
 
1 INTRODUCTION 

Nowadays, the occurrence of floods all over the world has resulted in tremendous economic damages and 
life losses. Thus, the correct prediction of the rise and fall of a flood, i.e. flood wave routing, is significant 
importance. Although the use of numerical simulation methods makes the prediction of this complex hy-
draulic phenomenon feasible, many fallacies in doing this properly still exist. The fundamental differen-
tial equation to describe one-dimensional unsteady river flow is the Saint-Venant equation (Chow et al., 
1989), which is basically a special form of the Navier-Stokes applied to an inclined section of an open 
channel, where internal viscosity-induced frictional forces within the fluid are neglected against shear 
stresses induced by bed-friction or wind forces. This equation is to be solved in conjunction with the con-
tinuity equation for a control volume of water within the channel. Because of the nonlinearity of the con-
vective acceleration term in the Saint-Venant equation, in its most complete form it can only be solved 
numerically at some non-negligible costs. For this reason, alternative approaches for flood wave routing, 
known under the names of diffusion and kinematic wave method - which are easily derived from the full 
Saint-Venant equations (also called the full dynamic wave method) by dropping the acceleration term 
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equation governing unsteady flows. In the present study, two new approaches for tackling the problem of 
optimal calibration of a flood model have been introduced. The first method is based on nonlinear pro-
gramming (NLP), which permits to determine the optimum values of the routing coefficients in the diffu-
sion wave or Muskingum method by minimizing a misfit function under the constraint of satisfying the 
continuity equation. The second method is based on Multiple Linear Regression (MLR) of in- and output 
variables in the Muskingum equations, which allows the direct computation of the routing coefficients. 
To calibrate and verify the two new routing models as well as of the traditional Muskingum method three 
(one for calibration and two for verification) observed flood hydrographs in a limited reach of 
Mehranrood River in northwest Iran are used. The results obtained by these two new methods are com-
pared with those of the classical Muskingum method. It is found that the NLP- and the MLR- routed hy-
drographs come as close, if not better, to the observed output hydrographs as those of the Muskingum 
method. This is also corroborated by similar high values for the coefficient of determination R2 of the ad-
justment of the simu-lated to observed hydrographs for the three routing methods. However, limitations 
of all three kinematic-wave type routing methods become clear during the verification routing simulation 
for one flood even with a sharply rising input hydrograph, in the case of which, the application of  full 
dynamic wave routing gives much better results. In spite of these restrictions - typical for kinematic wave 
routing methods - the two new parameter optimization methods proposed here for the automatic calibra-
tion of the routing coef-ficients in the widely used Muskingum method are powerful and reliable proce-
dures for flood routing in rivers, not to the least due to the fact that they are convenient to use 

Keywords: Flood wave routing, Muskingum, Nonlinear programming, Multiple linear regression 

ICHE 2014, Hamburg - Lehfeldt & Kopmann (eds) - © 2014 Bundesanstalt für Wasserbau ISBN 978-3-939230-32-8

505



(diffusion wave method) or both the acceleration- and the pressure term- (kinematic wave method) - have 
been proposed and which nowadays are widely used in practice.  

Diffusive wave theory was firstly presented by Hayami (1951). By simplification of the momentum 
equation and introduction a linear diffusion coefficient, Hayami (1951) derived an advection-diffusion 
equation that he solved analytically. An analysis of the kinematic wave routing theory was made later by 
Lighthill and Whitham (1955) who showed that the main part of a flood wave is approximated by a kine-
matic wave traveling downstream, whereas the part arising from the full solution of the Saint-Venant Eq., 
i.e. the dynamic wave, makes up only a small portion of the flood body, but travels in both upstream and 
downstream direction relative to the crest of the kinematic wave. Thus it is clear that kinematic wave the-
ory cannot model backwater-effects. There have been a lot of investigations since then to what extent the 
various simplifications in the Saint-Venant Eqs. are valid for routing in a particular channel (e.g. Ponce et 
al.,1978; Weinmann and Laurenson, 1979; Ferrick, 1985). These authors found, among other things, that 
the kinematic wave approximation is valid for moderately steep channels.  

