
1  INTRODUCTION 

The hazards of flooding and their detrimental impacts are becoming more frequent and likely to increase, 
as a consequence of higher sea level and intensifying cyclonic weather and precipitation suggested by 
current climate change science and research predictions (http://www.ipcc.ch/report/ar5/wg2/). The need 
to cope with flooding effects—such as flood-plain regulations, insurance, mitigation engineering works, 
and emergency preparedness—requires tools that can be used to provide quality predictions of flood tim-
ing, duration, and extent. A numerical flow model that solves the shallow water equations (SWEs) and 
simulates the hydrodynamics of a wide variety of surface flows will be a significant asset in the gamut of 
tools available to engineers, managers, and all decision makers involved in floodplain management. Such 
a model needs to be accurate, robust, efficient, and be available in a computer environment that facilitates 
data processing and analysis to reduce project turnaround time. 

In recent years, Godunov-type schemes using a cell-centered finite volume formulation have become 
popular for solving the SWEs. This can be attributed to the ability of these schemes to deal with the most 
complicated shallow water phenomena, such as hydraulic jumps, flow regime change, and the wet-dry in-
terfaces encountered in fast moving catastrophic flooding flows. SToRM (System from Transport and 
River Modeling) is a model that employs these techniques in two-dimensional (2D) unstructured grids, 
and that is contained in a graphical user environment that provides a number of tools to expedite its use 
by trained operators. 

The purpose of this article is to provide a brief presentation of the model SToRM, and its implementa-
tion in a graphical user interface (GUI). Even though SToRM uses algorithms that are robust and general 
enough for application in a wide range of environmental hydraulics problems, it is applied here to esti-
mate flood flow rates in a section of the historic flooding that occurred in Colorado,USA, in September of 
2013.  
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2  MODEL DESCRIPTION 

The model SToRM is based on the classical SWEs written in the conservative form: 
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where t is time, h is the water depth, g is the acceleration due to gravity, u and v are the depth-averaged 
flow velocities in the x and y Cartesian directions, S0 is the bed slope, and Sf is the bottom friction. Inte-
grating eq. (1) over a standard control volume Ω and applying the divergence theorem results in 
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where E = (F,G)T and n is the outward-pointing unit vector normal to the control volume boundary 𝜕Ω. 
SToRM is based on the numerical integration of eq. (2) over cell-centered, non-overlapping triangles: 
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In eq. (3), Ui are the average values of the conserved variables over triangle i, Eik are the inviscid fluxes 
through triangle edge k, Δlik is the length of edge k, Si contains the source terms, and Ωi is the triangle’s 
area. 

Following the principles of Godunov-type methods, the inviscid fluxes Eik are numerical fluxes arising 
from a local Riemann problem at each triangle edge. Here, Eik are computed using Roe’s flux function at 
those edges (Roe, 1981): 
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where the ‘+’ quantities are reconstructed at the midpoint of the edge k using data from control volume i 
and the ‘-‘ quantities are reconstructed using data from the adjacent control volume. In SToRM, the up-
winding factor Γ can be computed in one of two manners: (1) as in the algorithm of Alcrudo and Garcia-
Navarro (1993)—augmented with the entropy fix of Harten and Hyman (1983)—or (2) by using 
Rusanov’s (1961) numerical flux. The first approach is more computational demanding (i.e., it requires 
more computer number crunching), but it has the shock capturing properties needed to compute the flow 
at discontinuities such as hydraulic jumps and wet-dry fronts, whereas the latter is computationally much 
simpler and less demanding, but may introduce spurious numerical diffusion into the solution. The deci-
sion of which to use is done at each triangle edge: if |h+ – h-|/Max{h+,h-} > δs then Alcrudo and Garcia-
Navarro’s method is used, otherwise Rusanov’s method is used. δs is a threshold value used to detect dis-
continuity across element edges and is usually set to 0.1%, a value found by numerical experimentation. 

