using one set of coefficients 
of variation when they are applied on validation shafts associated with lower/higher coefficients of varia-
tion (c.o.v.s). The c.o.v.s for (Sc, Ss, Sg, Sr) and (esu, e’vs, e’vg, equ) are modified as follows: (1) uni-
formly reduce all c.ov.s by a factor of 0.5 and (2) uniformly increase all c.o.v.s by a factor of 1.5. The 
modified c.o.v.s are related to the calculation of side resistances. The c.o.v.s of the dead and live load re-
main unchanged. The mean live load to mean dead load ratio remains unchanged at 0.5. 

 It is important to point out that the performance shown in Table 6 (reduce c.o.v.s by 50%) and Table 
7 (increase c.o.v.s by 150%) refers to a worst case calibration scenario in which the variations in the 
c.o.v.s are not included in the calibration shafts. In other words, Table 6 and Table 7 illustrates the per-
formance of LRFD/MRFD formats when they are applied to design scenarios that are “unexpected” and 
hence, not considered by the code writer. With this observation in mind, it is not surprising that the per-
formance shown in Table 6 and Table 7 are worse than that shown in Table 4 and Table 5. The FORM – 
standard approach is not robust against unexpected design scenarios, even when the calibration domain 
contains “41 shafts”. It is rather obvious that it is not the total number of calibration shafts that is impor-
tant per se. In the extreme, one cannot expect the LRFD/MRFD formats to perform adequately if they 
have been calibrated using say 100 near identical calibration shafts. The outcome is entirely different if 
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the 100 calibration shafts are carefully selected to cover all expected design scenarios. In some code cali-
bration methods, more commonly encountered design scenarios are assigned more weightage in the cali-
bration domain by using more calibration shafts for instance. For the case of “14 shafts”, it is possible to 
produce bizarre results in which the lowest  = -1.98 for MRFD3 and lowest  = -1.59 for MRFD4 when 
the c.o.v.s are reduced in Table 6. In other words, the designs become even more unconservative, al-
though the underlying uncertainties governing side resistances are smaller! 

 The uniform quantile – standard approach will produce designs that are safer when c.o.v.s are re-
duced or designs that are less safe when c.o.v.s are increased. Its behavior is stable in this sense, but it is 
unable to achieve the prescribed target reliability index under an unexpected change in the c.o.v. that is 
not considered in the calibration domain. The uniform quantile –  approach is able to accommodate an 
unexpected change in the c.o.v., particularly when the LRFD/MRFD4 format is adopted. Note the c.o.v.  
is lower when LRFD is adopted, but the MRFD4 format produces a mean  closest to the target value.  
 
Table 6. Performance of LRFD/MRFD formats when applied to validation shafts with coefficients of variation of model and 
measurement errors reduced by a factor of 0.5. 

FORM – standard Uniform quantile – standard Uniform quantile –  RBD Eq. 
14 shafts 41 shafts 14 shafts 41 shafts 14 shafts 41 shafts 

LRFD       
 mean  4.69 4.69 4.55 4.57 3.39 3.41 
 c.o.v.  0.05 0.04 0.09 0.08 0.03 0.03 

 highest  4.75 4.75 4.75 4.75 3.62 3.57 
 Lowest  3.53 3.71 3.13 3.27 3.06 3.14 

MRFD2       
 mean  4.59 4.69 4.60 4.62 3.40 3.19 
 c.o.v.  0.12 0.04 0.06 0.06 0.03 0.06 

 highest  4.75 4.75 4.75 4.75 3.65 3.58 
 Lowest  0.59 3.59 3.13 3.26 3.04 3.00 

MRFD3       
 mean  4.40 4.69 4.59 4.64 3.29 3.19 
 c.o.v.  0.23 0.04 0.07 0.06 0.05 0.06 

 highest  4.75 4.75 4.75 4.75 4.26 3.48 
 Lowest  -1.98 3.92 3.00 3.53 2.91 2.72 

MRFD4       
 mean  4.49 4.71 4.66 4.69 3.20 3.03 
 c.o.v.  0.17 0.03 0.04 0.02 0.11 0.05 

 highest  4.75 4.75 4.75 4.75 4.75 3.41 
 Lowest  -1.59 4.21 2.57 4.47 1.78 2.68 

*Note: Target reliability index = 3;  = 4.75 (corresponding to a probability of failure of 10-6) is just an error flag indicating 
that the probability of failure is too small and cannot be estimated using the Monte Carlo simulation sample size = 106 adopted 
in this study. 
 