The numerical implementation of the kinematic wave approximation is usually the Muskingum- and/or 
the Muskingum-Cunge method (Cunge, 1969; Chow et al., 1989), where the latter has been shown to 
have, in addition, some diffusion-wave type properties, although the method is not directly derived from 
the Saint Venant equations itself (see Section 2). In spite of this inherent limitation of the Muskingum 
method, in addition to the problem of the proper specification of some heuristic routing coefficients for a 
particular stream reach (see Section 2), this method has been, since its inception, because of its computa-
tional expediency, the method of choice in most flood-routing applications, particularly for real-time 
forecasting (Barbetta et al., 2011; Perumal et al., 2011). It is thus of no surprise that numerous hydraulic 
research of the last decades has been devoted to the problem of how to determine the proper routing coef-
ficients in the Muskingum method, either by using information on stream channel characteristics and/or 
by some kind of calibration of observed flood hydrographs.   

One of the first authors to determine parameters in the Muskingum method was Gill (1978) who used 
linear least squares to determine the two unknown parameters in the prism/wedge storage term which is 
the basis of the Muskingum method. He also extended the parameter estimation to non-linear storage 
functions, using a so-called segmented linear curve-line approach which nowadays could be considered as 
some kind of a linearization of the inherently nonlinear objective function for the storage. The same au-
thor then later (Gill, 1984) explained the use of the proper time lag in this Muskingum- method by con-
sidering some specific examples. Mohan (1997) applied a genetic algorithm to estimate the parameters in 
a nonlinear Muskingum model. Further improvements in the method were made by Perumal and Ranga 
Raju (1998) who related the parameters of the routing equation to the channel and flow characteristics, so 
that the former could be varied at every routing time level. An optimization approach has been proposed 
by Das (2004) who estimated parameters for Muskingum models using a Lagrange multiplier formulation 
to transform the constrained parameter optimization problem into an unconstrained one. However, Geem 
(2006), who used an unconstrained BFGS-optimization technique for the same purpose, pointed out that 
the FD-formulation of the constraints by Das (2004) was not consistent with the continuity equation. 

Oladghafari et al. (2009) determined the routing parameters of the Muskingum model for three flood 
events (which are also at the focus of the present study) in a reach of the Mehranrood river in northwest-
ern Iran by the classical (graphical) procedure (Chow et al., 1989) and compared the results obtained in 
this way with those acquired by using the full dynamic wave flood routing method. As expected, the latter 
simulated the observed output hydrographs better than the Muskingum method. A further improvement to 
the Muskingum method has been made by Perumal et al. (2009) who extended the latter to a multi-linear 
stage-hydrograph routing method in which model parameters can be varied at each routing time step. The 
method was verified by laboratory experimental data and the field data of the Tiber River in central Ita-
ly.The literature review above clearly shows that research on Muskingum flood routing is alive and well 
and by no means exhausted. That is, the determination of the optimal routing coefficients in the Musk-
ingum model in a real application is not yet satisfactorily solved and is, thus, still open to debate. This is 
the issue of the present paper, where two new parameter estimation techniques, namely, nonlinear pro-
gramming (NLP) and multiple linear regression (MLR), will be applied to the routing of three floods 
which have already been analyzed by Oladghafari et al. (2009) by means of a classical Muskingum mod-
el. The routing coefficients obtained by these two parameter optimization techniques will eventually be 
compared with those used by Oladghafari et al. (2009) in his traditional Muskingum routing model. 
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2 STUDY METHODS 

2.1 Kinematic/diffusion wave / Muskingum wave routing method   
One of the most widely used methods for river flood routing is the Muskingum method (Chow et al., 
1989). Although this method belongs to the class of hydrological routing or level-pool routing techniques, 
whereby a stream section is treated like a reservoir and the classical continuity equation 
dS/dt  = I(t) – Q(t) (1) 

for the change of storage S(t) as the difference between inflow I(t) and outflow Q(t) is applied – i.e. mo-
mentum transport described by the Saint Venant equations is not considered, the numerical implementa-
tion in the form of the so-called Muskingum-Cunge method (Cunge,1969)  has been shown to be close to 
a diffusion-wave type of routing method, as derived from an approximation of the Saint Venant equation. 