Second-order accuracy is achieved using a piecewise linear model for the cell variables with the usual 
MUSCL reconstruction, with limiting to enforce monotonicity near sharp gradients and discontinuities of 
the dependent variables. The continuously differentiable limiter by Venkatakrishnan (1995) is chosen be-
cause it avoids introducing discontinuities to the computation of the reconstructed function and, conse-
quently, to the fluxes, therefore improving the convergence properties of the solver over other commonly 
used discontinuous limiters. Computation of the gradients is done using a second-order-accurate least-
squares technique conditioned by the use of inverse distance weighting. 

The friction terms are discretized in a semi-implicit manner: 
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where qx = hu and qy = hv are the components of the unit discharge, the superscript n refers to the time 
step, and the variables with a hat are frictionless-computed quantities. This discretization avoids numeri-
cal oscillations in regions of high friction and low water depth, such as in wet-dry fronts, and impacts 
positively the conditional stability limits mentioned in the next paragraph. 
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The solution is advanced explicitly in time using nonlinear Strong Stability Preserving Runge-Kutta 
(SSPRK) schemes, also known as Total Variation Diminishing (TVD) Runge-Kutta schemes (Gottlieb et 
al., 2001). This is done by first rewriting the governing equations, eqs. (3), as a coupled system of ordi-
nary differential equations: 
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where Ri is called the residual. Here, a simplified form of the SSPRK schemes is used, in which a m-stage 
SSPRK method for eq. (4) is written in the form 
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where Δt is the time step size, the superscripts n and n + 1 denote the time level, and the parenthetic su-
perscripts denote the Runge-Kutta level. The coefficients α and β are chosen to meet desired criteria. 
SToRM implements three optimal (in the sense of the Courant-Friedrichs-Lewy CFL stability coefficient 
θ) SSPRK schemes: first order (m = 1), second-order (m = 2), and third-order (m = 3). These schemes are 
all subjected to the same stability criterion and have an upper bound for θ. For time-dependent cases, the 
time step Δt is either prescribed or computed from 
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where lk is the length of triangle edge k, λ*
k is the highest eigenvalue at the edge’s midpoint, and N is the 

number of fully wet edges over the entire computational domain. In the latter case, θ must be prescribed. 
Boundary conditions are applied at the edges of the model grid using Riemann invariants, i.e., the 

boundary fluxes are also computed by solving a Riemann problem between the interior states and the 
“ghost” states outside the computational domain. These “ghost” states are introduced in order to compute 
the boundary fluxes in a similar and consistent way to the interior fluxes. Here, an approach identical to 
that of Anastasiou and Chan (1997) is used for solid walls, inflow, and outflow boundaries. However, 
wetting and drying fronts require a separate treatment. 

Wetting and drying occurs not only during the propagation of floods, but also at the edges of any body 
of water. Thus, the dry-wet front constitutes not only a propagation problem, but also a static boundary 
condition problem, because it defines the shoreline. It is not easy to include these effects in a straightfor-
ward manner in a numerical code and most researchers resort to different degrees of approximation. Ad-
vancing wet-dry fronts are treated with the method of Brufau et al. (2002), which uses a numerical flux 
that can be applied to zero-depth cells and that maintains the C-property. The key concept is that the flux-
es at the advancing front must be determined from the wet side of the front: the velocity at the cell bound-
aries separating wet and dry states is determined from the wet side, and the interface flux only uses the in-
formation coming from the wet side. This procedure allows including wetting and drying fronts in the 
ordinary cell flux computations without requiring the artificial wetting of dry cells. Drying fronts pose the 
additional problem that, during a drying time step, negative water depths may be reached. Mass conserva-
tion requires that the time step should be restricted to the value that corresponds to the time that takes the 
cell to dry out, i.e., to reach hi = 0. SToRM performs additional checks and adjustments to ensure that 
mass is conserved at every time step without imposing these constraints to the time step size. These 
checks and adjustments are presented with greater detail in Simões (2011). 

