
 
1 INTRODUCTION 

The assessment of climate change impacts on future meteorological and/or hydrological regimes usually 
requires the downscaling of large-scale climate/weather predictors from GCMs  (Wilby et al., 1998, 
2002).  Depending on the GCM used, the  predictors are either available on the monthly or on the daily 
scale, where the use of the latter is of particular interest, when studying  impacts related to shorter-term 
behavior, e.g., storms and/or floods. However, the direct use of daily climate predictions from one GCM 
is usually not reliable enough to represent the full variability of the climate variable's time series, namely, 
its extreme behavior. Notwithstanding that daily climate predictors are available for some GCM-models, 
their reliability is considered lower than that of monthly GCM predictors. For this reason, downscaling of 
monthly predictor data may be more recommendable. However, the subsequent step to generate  daily se-
ries from such a  downscaled monthly climate series becomes then a tricky task (Wilks, 1998).   

In the present paper a novel or daily weather (climate) -generator (DWG) is presented which regener-
ates daily from monthly climate data, such that it will  render  changes in the daily sequencing of an ob-
served series, while still reflecting  the intra-month variability of  the observed climate event series in a 
statistically responsible manner (Maurer and Hidalgo, 2008). The basic technique used in this DWG is 
similar to spatial climate downscaling, where finer-scale variables are generated from larger-field data by 
following the data sample’s statistical properties.  With a DWG low-resolution climate projections can be  
rescaled to a broader spectrum of long-term predictions of daily climate and their  effects on the hydrolo-
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gy and the  water supply in a region be studied than  is  possible with a regular (monthly-scale) downscal-
ing approach (Wilson et al., 1992, Wilby et al., 1998; Bejranonda, 2014).  

Stochastic daily climate generation has been widely used in impact assessments, because of their ad-
vantage of easily generating multiple climate ensembles which are useful for statistical risk analysis 
(Wilby, 1994; Wilby et al., 2002). In this stochastic approach, also known as weather classification,  the 
major statistical attributes of the observed climate time series at a particular site are provided to replicate 
the persisting climate by multi-realizations of the local weather (Wilby, 1994; Wilks and Wilby, 1999). 

The  generation of  a  daily climate series is based on some conditioning of the climate properties and 
the weather states, i.e. the occurrence of   wet or dry conditions  (Katz, 1996; Semenov and Barrow, 1997; 
Wilks, 1998; 1999a;b). This approach war originally proposed by Richardson (1981) who used  a  first-
order Markov chain process to define the occurrences of wet and dry states, based on the distributions of 
the observed rainfall sequences. In addition, various theoretical statistical distributions, e.g. exponential, 
gamma, mixed-exponential and log-normal distributions, have further been applied to fit the observed 
precipitation distributions (Liu et al., 2011). Many daily weather generation models developed over the 
last few decades, e.g. WGEN (Richardson, 1981), SIMMETEO (Geng, 1988), WXGEN (Hayhoe and 
Stewart, 1996; Hayhoe, 2000), MARKSIM (Jones and Thornton, 2000) and MODAWEC (Liu et al., 
2009) are based on these few fundamental concepts.  

All of the  above mentioned  daily weather generators  are fundamentally  based on “single-site” 
weather which is not practical for  assessing climate at the regional scale. Thus, extensions of this single-
site climate generation by means of an integration of the spatial correlation pattern (Cliff and Ord, 1981; 
Hubert et al., 1981; Upton, 1985)  of the distributions of climate data at different locations have been pro-
posed (e.g. Wilson et al., 1992; Hughes and Guttorp, 1994; Charles et al., 1999; Wilks, 1998; 1999a; 
Wilby et al., 2003; Brissette et al., 2007; Khalili et al., 2007; 2009). Such a multi-site DWG will also be 
developed in the present paper and applied to the study region.  

2 STUDY AREA AND DATA 

Thailand’s eastern seaboard (EST) industrial zone, located in the Chonburi and Rayong provinces in the 
eastern coastal zone of that country, has been promoted to become a major area for industrial and tourist 
development over the last two decades. Thus it is of no surprise that the concomitant increasing water 
demand has led to significant stress on the water resources in the EST in recent years (Bejranonda, 2014). 
This became particularly imminent during the multi-seasonal drought in year 2005, which brought the in-
dustrial production in the area partly to a hold. There is now sufficient evidence that the named extreme 
weather conditions of 2005 occurring in that part of Thailand are not a singularity, but might be another 
signal of recent ongoing climate change in that country as a whole. In fact, this situation is bound to be 
aggravated over the whole 21th -century, as indicated by the results of an analysis of downscaled GCM-
climate predictions of Bejranonda and Koch (2010) and Bejranonda (2014). 