Table 7. Performance of LRFD/MRFD formats when applied to validation shafts with coefficients of variation of model and 
measurement errors reduced by a factor of 1.5. 

FORM – standard Uniform quantile – standard Uniform quantile –  RBD Eq. 
14 shafts 41 shafts 14 shafts 41 shafts 14 shafts 41 shafts 

LRFD       
 mean  2.46 2.39 2.19 2.21 2.77 2.77 
 c.o.v.  0.17 0.16 0.17 0.16 0.02 0.02 

 highest  3.31 3.08 2.85 2.72 2.87 2.85 
 Lowest  1.22 1.34 1.10 1.17 2.52 2.55 

MRFD2       
 mean  2.34 2.37 2.17 2.20 2.83 2.81 
 c.o.v.  0.16 0.14 0.14 0.13 0.08 0.04 

 highest  3.06 2.86 2.75 2.63 4.75 3.38 
 Lowest  0.77 1.28 1.05 1.16 2.48 2.52 
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FORM – standard Uniform quantile – standard Uniform quantile –  RBD Eq. 
14 shafts 41 shafts 14 shafts 41 shafts 14 shafts 41 shafts 

MRFD3       
 mean  2.29 2.32 2.25 2.20 2.87 2.87 
 c.o.v.  0.19 0.13 0.17 0.12 0.07 0.05 

 highest  3.35 2.77 4.75 2.60 4.11 3.28 
 Lowest  -0.54 1.39 1.09 1.24 2.33 2.51 

MRFD4       
 mean  2.25 2.28 2.22 2.19 2.98 2.97 
 c.o.v.  0.22 0.09 0.12 0.05 0.09 0.05 

 highest  4.75 2.73 4.75 2.42 4.75 3.32 
 Lowest  -0.15 1.47 1.31 1.97 2.22 2.63 

*Note: Target reliability index = 3;  = 4.75 (corresponding to a probability of failure of 10-6) is just an error flag indicating 
that the probability of failure is too small and cannot be estimated using the Monte Carlo simulation sample size = 106 adopted 
in this study. 

4.5 “Unexpected” change in mean live load to mean dead load ratio, LL/LD 
The validation studies conducted in Section 4.1, 4.2, and 4.3 are based on a single load ratio, LL/LD = 
0.5. It is of practical interest to evaluate the performance of the code formats calibrated using LL/LD = 
0.5 when they are applied on validation shafts associated with lower/higher load ratios. Two additional 
load ratios are considered: (1) LL/LD = 0.1 and (2) LL/LD = 1.0. The c.o.v.s of all random variables 
remain unchanged. 

 Similar to Section 4.4, the performance shown in Table 8 (LL/LD = 0.1) and Table 9 (LL/LD = 1.0) 
refers to a worst case calibration scenario in which variations in the load ratio are “unexpected” and 
hence, not considered by the code writer. The FORM – standard approach is generally inferior to the uni-
form quantile – standard approach in terms of robustness against unexpected change in the load ratio. 
MRFD3 calibrated using FORM – standard and “14 shafts” is the most inferior as it produces a lowest  
= -3.43! The uniform quantile – standard approach typically produces a higher c.o.v.  in contrast to the 
uniform quantile –  approach.  – It is of practical interest to note that the negative reliability indices as-
sociated with lowest  for some MRFD formats in Table 6 to Table 9 disappear when the calibration do-
main is enlarged from “14 shafts” to “41 shafts”. It is postulated that the MRFD formats require a larger 
calibration domain than the LRFD format, because it has more degrees of freedom (more resistance fac-
tors). It is worthy to reiterate the obvious guideline that the calibration domain should be as large and as 
representative as possible. It is also judicious to avoid applying LRFD/MRFD formats to design scenarios 
not covered in the calibration domain. 