The shoreline treatment is different from the two preceding cases. A shoreline is defined when all the 
surrounding dry triangles of a partially or fully wet control volume have a mean bed elevation higher than 
the stage at the centroid of the triangle. Under this circumstance the shoreline is defined at the control 
volume edges and is also subjected to a special treatment. Partially wet triangles have corrections applied 
to their wetted area and water depth. The treatment is different whether drying or wetting is occurring. 
The interested reader is referred to Simões (2011), where detailed descriptions and validations of the 
methods are presented. 
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3  INTEGRATION IN A GUI 

Integration of a numerical model within a graphical framework allows bridging the gap between model 
development and model use, and encourages model dissemination and application. One such framework 
developed specifically for environmental flow modeling is the iRIC Project (http://i-ric.org/en/), which 
provides a means to integrate diverse models within the same GUI, using the same data formats and pro-
tocols. The iRIC framework provides operational facilities that are model independent, such as data input 
and output (multiple formats are supported), automatic grid generation (provided by the two-dimensional 
grid generator and Delaunay triangulator of Shewchuk, 2002), interactive visualization and editing of 
model input and output, ability to work with ancillary data sets for model calibration, and device-
independent plotting. This functionality frees the numerical model from all of these concerns by separat-
ing the roles of model developer from those of GUI programmer, with consequential benefits to both. 

A schematic view of how the SToRM model is integrated in the iRIC graphical framework is given in 
Fig. 1. A graphical user interface is used to receive user input and to plot data. The GUI communicates 
with SToRM through a device-independent file using a format that has become a standard in many appli-
cations of computational fluid dynamics (CGNS, see http://cgns.sourceforge.net/). SToRM runtime in-
formation can also be displayed in a console window. The model parameter definitions needed to custom-
ize the GUI to the specific requirements of SToRM are coded in a flat file in XML format 
(http://www.w3.org/XML/). The GUI can read data in a multitude of formats commonly used in hydrau-
lics and other digital elevation modeling applications. Entire SToRM set-ups, including input data, pa-
rameter definitions, and model simulation output, can be saved in single data files for later use, and for 
transmission and archival. 

The model SToRM is implemented within the iRIC GUI and can be freely downloaded from the offi-
cial iRIC Project Web Site at http://i-ric.org/en/. The calculations presented in this work were obtained 
using version 2.2 of the iRIC distribution package. 

 

 
Figure 1. Schematic outline of the integration of model SToRM in the iRIC modeling framework. The CGNS data file con-

tains computational grid, boundary condition data, model parameters, and complete numerical solutions obtained at 
multiple simulation times. 

4  APPLICATION: ESTIMATING PEAK FLOODING FLOWS 

In the week of September 9–15 of 2013, a slow-moving cold front clashed with warm monsoonal air over 
Colorado, causing unusually heavy rain that resulted in catastrophic flooding along a large extent of Colo-
rado’s Front Range. The flood waters spread from Fort Collins in the north, to Colorado Springs in the 
south over an area that extended for approximately 320 km (200 miles). Nearly 19,000 homes were dam-
aged, with over 1,500 destroyed, and more than 11,000 people had to be evacuated, with eight dead and 
two more missing and presumed dead. It is estimated that at least 30 state highway bridges were de-
stroyed and an additional 20 seriously damaged, with many miles of roads and freight and passenger rail 
lines significantly damaged or altogether washed out. Estimates of economic losses have surpassed $2 bil-
lion US Dollars (Novey, 2013). 

Due to the high discharges and water depths that occurred in many of the affected streams, some of the 
US Geological Survey gaging stations were submerged or completely destroyed, precluding direct meas-
urement of river stage at those locations. Such was the case at the confluence of the St. Vrain Creek and 
Boulder Creek near the city of Longmont, northwest of Denver, CO. As a result of high flows, the USGS 
Gaging Station 06725450 (http://waterdata.usgs.gov/co/nwis/uv/?site_no= 06725450), located at St. 
Vrain Creek at Highway 119 (HWY 119), was destroyed and failed to record the stage at the peak of the 
flood. No high water marks were collected at this location during the later forensic work related to this 
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flood, therefore preventing the realization of an indirect measurement of the peak flow. This section de-
scribes the application of model SToRM to estimate the peak discharge passing at the gaging station and 
over HWY 119, which had a section over 1.7 km (1 mile) long under water. 