Using the concept of a wedge-/prism storage for a stream reach, whereby the total actual storage is 
written as a weighted average of the prism-storage Sprism=KQ and the wedge storage Swedge=KX(I-Q)  
S=K[XQ+(1-X)(I-Q] (2) 

where K is a reservoir constant, (about equal to the travel-time of a flood wave through the stream reach), 
and X a weighting factor, both of which a usually determined in an iterative manner from observed input- 
and output hydrographs, the discrete Muskingum-equations are directly obtained from the time-
discretization of Eq. (1) (Chow et al., 1984): 

jjjj QCICICQ 32111 ++= ++  (3) 

where j = (1,…,m) indicates the time step and C1, C2 and C3 are the routing coefficients, which include 
the two constants K and X , as well as the time step Δt.  

In spite of the many implementations of the Muskingum equations in numerous flood routing codes 
(e.g. TR-20, SWMM, HEC-1, to name a few), the proper determination, i.e. calibration of the three rout-
ing coefficients in Eq. (3) above has always been a challenge in real flood routing applications. Apart 
from the (graphical) trial-and-error approach, automatic parameter estimation based on linear and/or non-
linear optimization methods (e.g. Gill, 1978; Hosseini et al., 2004) have been applied with some success. 
In this study we use NLP and MLR, both of which will be formulated in the subsequent sections.  

2.2 General formulation of a constrained nonlinear programming problem (NLP)   
The main purpose of nonlinear programming (NLP) is to find the optimum value of a functional variation, 
while respecting certain constraints (Luenberger, 1984; Hiller and Liberman, 1995; Avriel, 2003). The 
NLP-problem is generally formulated as: 
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Where f(x) is the objective function, x the decision variable, and hi(x) specifies the constraints. It is as-
sumed that f and hi(x) are continuous functions. It should be noted that, depending on the particular prob-
lem, instead of min f(x), (convex problem), max f(x) (concave problem) may also be searched. Also, like-
wise to most other classical optimization procedures, which are mostly using some gradient-method to 
search for the minimum of the objective function, the solution of the NLP-problem (4) will not yield an 
absolute, but only a relative extremum of f(x) at x=x0, i.e. f(x) > f(x0) for x#x0. To overcome this deficien-
cy, global minimization methods, such as, for example, the genetic algorithm, can be used, as it was done 
by Mohan (1997), mentioned in the introduction. The computation of the optimum (minimum) values for 
the nonlinear constrained problem (4) is a difficult task, and depends on the form of the objective function 
and of the constraints.  Many general nonlinear problems can be solved, for example, by application of a 
sequence of Linear Programming (LP) or, in cases that f(x) can be written as a quadratic, by Quadratic 
Programming (QP)- techniques. A particular difficulty in solving a NLP-problem is due to the presence of 
the constraints. One way, to overcome this burden is to convert the constrained optimization problem into 
an equivalent unconstrained optimization problem by setting up a Lagrangian multiplier (penalty)- formu-
lation (e.g. Luenberger,  1984), whereby in each iteration step (stage) of the minimization procedure the 
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total sum of the original objective function f(x) and a penalty-weighted sum of the constraints hi(x) is now 
minimized, i.e. Eq. (4) is changed to 

[ ] max,....,2,1))(()()(min kkkxEkxf =+ ρµ
 (5) 

for each stage k, where x(k) is the solution at that stage; μ(k) is the penalty parameter; and E(x(k)) is the 
sum of all constraint-violations to the power of ρ, taken as ρ=2 here.  