Data used in the present  analysis and particularly for the calibration and validation of the DWG are 
records of daily maximum and minimum temperatures between 1971-2006 at four sites and of daily pre-
cipitation at 24 sites (see Fig.1).   
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Figure 1. Study area with locations of precipitation and temperature (meteorological) stations. 

3 DEVELOPMENT OF MULTI-SITE DAILY CLIMATE GENERATION 

3.1 General framework of the DWG-methodology  
Following the general outline of Fig. 2, the multi-site generation of daily precipitation and temperature 
from monthly observed or downscaled climate records is done such that first the precipitation is generated 
and, using this information, the temperatures are simulated.  For the precipitation generation the monthly 
frequencies of the rainfall occurrence, i.e. wet or dry days, and the rainfall amounts are estimated from the 
statistics of the observed data or from the monthly-downscaled predictor output. More specifically, for the 
precipitation, the sequences of rainfall occurrence (wet/dry) are firstly synthesized, after which the 
amount of daily rainfall on the wet days is generated.  The generated rainfall is then used in the simula-
tion of  the maximum and minimum temperature, as these depend on the wet/dry state conditions.  
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Figure 2. Schematic concept of the daily climate generator  developed in this study to reproduce daily values of  precipitation 

and temperature  between  1971-2000, wherefore the 1971-1985- time period is used for calibration of the generator. 

3.2 Multi-site daily climate generation  
The major idea behind the multi-site DWG is that, because of the very high temporal and spatial fluctua-
tions of climate variables, namely, the rainfall, its distribution  is very  distinct  at different site locations, 
especially, in large-scale watersheds (Wilks, 1998; Srikanthan and McMahon, 2001; Khalili et al., 2009). 
This means that by taking into account the spatial autocorrelation of the multi-site distributions of the rel-
evant climate variables at different sites, a more reliable outcome is achieved  (Cliff and Ord, 1981; Hu-
bert et al., 1981; Upton, 1985). Such a spatial autocorrelation is constructed under the concept of Tobler 
(1970) “Everything is related to everything else, but near things are more related than distant things”.  

The basics of the spatial autocorrelation approach which has been applied for  capturing patterns of 
climate for  generating multi-site weather (e.g. Brissette et al., 2007; Khalili et al., 2007; 2009), is an im-
portant spatial statistical parameter,  the so-called Moran’s ”, defined as  (Moran, 1950): 

I =
∑ (𝑥𝑖−𝑥̅)𝑛
𝑖=1 ∑ 𝜔𝑖𝑗(𝑥𝑗−𝑥̅)𝑛

𝑗=1 /∑ ∑ 𝜔𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 /𝑛

    (1) 

where 𝑥𝑖 is the observed value of climate variable 𝑥 (precipitation or temperature) at location 𝑖, 𝑥̅ is the 
average of the 𝑥𝑖 over 𝑛 locations, and ωij are the spatial weights, computed as the inverse of the squared 
distance dij between point i and j, wherefore ωij is normalized by the total sum of weights in a row 
∑ 𝑑𝑖𝑗𝑛
𝑗=1  , so that  the sum of every row equals  1 and for the diagonal member ωij = 0.  
In the stochastic approach, the generation of random numbers is particularly important, as they are 

used to define the distribution of the synthetic data. These spatially autocorrelated random numbers are 
generated by applying a spatial moving average process on a set of uniformly distributed random numbers 
in the form (Cliff and Ord, 1981; Cressie, 1993; Khalili et al., 2007): 
𝑉 = 𝛾 × W × 𝑢 + 𝑢 (2) 
where 𝑉 is a vector of size (𝑛, 1) of spatially autocorrelated random numbers of 𝑛 locations, 𝛾 is the mov-
ing average coefficient which is estimated as discussed in a subsequent section,  W is the n x n weight 
matrix, consisting of the weighting coefficients ωij above, and 𝑢 is a n x 1 vector of n  independent and 
uniformly distributed random numbers in the range [0, 1]. The range of the 𝛾 -coefficient is defined by the 
eigenvalues of the weight matrix (Khalili et al., 2007), i.e. lies between −1/𝑊𝑚𝑎𝑥  and 1/𝑊𝑚𝑎𝑥 , with 
𝑊𝑚𝑎𝑥 and 𝑊𝑚𝑖𝑛 the largest positive and negative eigenvalue, respectively. 