The principal factor determining the choice of the methods used to accomplish the objective of this 
study is the availability of data—or, to be more precise, the lack thereof. In particular, the absence of high 
water marks makes it difficult, or impossible, to use conventional indirect estimation methods. The prob-
lem is compounded by the local topography, where two streams merge into a single branch, therefore fur-
ther limiting the amount of hydraulic and hydrologic techniques that can be employed usefully in this re-
gion. 

The data sets available for this work consist of topographic data and flood delineation data. The topog-
raphy was taken from USDA Geospatial DATA Gateway (http://datagateway.nrcs.usda.gov/), which is 
from pre-flood USGS national elevation data (NED) at 1/9 arc-second resolution, i.e., with a spatial reso-
lution of 3 meters. There was no post-flood LiDAR data for the site at the time of this study. Flood delin-
eation data were obtained from remote sensing and are available as breaklines containing the discretized 
delineation of the flood extents in the area of interest (Chris Cole, USGS, Personal Comm., April 23, 
2014). The model was set up to represent an area of 5 km (3.1 miles, east to west) by 4.5 km (2.8 miles, 
north to south) centered at the USGS Gaging Station 06725450, placing the model’s inflow boundaries 
about 2.5 km (1.6 miles) upstream from the gaging station, and the outflow boundary 2.5 km (1.6 miles) 
downstream from it, as illustrated in Fig. 2. This design places these boundaries away from the area of in-
terest, therefore insulating it from imprecisions due to approximate representation of the water surface el-
evation at the downstream end, and of synthesized velocity distributions at the upstream boundaries. The 
outflow boundary was set at St. Vrain Creek at HWY 25 (Interstate 25), because it is known that HWY 25 
did not get flooded, and knowing that the flow was contained within the bridge opening permitted setting 
the boundary condition (i.e., water surface elevation under the bridge) close to that of the actual flood, 
which is near the invert of the bridge. 

 

 
Figure 2. Aerial photograph of the modeled region (image source: The National Map, http:// http://nationalmap.gov/). The 

limits of the computational grid are given by the polygon shown. Note the inflowing tributaries at the south (Boulder 
Creek) and southwest (St. Vrain Creek) and the outflow boundary at the northeast (St. Vrain Creek). The circle 
marks the location of the USGS Gaging Station. 

The model SToRM uses a spatial discretization based on triangles and the user interface iRIC provides an 
automatic grid generator that takes into account user input. User input is used to define grid shape and cell 
size, and is especially important in ensuring that topographic features of hydraulic relevance are discre-
tized with the appropriate accuracy for model representation. Several discretization test runs were per-
formed to determine the necessary degree of grid refinement. These tests compared the results obtained 
with different grid resolutions to determine the best working grid, i.e., the grid that provided the best 
computational performance without degrading the quality of the computed flood extents. A grid with 
57,055 points (113,140 triangles) was constructed, representing a grid of triangles with a maximum area 
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of 173.2 m2 (1864 ft2) each. The grid was selectively refined in certain regions, such as near the gaging 
station, and break lines were used to capture a number of significant terrain features. 

To determine the value of the flow discharge at St. Vrain and Boulder Creeks, which is the objective of 
this study, the following trial-and-error procedure was followed: 

1. Guess the discharge values for St. Vrain Creek and Boulder Creek. 
2. Use the guessed discharges to configure a model run. 
3. Run the model SToRM until steady state conditions are reached. 
4. Compare the predicted inundation levels to the known flood delineation contours. 
5. If the agreement between data and prediction is poor, guess new discharge values and return to  

step 2 
6. Once the agreement between data and prediction is optimized, adopt the final discharge values as 