With Eq.(5) the constrained minimization problem (4) in converted into a sequential unconstrained 
minimization problem that can be solved by classical nonlinear minimization procedures. Here the Hooke 
and Jeeves (HJ) line search method (Hooke and Jeeves, 1961), as implemented in the WINQSB-software, 
is used. Unlike most descent-type minimization procedures commonly used, the HJ-method does not re-
quire the gradient of the objective function, which for the penalty function (5) is not easy to compute. 

Before beginning the iteration procedure in the HJ-method, a stopping tolerance value δ is specified, 
and a starting solution x(1) is provided to the NLP code. Iterations k=1,2..kmax  continue until 
μ(k)*E(x(k))ρ  < δ, then x(k+1) is the optimal solution, otherwise μ(k+1) = β*μ(k), with β a constant.   

2.3 NLP-formulation of Muskingum flood routing   
The NLP -problem for flood routing is formulated here as follows 
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i.e., the goal in Eq. (6) is to minimize the absolute difference between the volume V̂  of the observed input 
hydrograph to the reach and the volume V of the routed output hydrograph. The constraints (7) are noth-
ing else than the discrete formulation of the continuity equation (1) in the form of the Muskingum equa-
tions (3) for the input- and output discharges measured at the discrete times j=1,2,…,m. In the present ap-
plication the hydrographs have been sampled at m=24 times. Finally Eq. (8) provides the relationship to 
compute the volume V in each iteration step of the minimization procedure from the discharge rates Q.  

2.4 Multiple linear regression (MLR) method 
In the multiple linear regression (MLR) model, the Muskingum equation (3) is read like a linear regres-
sion equation for the dependent (response) output variable Qi+1 as a function of the three  independent 
variables Ii+1, Ii (measured input hydrograph) and Qi. (measured output hydrograph).  With this the MLR-
model can be stated as: 

mjQCICICQ jjjj ,...,2,1,32111 =+++= ++ ε
 (9) 

where ε is the remaining, unexplained error term in the model, due to errors in the data as well as in the 
model formulation itself.   

The MLR-model is solved for the regression (routing) coefficients C1, C2 and C3 by classical least 
squares, i.e. by minimizing the quadratic error ε2 in Eq. (9). Numerically this can be done either by solv-
ing the normal equations derived from Eq. (9) (e.g. Draper and Smith, 1981) or, in a more stable manner, 
by QR-decomposition (Golub and Van Loan, 1996) of the over-determined system of equations (9). The 
latter method has been employed using the MATLAB software.   
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3 STUDY AREA AND FLOOD EVENTS USED 

The study area is located along the reach of the Mehranrood River in the Azarbayejan-e-Sharghi province 
in northwestern Iran between the two hydrometer stations Hervi (upstream) and Lighvan (downstream). 
The stream distance between these two stations is 12280 meters.  

Three flood events that occurred on April 6, 2003, June 9, 2005 and May 4, 2007, respectively, were 
selected for the flood routing experiments. Input hydrographs for the simulations are the observed dis-
charges at Hervi gage station and the output hydrographs those at station Lighvan. 

 

 
Figure 1. Study area with the Mehranrood stream reach between the gage stations Hervi and Lighvan.  

4 RESULTS AND DISCUSSION 

4.1 General set-up of the flood routing computations   
The NLP- and the MLR- flood routing method have been applied to the three flood hydrographs men-
tioned earlier and the results obtained compared with those of Oladghaffari et al. (2009) who used the 
traditional Muskingum method. Firstly, the optimal calibration of the three routing coefficients C1, C2 and 
C3  in Eq. (3), i.e. the decision variables in NLP,  or the regression coefficients in MLR, has been done 
with the observed input (at station Hervi) and the routed output (at station Lighvan) hydrographs of the 
April 6, 2003 flood event. After successful calibration, these routing coefficients have been used in the 
subsequent verification of the other two flood events, June 9, 2005 and May 4, 2007.  