As the generated autocorrelated numbers 𝑉 in Eq. (2) may not be any longer uniformly distributed,    
the empirical cumulative distribution function (ECDF) is used to convert these back into the [0, 1] range: 

𝑉𝑛𝑘,𝑖,𝑑,𝑟𝑙𝑧.𝑢 = F𝑛𝑚𝑙𝑘 (𝑉𝑖,𝑑,𝑟𝑙𝑧.𝑢) = 𝑁(𝑉𝑟𝑙𝑧.𝑢=1…1000[𝑘])  ∈   [0. .1) (3) 
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where 𝑁() is the normalized function of the autocorrelated random numbers 𝑉, based on the empirical 
distribution of 1000 realizations of 𝑉𝑟𝑙𝑧.𝑢=1…1000 at station 𝑘. Consequently, the function F𝑛𝑚𝑙𝑘  is driven 
by the spatially autocorrelated random numbers 𝑉𝑖,𝑑,𝑟𝑙𝑧.𝑢 to provide normalized values 𝑉𝑛𝑘,𝑖,𝑑,𝑟𝑙𝑧.𝑢 for  
month 𝑖 on day 𝑑 of realization 𝑟𝑙𝑧. 𝑢 at site 𝑘 which all lie in the [0,1] range which, after reversing the 
standardization,  are used to generate  the amount of precipitation and the temperature values  at station 𝑘.  

3.3 Generation of precipitation occurrence 
While the general multi-site procedures outlined above apply for both the generation of the daily precipi-
tation amount and the temperature, for the former the occurrence of the wet/dry conditions must be de-
fined first, as, obviously, rainfall can only occur on a wet day.  Among the various approaches used in the 
scientific literature for the  generation of  daily rainfall occurrence, the chain-dependent technique, which 
is based  on a first-order, two-state Markov process,  has most frequently been applied  (e.g. Todorovic 
and Woolhiser, 1975; Katz, 1977; Waymire and Gupta, 1981; Stern and Coe, 1984; Katz and Parlange, 
1995; Qian et al., 2002) . In this two-state Markov model wet or dry days are classified, depending  on the 
amount of rainfall for that day, i.e. if the latter is greater than 0.1 mm/day, the day is defined as a wet day, 
and vice versa. The series of rainfall occurrence on day 𝑡 at site 𝑘 is then  defined as (Qian et al., 2002): 

𝑋𝑡(𝑘) = �0  |  𝑑𝑟𝑦 𝑑𝑎𝑦
1  |  𝑤𝑒𝑡 𝑑𝑎𝑦 (4) 

The next step in the Markov process consists in the definition of the transition probabilities 𝑝01 and 
𝑝11between two consecutive days, defined as (Corte-Real et al., 1998; Qian et al., 2002): 

𝑝01(𝑘) = 𝑃𝑟[𝑋𝑡(𝑘) = 1, | 𝑋𝑡−1(𝑘) = 0];    𝑝11(𝑘) = 𝑃𝑟[𝑋𝑡(𝑘) = 1, | 𝑋𝑡−1(𝑘) = 1] (5) 
i.e.  𝑝01 and 𝑝11 are the probabilities of a wet-day occurrence, when the previous day has been dry or wet, 
respectively. These probabilities are determined from the observed empirical probabilities  (relative fre-
quency)  𝑃𝑤𝑖(𝑘) of  the countable wet days for a particular month 𝑖  through 

𝑝01(𝑘) =  𝑓𝑝01(𝑃𝑤𝑖(𝑘) );     𝑝11(𝑘) =  𝑓𝑝11(𝑃𝑤𝑖(𝑘) ) (6) 

The functions  𝑓𝑝01() and 𝑓𝑝11() in Eq. (7) are polynomial functions determined from a regression of the 
observed 𝑝01 and 𝑝11  over  the observed 𝑃𝑤𝑖(𝑘). Fig. 3 exhibits these polynomial functions for three 
rainfall stations 48092 for months September and December which are the months of lowest and highest 
precipitation in the study region, respectively, using the observed rainfall data between years 1971-2006. 

