
 
1 INTRODUCTION 

Sediment transport rate in streams and rivers is very difficult to be quantified and it constitutes a problem 
that challenges engineers, geomorphologists, and river scientists, since it is a prerequisite for numerous 
studies such as river restoration, habitat maintenance, dam design, etc. Many sediment transport functions 
have been proposed during the last years by several researchers based on different concepts and ap-
proaches; however, the generated results are, usually, in disagreement and may derive miscalculations of 
several orders of magnitude (Gomez and Church, 1989; Yang, 2003). Subsequently, a deterministic mod-
el that obeys the laws of physics and could be potentially used with confidence remains elusive due to the 
augmented complexity of the phenomenon and the large input data requirements. 

Machine learning can provide solutions to problems where the actual knowledge of the physics and the 
internal mechanisms of the problem are not fully understood, and given a good quality dataset that en-
compasses an adequate part of the parameter space, can eventually generate formulae that can be used for 
future predictions. Witten et al. (2011) argued that certain classes of model syntax may be inappropriate 
as a representation of a physical system and, subsequently, no single machine learning technique is ap-
propriate to all data mining problems. Consequently, in this paper, four different machine learning tech-
niques are implemented and their results are compared for their efficacy with some well-known sediment 
transport functions from the literature. The utilized techniques are Artificial Neural Networks (ANNs), 
Adaptive-Network-Based Fuzzy Inference System (ANFIS), Symbolic Regression (SR) based on Genetic 
Programming, and Support Vector Regression (SVR). In addition, three different input combinations 
based mainly on variables highly correlated with sediment transport, such as unit stream power, stream 
power, and shear stress, are compared, without the need to set a criterion for the initiation of movement. 
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sions, exposing the insufficiency of the sediment transport formulae utilized for engineering projects. The 
present paper shows the potential of machine learning in quantifying fluvial sediment transport by sum-
marizing the work done by the authors in the recent past and complementing this review by presenting 
new results from the support vector regression implementation. The generated models are robust and the 
results are encouraging, given the complexity of the problem and the inevitable noise inclusion from the 
field measurements, and superior to those of some of the well-known sediment transport formulae. The 
conclusions of this study support that the regression scheme is of importance, since all the input combina-
tions tested (based mainly on shear stress, or stream power, or unit stream power) generated similarly 
good results, with respect to the machine learning technique employed, without having to set a threshold 
for the initiation of motion, thus avoiding erroneous zero transport rate predictions. 
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This paper concerns bed-material load and bed load prediction in sand-bed and gravel-bed rivers, re-
spectively, and summarizes the work done by the authors in the recent past (Kitsikoudis et al., 2014a; 
2014b), complemented by new results from the SVR implementation. The results are encouraging, given 
the complexity of the phenomenon and the noise that is implanted to the field measurements. Moreover, it 
is shown that all the input combinations generate similarly good outputs, with respect to the data-driven 
technique employed, accentuating the importance of the regression model. 

2 SEDIMENT TRANSPORT 

Sediment transport may exhibit several peculiarities, depending on the river under consideration. In sand-
bed rivers, the majority of the sediment load is transported as suspended load, which may either amplify 
or damp turbulence, hence the flow resistance, depending on the relative magnitude of flow and sediment 
transport variables (Squires and Eaton, 1990). In gravel-bed rivers, due to the coarser grain size, a signifi-
cant portion of the sediment load moves as bed load, which is of major importance for geomorphologic 
reasons. In addition to sorting by grain size across and along the streambed surface, gravel-beds tend to 
also exhibit vertical sorting, wherein the surface of the streambed is coarser than the underlying, subsur-
face, material (Parker and Sutherland, 1990). This leads to different transport phases, depending on the in-
tensity of the flow (Recking, 2010). 

Parker and Anderson (1977) expressed the sediment transport rate as a function of five dimensionless 
variables and derived the following relationship for equilibrium flow in an alluvial channel with a bed 
comprising non-cohesive sediment: 