the final estimated discharge for each creek. 
Surface roughness was guessed by judging the type of land use based on the analysis of aerial photog-
raphy. There are many land uses in the modeled region, including residential, commercial, agricultural, 
gravel mining, and open space, and different roughness values were used to represent each, assigned from 
previous experience using the model SToRM in similar land surface textures. Each run was started from 
an initial state in which there was little or no flooding taking place, with the water mostly confined within 
channel banks. The model run progressed in an unsteady manner, where the inflows at St. Vrain and 
Boulder Creek were ramped to the desired guessed values and the computational domain was allowed to 
flood as if a flooding event was taking place. Once the hydrograph attained the desired high inflowing 
discharges, the run was sustained until steady state conditions were reached. This process does not repre-
sent the rate of flooding accurately, because the inflow hydrographs used do not represent the actual 
flooding event well, but it allows for the model to compute the actual flood extents without the need for 
any preconceived ideas about what the flood stages should look like. 

In practice, a series of discharge guesses that under- and over-shoot the answer are used to perform 
model runs. The results of the model runs are compared to the known flood delineation contours and 
filed. A series of successive trials gradually hones the answer to the pair of values that provides the best 
possible agreement between the model predictions and the observations. In this study, the combination of 
values that provided the best agreement consisted of a discharge of 600 m3/s (~21,000 ft3/s) for St. Vrain 
Creek and a discharge of 250 m3/s (~9,000 ft3/s) for Boulder Creek, resulting in an estimated 850 m3/s 
(~30,000 ft3/s) passing through USGS Gaging Station 06725450 at HWY 119. The final results compar-
ing model simulation and known flood delineation contours are shown in Fig. 3. 

 

 
Figure 3. Comparison between observed flood delineation (white line) and predicted flooded area (gray area) on the same 

background image of Fig. 2. Note that the observed flood delineation contour does not extend all the way to the 
eastern part of the computational domain due to the absence of data. 
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5  DISCUSSION 

The standard method of indirect measurement of discharge is based on matching the values predicted by a 
calculation method—such as a backwater procedure or Manning’s equation—to high water marks col-
lected in situ after the flood took place. An attempt was made to synthesize high water marks by intersect-
ing the flood delineation contours with the DEM of the site to obtain the value of the water surface eleva-
tion at the edges of the flooded areas. High water marks can be constructed by using directly the water 
surface elevation values obtained from the intersection, or by interpolating them into the fully wetted are-
as by tracing cross sections and using the values at the edges. In practice, however, the wide extent of the 
flood and the complex topography of the flood plains made it difficult to trace hydraulically reasonable 
cross sections (lines normal to the flow direction that extend from left to right bank). For example, in 
many areas there were differences of more than one meter in water surface elevation between the left and 
the right margins, and the process of interpolating between such dissimilar values becomes highly specu-
lative. To avoid introducing errors due to conjecture, it is a better approach to use data with the least 
amount of processing possible. Therefore, using a model to match directly the flood delineation lines of-
fers a more effectual and well-grounded assault to the problem than the traditional methods of indirect 
measurement that use high water marks. 

A depth-averaged two-dimensional flow model is used in this study, therefore fully three dimensional 
flow effects are not captured in the simulation. Some of the primary hypothesis used in the development 
of the model are that the vertical pressure distribution is hydrostatic, that momentum dissipation by the 
bottom stresses follows a quadratic drag law (in this study the Manning’s friction coefficient was used), 
that there is no infiltration of water into the soil, and that there are no changes in bed topography during 
the flood, such as those that might result from flow induced bed erosion or sediment deposition. Although 
these are limiting assumptions, their use is appropriate and well justified in floods with the relative width 
and breadth encountered in this study, and there is an ample body of literature supporting it—see, for ex-
ample, CFD (2005) and the references therein. 

The source of data used introduces errors and uncertainties which are intrinsic to the type of data used 
to set-up the model and to evaluate the modeling results: topographic data and flood delineation contours, 
respectively. The process of delineating water boundaries from remote sensed images is challenging and 
its accuracy is influenced by river characteristics, neighboring land cover, and anthropogenic effects. 
There are many methods in use to accomplish the discretization of the delineation contours (Güneralp et 
al., 2014), but the accuracy of the resulting process is generally evaluated based on subjective visual as-
sessment (Quackenbush, 2004), with larger uncertainties in areas of visual complexity. Another signifi-
cant aspect concerns the time at which the remote imagery was acquired: for the purpose used in this 
study, it is important to use images taken at, or near, the peak of the flood. Unfortunately, with the USGS 
gage destroyed, the relation of the flood peak to the time at which the remote imagery was taken is un-
known. 