3.4 Generation of precipitation amount 
Once a wet day d has been synthetized, as outlined above, the precipitation amount for that day 𝑅𝑖,𝑑,𝑟𝑙𝑧(𝑘) 
is generated by inverting the ECDF of the vector of the normalized spatially autocorrelated random num-
bers  𝑉𝑛𝑖,𝑑,𝑟𝑙𝑧.u ( Eq. 3) - after fitted  by an exponential cumulative distribution function (Efit)  (Khalili et 
al., 2007) -  and scaled appropriately -  to ensure the conservation of the monthly precipitation amount -  
by 𝑅𝑚𝑒𝑎𝑛𝑘,𝑖 the mean monthly rainfall at station 𝑘 of month 𝑖 and 𝐷𝑤𝑒𝑡𝑘,𝑖,𝑟𝑙𝑧 , the  corresponding cumu-
lative number of wet days, obtained  from the precipitation occurrence generation. This results in  

𝑅𝑖,𝑑,𝑟𝑙𝑧(𝑘) = − 𝑙𝑛�1 − 𝐸𝑓𝑖𝑡(𝑉𝑛𝑖,𝑑,𝑟𝑙𝑧.u[𝑘])� ∙ 𝑅𝑚𝑒𝑎𝑛𝑘,𝑖 / 𝐷𝑤𝑒𝑡𝑘,𝑖,𝑟𝑙𝑧 (7) 

By using the spatially autocorrelated random numbers of Eq.(3), the synthetic precipitation is  generated 
for 30 realizations (𝑟𝑙𝑧=1,..,30), to produce an statistical meaningful  ensemble set of the precipitation. 
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Figure 3. Regressions of  transition probabilities p01 and p11  (abbreviated as pc on the vertical axis) on the average probability 

of a wet day (%wet) for rainfall station 48092 for months  September and December  for all years between 1971-
2006.  

3.5 Estimation of the moving average parameter from empirical Mohran’s  I. 
In order to condition the generated multi-site rainfall on the observed/predictor data, the moving average 
coefficient 𝛾 in Eq. (2) must be appropriately selected.  This is achieved by producing 30 realizations of 
Eq. (2) with different 𝛾,  i.e. 30  rainfall generations (Eq. 7) are done for each month i=1,..,12 of the year, 
from which Moran’s I  (Eq.1) is derived. The tuples (𝛾, I) define a function 𝛾 = 𝑓𝑖(𝐼)  which is  deter-
mined by linear or polynomial regression, as shown in Fig. 4 for the months September and December. 

 
Figure 4. Relationship between Moran’s I of 24-sites daily precipitation and moving average coefficients in September and 

December  for years 1971-2006 fitted with polynomial regressions. 

The average Moran’s I of a specific day d in month i is then calculated from the 36-year-long, 366-day 
Moran’s I series over the observed validation period, to define the Moran’s I for that day of the month 
which, employing the associated monthly regression function 𝜸 = 𝒇𝒊(𝑰), is then used to compute the ap-
propriate  moving average coefficient for the final precipitation generation. Fig. 5 shows the empirical 
daily Moran’s I for the 1971-2006 rainfall data over the EST and their 36-year averaged values. 

 
Figure 5.  Observed daily Moran’s I of 24 stations rainfall for the 36 years between  1971-2006 and the 36-year averaged  

value. 
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3.6 Generation of the maximum and minimum temperatures 
The stochastic multi-site generation of the daily maximum (Tmax) and minimum (Tmin) temperature fol-
lows pretty much the procedures for the precipitation generation discussed in the previous section.  A 
noteworthy difference is that, in agreement with other studies  (e.g. Qian et al., 2002; Khalili et al., 2009; 
Liu et al., 2009),  the  two temperatures  𝑇𝑖,𝑑,𝑟𝑙𝑧[𝑘]  are synthesized  by the normal distribution N(μ, σ2)  

𝑇𝑖,𝑑,𝑟𝑙𝑧[𝑘] = 𝑓𝑛𝑜𝑟𝑚�𝑧𝑘,𝑖,𝑑,𝑟𝑙𝑧 ,𝜇𝑘,𝑖,𝜎𝑘,𝑖�  =  𝜇𝑘,𝑖 + 𝑧𝑘,𝑖,𝑑,𝑟𝑙𝑧 ∗ 𝜎𝑘,𝑖 (8) 

where z ∈ N(0, 1) is a standardized normal random variable, and μ and σ are the empirical means and 
standard deviations of the corresponding data and are determined by linear regressions with the data itself 
(see Bejranonda, 2014).  Moreover, since  both  daily Tmax and Tmin  depend on whether the day is wet or 
dry (e.g.  Richardson,  1981;  Qian et al., 2002; Wilks, 2006;  Khalili et al., 2009; Liu et al., 2009),  Eq. 
(8) is applied separately for  wet and  dry conditions.  To generate multi-realizations of  𝑓𝑛𝑜𝑟𝑚, z is drawn 
from the quantile function, z=𝑄(𝑝) = 𝐹−1(𝑝) , with F(x) the normal distribution function,  for a given 
probability p, defined by the normalized spatially autocorrelated random numbers, as discussed ealier.  