C = f�X�1, X�2, Rep50, R, σ� (1) 

where 𝐶 denotes a dimensionless variable expressing the sediment transport rate, 𝑋�1 and 𝑋�2 are dimen-
sionless parameters closely tied to sediment transport, 𝜎 is the arithmetic standard deviation of the stream 
bed grain size distribution, 𝑅𝑒𝑝50 denotes an explicit particle Reynolds number, and 𝑅 is the submerged 
specific gravity of the sediment, which is usually 1.65 for the most common natural sediments in rivers, 
and consequently it is omitted. The usage of 𝜎 in sand-bed rivers can be redundant (Kitsikoudis et al., 
2014a) due to the surface grain size relative uniformity. After an extensive trial-and-error procedure, the 
𝑋�1 variable is replaced by Froude number, while for the 𝑋�2 variable, three dimensionless variables based 
on unit stream power 𝑉𝑆, stream power 𝜔, and shear stress 𝜏, which are highly correlated with sediment 
transport, will be tested in order to additionally facilitate a straightforward comparison of these variables, 
since the regression models will be trained on the same data. Yang (1973) made unit stream power di-
mensionless by dividing the product 𝑉𝑆 to fall velocity. However, for the gravel-bed streams, the dimen-
sionless variable used is the one shown in Eq. (5), because fall velocity calculation in poorly sorted grav-
el-bed can be further problematic. The variables employed are given in the following equations. 

particle Reynolds number: Rep50 = �Rgd50d50
v

 (2) 

Froude number: 𝐹𝑟 = 𝑉
�𝑔𝐷

 (3) 

dimensionless unit stream power = VS
ωs

 (4) 

dimensionless unit stream power utilized for gravel-bed rivers = 𝑉𝑆
�𝑔𝑑50

 (5) 

shear Reynolds number: Re* = U*d50
v

 (6) 

dimensionless stream power: ω* = ω

ρ�g�ρs ρ⁄ -1�d50�
3 2⁄  (7) 

dimensionless shear stress or Shields number: τ* = τ
g�ρs-ρ�d50

 (8) 

where, 𝑔 is the gravitational acceleration, 𝑑50 is the median grain diameter, 𝑣 is the water kinematic vis-
cosity, 𝑉 is the mean flow velocity, 𝐷 is the mean flow depth, the product 𝑉𝑆 denotes unit stream power, 
𝜔𝑠 is the particle fall velocity, 𝑈∗ = �𝑔𝑅ℎ𝑆 is the shear velocity, 𝑅ℎ is the hydraulic radius, 𝑆 is the ener-
gy slope, 𝜔 = 𝜏𝑉 is the stream power, 𝜌 is the water density, 𝜌𝑠 is the sediment density, and 𝜏 = 𝜌𝑈∗

2 is 
the shear stress. Table 1 shows the input combinations utilized for each case. 
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No threshold for the initiation of motion has been assigned to the input variables, since at flows of low 
intensity, the possibility of movement becomes very small but never equals zero due to turbulence fluctu-
ations (Lavelle and Mofjeld, 1987). As a result, there are no erroneous zero transport rate predictions. 

 
Table 1. Input combinations 
 Sand-bed rivers Gravel-bed rivers 
(a) Rep502/3, Fr, Re*, VS/ωs Rep50, σ, Fr, Re*, VS/(gd50)1/2 
(b) 
(c) 

Rep502/3, Fr, ω* 
Rep502/3, Fr, τ* 

Rep50, σ, Fr, ω* 
Rep50 σ, Fr, τ* 

3 MACHINE LEARNING 

The recorded observations of a system can be further analyzed in the search for the information they en-
code. Data mining aims at providing tools to facilitate the conversion of data into a number of forms, such 
as equations, which can provide a better understanding of the process generating or producing these data, 
and combined with the already available understanding of the physical processes result in improved pre-
dictive capability (Babovic, 2000). The data are usually divided into three sets. The training set trains the 
model on the basis of a minimization criterion, which is usually a sum of errors between the computed 
outputs and the actual measured data, and the validation set is used as a training stopping criterion to 
avoid overfitting to the data. The testing set is used to evaluate the generated model and assess its general-
ization capability. Since the scope of this paper is to exhibit the results of the machine learning implemen-
tation, and due to the space limitations, no theoretical information of the implemented techniques is pro-
vided herein. The methodology followed for the ANNs, ANFIS, and SR is described in Kitsikoudis et al. 
(2014a), along with the results for the bed-material load prediction in sand-bed rivers. The results for the 
bed load prediction in gravel-bed rivers are obtained from Kitsikoudis et al. (2014b). The SVR implemen-
tation supplied this study with additional results for comparison, and the methodology followed is pre-
sented analytically in Iliadis et al. (2011). In SVR the aim is to determine a function that has at most ε de-
viation from the actual measurements, and at the same time is as flat as possible. The optimal parameters 
for this SVR implementation are shown in Table 2, where C determines the trade-off between the flatness 
of the generated function and the tolerated deviations, and γ defines the point where the empiric error is 
related to complexity.     