Topographic data are given by pre-flood USGS NED at 1/9 arc-second (3 meter) resolution. The accu-
racy of the NED varies spatially due to the variable quality of the different sources of DEM data. The 
overall absolute vertical accuracy of the USGS NED data has a root mean square error (RMSE) of 2.44 m 
(8 ft), (Gesch, 2007). However, information obtained from metadata in USGS NED data files for the 
Denver area from The National Map Viewer Web site (http://viewer.nationalmap.gov/viewer, accessed 
May 19, 2014) indicates that greater Denver DEM data were obtained from a Light Detection And Rang-
ing (LiDAR) system and that the data acquisition occurred between March 15 and April 19, 2008. This 
increases the degree of vertical accuracy to a range of the RSME of 0.05–0.2 m (0.154–0.656 ft)(e.g., 
Baltsavias, 1999), but it also indicates that the data were approximately 5 ½ years old at the date of the 
flood; consequently any changes to the topography incurred in that period of time are not captured in the 
present study. Because part of the land has agricultural uses, it is expected that at least some change has 
taken place during this time, especially in the areas flooded by Boulder Creek. 

Finally, there is the potential for operator error. In this study, operator error is introduced at the time 
when results are interpreted, which occurs when the final simulated flood contour lines are compared to 
the field data for the evaluation of the goodness of fit. Goodness of fit is evaluated by visual inspection of 
an image such as the one presented in Fig. 3. Although this is a generally acceptable method and is prac-
ticed by many, it lacks the objectivity of a mathematical criterion based on some type of computable 
measure. Such a criterion might be constructed from distance or area measures, such as the RMSE of the 
distance between the observed and the computed flood delineation contours, or from the area between the 
same two lines. At this point there is no published work about this subject and, therefore, there is no guid-
ance about what types of criteria might be employed nor about the advantages of selecting one criterion 
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over another. The development of a good goodness-of-fit criterion may be important if future work in this 
area is to be pursued, not only because it will allow removing the ambiguity introduced by a human oper-
ator, but also because it provides a necessary tool to streamline and automate the computational trial-and-
error process developed and presented in the previous section. 

6  CONCLUSION 

A depth-averaged, two-dimensional model (SToRM) that solves the SWEs in unstructured triangular 
grids within the framework of the Godunov-type, cell-centered finite volume method, was briefly pre-
sented. The model was developed with the purpose of calculating unsteady flow over complex topogra-
phy with wetting and drying moving fronts, such as those occurring in catastrophic flooding, and was ap-
plied to the estimation of the peak flow discharge passing at the USGS Gaging Station 06725450, near the 
city of Longmont, northwest of Denver, CO, during the historic flood event of September 2013. 

Estimation of the peak discharge was accomplished by comparing the computed flood delineation con-
tours with those obtained from remote sensed images. It was found that a close match was obtained when 
using a discharge of 600 m3/s (~21,000 ft3/s) for St. Vrain Creek and of 250 m3/s (~9,000 ft3/s) for Boul-
der Creek. It was noted, however, that these predictions are dependent on the accuracy of the data used: 
(1) the DEM data used by the model were sourced from USGS NED with a RMSE of 0.05–0.2 m (0.154–
0.656 ft), and was 5 ½ years old at the time the flooding occurred; and (2) the flood delineation contours 
are subjected to uncertainties in areas of visual complexity and the source images must be obtained at 
peak flow, which may be an unknown by itself. Finally, the comparison between model predictions and 
field measurements was done by visual inspection, which introduces undesired operator ambiguity and 
underlines the need for the development of mathematical criteria that produce objective goodness-of-fit 
measures and that can be implemented in an automated computational procedure. 
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