To assess the reliability of the routing methods, the coefficient of determination R2  and the average 
absolute error AAE  have been used. 

4.2 Optimal calibration of routing coefficients using the April 6, 2003 flood event 
For the NLP-method, the primary parameters used in the penalty function formulation (see Section 2.2) 
are listed in Table 1, and these have been used in all three applications.  
 
Table 1. Parameters used in the NLP-penalty function method. 

X(1) µ(1) β δ ρ Parameter 
0 1 0.1 0.0001 2 Value 
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Table 2 shows the results of the calibrations of the optimal routing coefficients C1, C2 and C3  with the 
NLP- and the MLR- method, using the hydrograph data of the April 6, 2003 flood event.  In addition, the 
C-coefficients of Oladghaffari et al. (2009), who used a classical graphical procedure (Chow et al.,1989) 
together with some visual fitting of the simulated to the observed output hydrograph for determining the 
optimal Muskingum parameters K and X  and, subsequently, the C-coefficients, are listed. One may notice 
that, whereas the C3-coefficients are more or less similar for the three routing methods, larger differences 
for C1 and C2  exist, especially relative to the ones of the Muskingum method. 

 
Table 2. Optimal NLP-, MLR-, and classical Muskingum- routing coefficients for the April 6, 2003 flood event. 

C3 C2 C1 Method 
0.6239 0.2886 0.0877 NLP 
0.6612 0.2347 0.1043 MLR 
0.6636 0.0758 0.2606 Muskingum 

 

 
Figure 2. Flood routed hydrographs using NLP-, MLR- and classical Muskingum for the April 6, 2003 flood event. 

         
              Calculated discharge (m3/sec)                  Calculated discharge (m3/sec)                 Calculated discharge (m3/sec) 

Figure 3. Calculated versus observed discharge for Muskingum, NLP and MLR for the April 6, 2003 flood event. 

The corresponding hydrographs for that flood event are shown in Figure 2, where the one obtained by the 
classical Muskingum method has been extracted from Oladghaffari et al. (2009). The observed and calcu-
lated discharges at the reach-outlet station Lighvan for the three routing methods are shown,  together 
with the fitted regression lines and the computed value for R2  (see Eq. 10), in Figure 3.  

From the visual inspection of the hydrographs in Figure 2, and despite the noted differences in the op-
timal routing coefficients (see Table 2), all three routing methods appear to be more or less equally good. 
However, the regression lines of Figure 3 and the corresponding calculated R2 clearly indicate the MLR 
and NLP as slightly superior over traditional Muskingum in fitting the observed hydrograph.  

4.3 Verification of the flood routing methods with the June 9, 2005 flood event 
The first verification of the three routing methods has been done for the June 9, 2005 flood event, with the 
optimally calibrated routing coefficients of Table 2, i.e. the normal Muskingum method (Eq. 3) has been 
used with these coefficients to route the input hydrograph to the reach-outlet station Lighvan. 
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Figure 4. Hydrographs of verification of optimally calibrated routing models for the June 9, 2005 flood event. In addition, the 

dynamically routed hydrograph of Oladghaffari et al. (2009) is shown.  

           
                    Calculated discharge (m3/sec)               Calculated discharge (m3/sec)                Calculated discharge (m3/sec) 

Figure 5. Similar to Figure 3, but using the June 9, 2005 flood event as verification. 