 
Table 2. Optimal parameters for the SVR implementation 
  C γ ε    C γ ε 

Sand-bed rivers 
(a) 1240 0.11875 0.125  

Gravel-bed rivers 
(a) 2.8 2.8 0.075 

(b) 
(c) 

5 
260 

0.9 
0.625 

0.00625 
0.1625 

 (b) 
(c) 

1.6 
1.7 

9.2 
9.2 

0.1125 
0.11875 

4 APPLICATIONS AND RESULTS 

The employed data originate from reliable compilations, which have provided data for several compari-
son studies. Brownlie’s (1981a) compilation provided the bed-material load data for sand-bed rivers, 
while an extensive field campaign in mountainous streams in Idaho (King et al., 2004, Kitsikoudis and 
Hrissanthou, 2013; Kitsikoudis et al., 2014b) provided the data for the bed load study in gravel-bed rivers.  

The optimal machine learning model configuration is considered to be the one that generates the better 
results in the validation set. As a result, the testing set remains unused during the training process and the 
predictive capability of the considered model is consequently assessed. The generated results 𝑃𝑖 compared 
to the respective observed ones 𝑂𝑖 and to the mean observed value 𝑂� are evaluated on the basis of root 
mean square error (𝑅𝑀𝑆𝐸), 

RMSE = �∑ (Oi-Pi)2N
i=1

N
 (9) 

mean absolute error (𝑀𝐴𝐸), 

MAE = ∑ �Oi-Pi�N
i=1

N
 (10) 
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Table 3. Performance evaluation of machine learning for bed-material load prediction in sand-bed rivers, in terms of ppm  
  𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑀𝑁𝐸 

𝐶𝐸 
𝐷𝑅0.5−2 𝐷𝑅0.25−4 

  (ppm) (ppm) (%) (%) (%) 

Tr
ai

ni
ng

 se
t 

ANN(a) 391.11 212.54 44.05 0.787 85.99 98.46 
ANN(b) 413.32 219.36 48.07 0.762 81.77 96.74 
ANN(c) 418.75 228.82 50.66 0.756 81.57 96.74 
ANFIS(a) 426.94 229.84 49.15 0.746 82.15 97.70 
ANFIS(b) 401.31 222.57 48.79 0.776 82.34 97.50 
ANFIS(c) 413.08 222.60 51.37 0.762 81.19 97.50 
SR(a) 449.56 242.12 52.93 0.718 79.27 96.55 
SR(b) 460.93 246.94 53.90 0.704 78.89 96.55 
SR(c) 435.51 235.52 56.25 0.736 78.12 96.16 
SVR(a) 406.99 221.87 49.46 0.769 81.77 97.50 
SVR(b) 415.49 218.48 46.40 0.759 81.00 97.12 
SVR(c) 421.42 231.72 53.32 0.753 83.88 96.74 

V
al

id
at

io
n 

se
t 

ANN(a) 430.07 230.99 42.68 0.722 81.61 98.28 
ANN(b) 419.22 222.30 46.03 0.736 81.61 97.70 
ANN(c) 430.02 229.06 44.19 0.722 81.61 98.28 
ANFIS(a) 457.61 236.59 43.97 0.685 81.61 96.55 
ANFIS(b) 455.76 238.01 43.81 0.688 80.46 95.98 
ANFIS(c) 478.84 247.33 47.47 0.655 78.16 94.83 
SR(a) 477.26 251.95 48.20 0.657 77.01 94.25 
SR(b) 477.49 247.09 48.10 0.657 79.31 94.83 
SR(c) 493.99 258.03 50.33 0.633 78.16 94.25 
SVR(a) 468.61 244.40 44.64 0.670 83.91 97.13 
SVR(b) 445.72 225.83 43.08 0.701 79.89 95.40 
SVR(c) 470.21 242.67 44.74 0.668 83.91 96.55 

Te
st

in
g 

se
t 

ANN(a) 452.04 207.87 45.62 0.755 79.77 95.95 
ANN(b) 478.06 234.57 45.52 0.726 80.35 96.53 
ANN(c) 452.94 219.73 45.37 0.754 80.92 98.27 
ANFIS(a) 492.74 235.89 43.51 0.709 80.92 97.11 
ANFIS(b) 498.98 244.87 45.95 0.701 80.92 97.69 
ANFIS(c) 495.15 240.15 45.81 0.706 78.61 97.11 
SR(a) 515.04 250.63 49.24 0.682 78.03 97.69 
SR(b) 515.63 248.62 47.04 0.681 80.92 97.69 
SR(c) 506.36 248.32 48.58 0.693 77.46 96.53 
SVR(a) 494.78 240.61 47.40 0.706 80.35 96.53 
SVR(b) 
SVR(c) 