4 RESULTS AND DISCUSSION 

4.1 Validation of daily climate generation 
The multi-site DWG has been programmed in the R®   environment. Validation of the DWG model is car-
ried out over the observed data period 1971-2000 in the EST study region. More specifically,  the time 
period  1971-1985 is used for calibration, and the period 1986-2000 for verification. 

Results of this exercise, using 30 realizations, are shown in the three scatterplots of Fig. 6 of the simu-
lated over the observed monthly rainfall and the two temperatures Tmax and Tmin. As expected, the stochas-
tic generation of the rainfall is more scattered than that of  Tmax and Tmin . Also, similar to results  of  Liu et 
al. (2011), the Markov-chain based generated rainfall appears  to be slightly underestimated here. 

 
Figure 6. Scatterplots of observed and simulated monthly average rainfall maximum and minimum temperatures at station 

48092 by separating data into calibration (1971-1985) and verification (1986-2000) periods of all 30 realizations. 

In Table 1  the residual errors for the 30-realization- average of the four predictors, as measured by the 
mean error (ME), the RMSE and the Nash-Sutcliffe (NS) coefficient, are listed.  One may notice that the 
visual results of  Fig. 6 are basically confirmed and,  in particular, that notwithstanding that the wet/dry-
day occurrence is no so well predicted, the rainfall amount is still regenerated at a high significance level. 

 
Table 1.  Residual errors, as measured by the ME, MSE,  and the NS of the multi-site generation of  monthly wet day and 

rainfall amount for the calibration period  1971-1985 and the verification period 1986-2000. 

Predictor 
Calibration: 1971-1985   Verification:  1986-2000 
 residual error 

NS 
 residual error 

NS 
ME RMSE   ME RMSE 

 Wet rate (% wet day) 0.36 3.32 0.71  0.70 2.89 0.80 
 Rainfall amount (mm/day) -0.15 0.24  0.99   0.19 0.34 0.99 

Tmax -0.04 0.07  0.99  0.20 0.24 0.95 

Tmin -0.01 0.08 0.99  0.08 0.21 0.99 
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4.2 Application  to downscaled GCM-predictors and comparison with other downscaling methods  
As discussed in the introduction, for climate prediction on a daily scale, there is the option to use either 
downscaled predictors from a GCM which provides daily predictors or to use downscaled GCM- monthly 
predictors and rescale the latter down to daily scale by means of a daily weather generator,  such as the 
one developed here.  Bejranonda (2014) has compared and applied various GCM/downscaling combina-
tions for the prediction of the 21th- century climate and its ensuing  impact on the water resources in the 
EST study region.  Here we restrict ourselves to a comparison of the present DWG with three other cli-
mate prediction methods, when applied to the past (1971-2000) observed climate data, which serves as 
the reference state for the future climate predictions, as they have been carried out by Bejranonda (2014).  

All four GCM/downscaling combinations are based on predictors of the ECHO-G GCM from the 
Hamburg MPI (Legutke and Voss, 1999), archived on the CMIP3- server (Meehl, 2007), and which come 
on a daily as well as on a monthly scale. More specifically,  SDSM (Wilby et al., 2002) and LARS-WG 
(Semenov and Barrow, 1997) statistical downscaling models are applied on the monthly predictors, 
whereas a new downscaling approach of Bejranonda (2014) that uses a multiple linear regression (MLR)- 
model, similar to a transfer model between atmospheric CGM predictands and observable climate predic-
tors,   is applied on daily data (MLR-daily) . These three approaches are then compared with a combina-
tion of the monthly GCM/MLR-downscaled predictors and the new climate generator (MLR+DWG).  

The daily maximum temperature frequency distributions (kernels) obtained with these four downscal-
ing models are exhibited in Fig.7. One may notice from the figure that neither the SDSM- nor the MLR-
daily model fit the observed Tmax – distribution well. The situation is clearly better for LARS-WG, and 
particularly good for the new MLR+DWG combination which definitely proves its usefulness in climate 
impact studies, as is further elaborated in Bejranonda (2014).  

 

 
Figure 7. Kernel density estimation of daily maximum temperature at station 48478 for years 1971-2000 using the various 

downscaling models as indicated (cross points) and the daily observation (dashed line). 
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