The results of this verification run are shown, equivalently to the corresponding figures for the calibration 
run in the previous section, in Figures 4 (hydrographs) and 5 (regression lines). One can notice from these 
figures that for this June 9, 2007 verification flood event, somewhat expectedly, the simulated hydro-
graphs for all methods agree less well with the observed ones, than has been the case for the calibration 
event of the previous section. However, large undulations in the output hydrographs for all three methods 
are now observed, which may be an indication of solution instabilities in these kinematic-wave type 
methods - both the NLP- and MLR- approach are actually also based on the Muskingum formulation (see 
Eqs. 7 and 9) - to route this sharp rising flood wave, which was generated by an intense storm event, as 
they are frequent in this part of Iran in the early summer.   

To investigate this allegation further, we have added in Figure 5 the dynamically routed hydrograph of 
Oladghaffari et al. (2009), i.e. the one computed using the full Saint Venant equations.  The wavy form of 
the rising limb of the simulated hydrograph has now disappeared and the peak of the observed hydro-
graph is now much better hit than with the three Muskingum-type routing methods. 

4.4 Verification of the flood routing methods with the May 4, 2007 flood event 
The second verification run has been done in a similar manner on the hydrographs of the Mai 4, 2007 
flood event. The corresponding results are shown in Figures 6 (hydrographs) and 7 (regression- lines).  
For this May 4, 2007 verification flood event, with a much wider input hydrograph than that of the June 
9, 2005 event, the agreement of the modeled to the observed hydrographs is now again much better than 
has been the case for the event before. Figure 6 shows that the output hydrographs for the three routing 
methods are essentially congruent. 

The good performance of this flood routing verification is also corroborated by the high R2- values > 
0.9 obtained now (Figure 7), when compared with those of Figure 5, where R2 was barely > 0.7.  The re-
sults of Figure 9 indicate also that the differences in R2 are only minor.  
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Figure 6. Hydrographs of verification of optimally calibrated routing models for the May 4, 2007 flood event. 

 

 
                        Calculated discharge (m3/sec)              Calculated discharge (m3/sec)              Calculated discharge (m3/sec) 

Figure 7. Similar to Figure 5, but using the May 4, 2007 flood event for verification. 

5 SUMMARY AND CONCLUSIONS 

In Tables 3 and 4 the most salient results of all three flood routing simulation sets (one calibration-   and 
two verification runs) are summarized.   

Table 3 lists the observed and calculated peak discharges (taken from the corresponding output hydro-
graphs) as well as the percental errors for the NLP- , MLR- , and Muskingum flood routing methods, 
from which one can infer all three methods work more or less equally well, with some marginal ad-
vantages for the two automatic calibration methods NLP and MLR.   

In Table 4 the statistics of the fits of observed discharge hydrographs by the NLP-, MLR- and Musk-
ingum method are listed, namely, the average absolute error AAE (Eq. 11), in addition to the R2-values, 
already discussed.  Obviously the AAE values inversely reflect the R2-values, so they do not appear to 
represent an extra performance indicator. 

Based on these results we conclude that the two new parameter optimization methods proposed here 
for the automatic calibration of the routing coefficients in the widely used Muskingum flood routing 
method, namely, the nonlinear NLP-technique and the linear MLR-method are powerful and reliable pro-
cedures for flood routing in rivers. Although their precision is not necessarily better than that of the tradi-
tional Muskingum method – which is of no surprise, as these two methods are also based on the Musk-
ingum formulation - they may be more conveniently used than Muskingum, where suitable routing 
coefficients (usually the storage parameter K and the weighting factor X) are often obtained only after 
some lengthy trial and error process.  
 
Table 3. Observed and calculated peak discharges (m3/sec) and errors for NLP- , MLR- and Muskingum flood routing. 

Flood April 6, 2003 June 9, 2005 May 4, 2007 

Parameter NLP MLR Muskingum NLP MLR Muskingum NLP MLR Muskingum 

R2 0.93 0.94 0.92 0.71 0.76 0.73 0.92 0.93 0.91 

AAE 0.010 0.010 0.011 0.042 0.038 0.041 0.025 0.023 0.027 

512



Table 4. Statistics of the fits of the observed discharge hydrographs by the NLP-, MLR- and Muskingum method. 
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