504.42 
495.45 

242.25 
239.54 

44.59 
47.73 

0.695 
0.706 

79.19 
76.88 

97.11 
97.11 

Ackers and White (1973) 
Brownlie (1981b) 
Engelund and Hansen (1967) 
Karim and Kennedy (1990) 
Molinas and Wu (2001) 
Yang (1973) 

720.56 
648.44 
637.96 
767.41 
726.47 
724.24 

359.40 
322.17 
336.12 
383.88 
387.76 
396.81 

51.02 
45.78 
57.43 
64.13 
68.80 
61.19 

0.381 
0.496 
0.522 
0.294 
0.367 
0.371 

57.56 
68.79 
67.07 
62.43 
58.38 
42.20 

90.12 
94.22 
91.62 
90.75 
91.33 
72.25 

 
mean normalized error (𝑀𝑁𝐸), 

𝑀𝑁𝐸 = 100
𝑁

∑ �𝑂𝑖−𝑃𝑖
𝑂𝑖

�𝑁
𝑖=1  (11) 

Nash and Sutcliffe (1970) coefficient of efficiency (𝐶𝐸), 

CE = 1- ∑ (Oi-Pi)2N
i=1

∑ (Oi-O�)2N
i=1

 (12) 

and discrepancy ratio (𝐷𝑅), which is the percentage of the calculated sediment transport rates that lie 
within one half (or a quarter, or a tenth) and two (or four, or ten) times the respective measured sediment 
transport rates. Additionally, models with simpler structure were preferred from complicated ones with  
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      (a) ANN for combination (a)                     (b) ANN for combination (b)                    (c) ANN for combination (c)          

 
     (d) ANFIS for combination (a)                  (e) ANFIS for combination (b)                  (f) ANFIS for combination (c)          

 
    (g) SR for combination (a)                         (h) SR for combination (b)                        (i) SR for combination (c)          

 
      (j) SVR for combination (a)                      (k) SVR for combination (b)                      (l) SVR for combination (c)          

Figure 1. Scatter plots of the measured versus the respective machine learning calculated bed-material load in sand-bed rivers, 
for the test set, in ppm. 
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Table 4. Performance evaluation of machine learning for bed load prediction in gravel-bed rivers, in terms of kg/s/m 
  𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑀𝑁𝐸 

𝐶𝐸 
𝐷𝑅0.5−2 𝐷𝑅0.25−4 𝐷𝑅0.1−10 

  (kg/s/m) (kg/s/m) (%) (%) (%) (%) 

Tr
ai

ni
ng

 se
t 

ANN(a) 0.0055 0.0021 80.74 0.840 67.47 92.53 98.53 
ANN(b) 0.0063 0.0023 79.60 0.793 64.00 92.80 98.53 
ANN(c) 0.0060 0.0022 81.61 0.812 67.47 92.00 98.40 
ANFIS(a) 0.0053 0.0020 57.79 0.855 75.60 96.53 99.73 
ANFIS(b) 0.0057 0.0021 60.77 0.833 73.20 95.60 99.73 
ANFIS(c) 0.0056 0.0020 68.64 0.835 70.27 94.13 99.33 
SR(a) 0.0097 0.0033 129.46 0.506 55.33 83.87 96.93 
SR(b) 0.0090 0.0034 173.99 0.578 45.87 77.07 93.73 
SR(c) 0.0094 0.0034 145.76 0.542 50.67 80.80 94.80 
SVR(a) 0.0062 0.0023 97.87 0.799 66.40 89.60 97.33 
SVR(b) 0.0065 0.0023 88.43 0.780 72.67 93.20 98.40 
SVR(c) 0.0062 0.0023 87.45 0.798 72.00 91.87 97.60 

V
al

id
at

io
n 

se
t 

ANN(a) 0.0066 0.0026 80.77 0.800 60.00 88.40 98.40 
ANN(b) 0.0068 0.0027 80.24 0.788 63.20 88.00 98.40 
ANN(c) 0.0067 0.0026 83.77 0.791 60.00 88.80 98.00 
ANFIS(a) 0.0063 0.0024 84.06 0.816 61.20 86.00 96.00 
ANFIS(b) 0.0064 0.0025 103.74 0.812 60.80 88.00 96.40 
ANFIS(c) 0.0065 0.0025 108.21 0.807 58.40 85.20 96.00 
SR(a) 0.0096 0.0033 113.26 0.569 52.40 80.00 97.20 
SR(b) 0.0089 0.0036 141.32 0.637 43.20 75.60 95.20 
SR(c) 0.0099 0.0037 154.18 0.548 46.40 78.00 94.80 
SVR(a) 0.0067 0.0024 79.34 0.792 67.60 92.40 98.00 
SVR(b) 0.0071 0.0025 71.28 0.768 72.00 92.40 99.20 
SVR(c) 0.0067 0.0025 75.18 0.794 72.40 92.40 99.20 