 
The performance data shown in Table 6 to Table 9 appear to indicate that the LRFD/MRFD4 format cali-
brated using the uniform quantile –  approach can produce consistent designs. The MRFD4 format 
seems to produce the least departures from the target reliability index if the calibration domain is suffi-
ciently large and representative. The LRFD is more stable for a smaller calibration domain, but it is 
slightly inferior in achieving the target reliability index on the average.  

It has been highlighted in Section 4.3 that the uniform quantile –  approach requires the user to per-
form Monte Carlo simulation to estimate the quantiles of lumped variables. This is practically inconven-
ient for the user, but given the significantly better performance of the uniform quantile –  approach, it is 
worth pondering if this approach is a good compromise between conventional multiple factor formats and 
full probabilistic analysis.  

When the uniform quantile –  approach is applied at the level of soil parameters, rather than lumped 
resistance components, it has been pointed out previously that the user can estimate the required quantiles 
for design from measured data without performing Monte Carlo simulation in this special case.  
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Table 8. Performance of LRFD/MRFD formats when applied to validation shafts with mean live load to mean dead load    
ratio = 0.1. 

FORM – standard Uniform quantile – standard Uniform quantile –  RBD Eq. 
14 shafts 41 shafts 14 shafts 41 shafts 14 shafts 41 shafts 

LRFD       
 mean  3.49 3.43 2.79 2.82 2.84 2.80 
 c.o.v.  0.16 0.16 0.16 0.16 0.05 0.02 

 highest  4.75 4.75 3.57 3.51 3.85 2.91 
 Lowest  1.91 1.95 1.50 1.59 2.51 2.56 

MRFD2       
 mean  3.19 3.23 2.89 2.85 2.88 2.84 
 c.o.v.  0.18 0.14 0.15 0.13 0.10 0.04 

 highest  4.75 4.01 4.75 3.36 4.75 3.17 
 Lowest  -0.17 1.85 1.44 1.59 2.46 2.54 

MRFD3       
 mean  3.07 3.13 2.89 2.87 2.82 2.87 
 c.o.v.  0.30 0.12 0.16 0.12 0.13 0.05 

 highest  4.75 3.81 4.75 3.41 4.75 3.17 
 Lowest  -3.43 2.01 1.50 1.71 0.72 2.52 

MRFD4       
 mean  3.04 3.06 2.94 2.94 2.90 2.89 
 c.o.v.  0.22 0.08 0.14 0.14 0.08 0.04 

 highest  4.75 3.63 4.75 4.75 4.34 3.12 
 Lowest  0.06 2.15 0.56 0.56 2.32 2.63 

*Note: Target reliability index = 3;  = 4.75 (corresponding to a probability of failure of 10-6) is just an error flag indicating 
that the probability of failure is too small and cannot be estimated using the Monte Carlo simulation sample size = 106 adopted 
in this study. 
 
Table 9. Performance of LRFD/MRFD formats when applied to validation shafts with mean live load to mean dead load    
ratio = 1.0. 

FORM – standard Uniform quantile – standard Uniform quantile –  RBD Eq. 
14 shafts 41 shafts 14 shafts 41 shafts 14 shafts 41 shafts 

LRFD       
 mean  3.41 3.36 3.02 3.07 3.06 3.06 
 c.o.v.  0.15 0.14 0.15 0.15 0.03 0.03 

 highest  4.75 3.96 3.85 3.75 3.22 3.19 
 Lowest  1.86 2.00 1.69 1.82 2.73 2.78 

MRFD2       
 mean  3.14 3.21 3.08 3.06 3.03 3.04 
 c.o.v.  0.16 0.12 0.13 0.12 0.05 0.04 

 highest  4.75 3.84 4.75 3.62 4.26 3.37 
 Lowest  0.72 1.93 1.67 1.81 2.70 2.75 

MRFD3       
 mean  3.14 3.13 3.01 3.04 3.04 3.02 
 c.o.v.  0.22 0.11 0.18 0.11 0.07 0.05 