Te
st

in
g 

se
t 

ANN(a) 0.0067 0.0027 82.64 0.779 58.00 84.40 99.20 
ANN(b) 0.0068 0.0027 83.56 0.777 58.80 85.20 98.80 
ANN(c) 0.0068 0.0028 86.63 0.774 57.20 83.60 98.00 
ANFIS(a) 0.0068 0.0027 90.16 0.777 57.20 83.20 95.60 
ANFIS(b) 0.0068 0.0027 114.21 0.777 57.60 85.60 95.60 
ANFIS(c) 0.0070 0.0027 104.72 0.765 58.40 84.80 96.80 
SR(a) 0.0092 0.0035 120.50 0.594 50.00 80.80 96.40 
SR(b) 0.0098 0.0040 155.38 0.536 40.40 73.60 94.80 
SR(c) 0.0100 0.0040 149.40 0.511 45.20 77.60 93.60 
SVR(a) 0.0071 0.0028 93.41 0.756 59.60 84.40 97.60 
SVR(b) 
SVR(c) 

0.0071 
0.0072 

0.0028 
0.0028 

84.79 
111.01 

0.753 
0.747 

58.40 
58.00 

86.00 
85.60 

99.20 
97.60 

Bagnold (1980) 
Meyer-Peter and Mueller (1948) 
Parker (1979) 
Recking (2013) 
Schoklitsch (1962) 

0.0207 
0.0157 
4.276 

0.0223 
2.402 

0.008 
0.006 
1.334 

0.0098 
1.518 

234.9 
100 

275957 
965.48 
570802 

-1.084 
-0.195 
-88655 
-1.406 
-27979 

0 
0 

3.20 
27.60 

0 

0 
0 

5.60 
51.60 

0 

0.80 
0 

12.80 
76.00 

0 
 

similar or even slightly better performance, according to the principle of parsimony. Tables 3 and 4 show 
the results of the implementation of the aforementioned techniques in sand-bed and gravel-bed rivers, re-
spectively, for all the input combinations of Table 1, and the results obtained from some well-known sed-
iment transport functions for the test set data, from which can be inferred the superiority of machine 
learning. Figures 1 and 2 depict the scatter plots between the measured and the respective calculated bed-
material load in sand-bed rivers and bed load in gravel-bed rivers, respectively, for the test set data. All 
three input combinations provide relatively equally good results, depending on the regression scheme uti-
lized, despite the different physical meaning of these variables, namely the unit stream power, stream 
power, and shear stress. Finally, it can be seen that ANNs perform better than the other techniques in 
sand-bed rivers, while in gravel-bed rivers they produce similar results to ANFIS and SVR. SR generates 
the least good results.   
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      (a) ANN for combination (a)                     (b) ANN for combination (b)                    (c) ANN for combination (c)          

 
     (d) ANFIS for combination (a)                  (e) ANFIS for combination (b)                  (f) ANFIS for combination (c)          

 
    (g) SR for combination (a)                         (h) SR for combination (b)                        (i) SR for combination (c)          

 
      (j) SVR for combination (a)                      (k) SVR for combination (b)                      (l) SVR for combination (c)          

Figure 2. Scatter plots of the measured versus the respective machine learning calculated bed load in gravel-bed rivers, for the 
test set, in kg/s/m. 
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5 CONCLUSIONS 

This study demonstrated the potential of machine learning in the context of bed-material load and bed 
load prediction in sand-bed and gravel-bed rivers, respectively, based on several independent variables. 
Four techniques have been utilized, with ANNs providing the better results, followed closely by ANFIS 
and SVR, while SR provided the least good results. All these models performed significantly better than 
some of the commonly used sediment transport formulae. Three different input combinations were used, 
based mainly on unit stream power, stream power, and shear stress, and all of them provided similarly 
good results, thus highlighting the importance of the regression scheme. Finally, the data-driven models 
were able to predict sediment transport rates without the need to set a criterion for the initiation of sedi-
ment movement, hence avoiding erroneous zero transport predictions, a common problem of the bed load 
quantification in gravel-bed rivers.  
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