 highest  4.75 3.72 4.75 3.69 4.75 3.35 
 Lowest  0.31 2.07 0.55 1.92 2.50 2.69 

MRFD4       
 mean  3.07 3.09 3.05 3.01 3.00 3.00 
 c.o.v.  0.20 0.08 0.11 0.04 0.06 0.04 

 highest  4.75 3.62 4.75 3.31 4.05 3.24 
 Lowest  -0.51 2.19 1.15 2.75 2.33 2.76 

*Note: Target reliability index = 3;  = 4.75 (corresponding to a probability of failure of 10-6) is just an error flag indicating 
that the probability of failure is too small and cannot be estimated using the Monte Carlo simulation sample size = 106 adopted 
in this study. 
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CONCLUSIONS 

Simplified RBD equations in the form of LRFD and MRFD formats are increasingly being adopted in 
geotechnical engineering design codes worldwide. For example, the LRFD format calibrated using the 
First-Order Reliability Method (FORM) is adopted by AASHTO. The effectiveness of applying these 
simplified RBD equations to more realistic ground conditions containing multiple strata has not been stu-
died, despite its obvious practical importance. The objective of this paper is to investigate the degree of 
deviation from the target reliability index produced when LRFD/MRFD equations are applied to a data-
base of forty-two actual drilled shafts installed in soil profiles underlying the city of Taipei, which con-
tain clay, sand, gravel and rock layers or some partial combination thereof.  

 Two RBD calibration approaches are studied. They are the FORM design point method and the more 
recently proposed uniform quantile method (Ching & Phoon 2011). The performance of the 
LRFD/MRFD formats is measured by computing the actual reliability indices produced by validation 
shafts designed using the code format under evaluation. These reliability indices are summarized using 
the following statistics: mean, coefficient of variation, highest value, and lowest value. From a practical 
engineering perspective, the most important statistic is the lowest reliability index produced by the popu-
lation of validation shafts. This index describes the departure from the desired target reliability index for 
the most unconservative design. 

In general, for soil profiles with multiple layers, conventional formats containing resistance and load 
factors are unable to achieve the prescribed target reliability index with the same consistency as that re-
ported for homogeneous soil profiles. This is true regardless of the code format (LRFD/MRFD), the RBD 
calibration approach (FORM or uniform quantile), and the number of values associated with each resis-
tance factor (one value or regression function). For the drilled shaft examples considered in this study, the 
direct application of quantiles in the RBD equation (uniform quantile –  approach), rather than convert-
ing the quantiles to conventional resistance and load factors (uniform quantile – standard approach), ap-
pears to deliver the most consistent and most robust performance. Consistency is measured by the ability 
to achieve the target reliability index on the average with minimum deviation. Robustness is measured by 
the ability to cater to unexpected design scenarios not covered in the calibration domain. 

There is a practical cost associated with the application of the uniform quantile –  approach that 
should be highlighted. The engineer is required to perform Monte Carlo simulation to estimate the  
quantile of lumped random variables such as S and Scsg. Some engineers may not be comfortable with 
Monte Carlo simulation or find it too tedious to perform. The uniform quantile – standard approach does 
not require the engineer to perform any Monte Carlo simulation. The code writer must perform Monte 
Carlo simulation to produce the resistance and load factors, but once these factors are available, the user 
only need to calculate a single set of nominal resistances and loads. This practical cost does not exist if 
the uniform quantile –  approach is applied to appropriate parameters where the probability distribution 
is known analytically or empirically. For the former, the MRFD4 format is feasible because the side resis-
tances for each geomaterial type (Sc, Ss, Sg or Sr) happen to be lognormally distributed when the underly-
ing model and measurement errors are normally distributed. For the latter, the partial factor approach in 
which the quantile is applied on measured soil parameters, rather than lumped resistance components, is 
feasible. The quantile for a soil parameter can be estimated directly from a set of measurements without 
the need to perform Monte Carlo simulation.  
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