
 
1 THE TOOLBOX OPENFOAM  

The widely known CFD-toolbox “OpenFOAM” (Open Field Operation and Manipulation) is a well-
designed C++ library that allows the numerical simulation of various engineering applications. Through 
its object-orientated structure it is very flexible and can be adjusted to very specific problems. Since the 
code is open source, code analysis and manipulation are possible. In general, the library is designed for 
tackling complex physical problems, which can be described with the means of partial differential equa-
tions (PDEs). These PDEs are then discretized on the basis of the Finite-Volume-Method (FVM) in space 
and with a Finite-Differences-Scheme in time. With its specific data types for describing the PDEs and 
the usage of operator overloading, OpenFOAM allows formulating the equations in a way that resembles 
the mathematical formulation (Weller et al. 1998). Thus, operators like divergence, gradient or laplacian 
can be simply written as div1, grad and laplacian. A Message-Passing-Interface based parallelization con-
cept is embedded seamlessly which enables highly effective massive parallel computing. As the code is 
open source, parallel computing with OpenFOAM is limited by the hardware resources available and not 
by the number of licenses available. But, as the parallelization is based on a domain decomposition ap-
proach, the efficiency of parallelization is only given, if the problem size is large enough (Hinkelmann 
2003).The class based structure divides the software into the smallest possible units, where each is de-
signed for performing one specific task. Through the object orientated structure the maintenance of the 
code and development of extensions are generally made easier, as it is possible to add functionality at the 
outer layers of the code without the necessity to know everything about the inner layers of the libraries. 
Furthermore, code duplication is avoided, since all parts of the library can be used at multiple positions. 
With its ingenious concept for the discretization, which is described below, the software allows the usage 
of arbitrarily shaped cells in the mesh. The official version of OpenFOAM is distributed under the GNU 

1 Remark: All terms, adapted directly from the OpenFOAM code terminology are written in mono-
space font. 

The Multiphase Capabilities of the CFD Toolbox OpenFOAM for 
Hydraulic Engineering Applications 

L. Schulze & C. Thorenz 
Federal Waterways Engineering and Research Institute, Karlsruhe, Germany 
 

ABSTRACT: The widely known CFD-toolbox “OpenFOAM” is a well-designed C++ library that allows 
the numerical simulation of various engineering applications. Through its object-orientated structure and 
the open source code concept it is very flexible and can be adjusted to very specific problems. However, 
little documentation and the lack of a graphical user interface make the usage in the beginning more diffi-
cult than most commercial software. This contribution is aiming to show the functionalities and capabili-
ties of the toolbox for hydraulic engineering applications, including a short description of the meshing 
process, the numerics of the solver as well as a short overview of the applicability and the limitations of 
the solver “interFoam”, which is most commonly used in hydraulic engineering applications. Most infor-
mation described in the paper stems from years of experience with OpenFOAM at the Federal Waterways 
Engineering and Research Institute (BAW), where the tool is used to investigate complex questions con-
cerning waterway structures like locks, weirs, fish passages or the interaction between ship and waterway. 

Keywords: CFD, OpenFOAM, interFoam, Multiphase, Hydraulic engineering  

ICHE 2014, Hamburg - Lehfeldt & Kopmann (eds) - © 2014 Bundesanstalt für Wasserbau ISBN 978-3-939230-32-8

1007



license by ESI/OpenCFD (www.openfoam.org). Besides the official release some forks and adaptions are 
available. One noteworthy release is the community-driven distribution by the “extend-project”, which 
aims to “open the OpenFOAM CFD toolbox to community contributed extensions in the spirit of the 
Open Source development” (www.extend-project.de). Containing various valuable user-developed exten-
sions, it is widely used by many researchers. With the ongoing developments the differences between the 
two main release branches are growing, therefore switching between different versions is not recom-
mended. The following description refers to the official version 2.2.2. The programme package can be in-
stalled or compiled for most Linux distributions; versions for Mac OS are available. Running Open-
FOAM on Windows is possible but entails several restraints. For post-processing results of OpenFOAM 
simulations, the open source software ParaView or other common post-processing tools like Tecplot or 
Gnuplot can be used. With ParaView, even domain decomposed cases (that were calculated in parallel on 
several CPUs and are stored in separate directories for each domain), can be post-processed without re-
constructing the case. In contrary to most CFD programmes, OpenFOAM is not delivered with a graph-
ical user interface for performing the pre- and post-processing of the simulations. Settings and data are 
saved in ASCII text files, where the names of the files and folders have to correspond to a predefined 
structure. Simulation results are saved in folders named according to the time-step or iteration.  

2 FINITE VOLUME DISCRETISATION  

Since an analytical solution of the PDEs is rarely possible, the solution has to be approximated. For this, 
the FVM is used here. The discretization process can be divided into two parts: the geometric and the 
equation discretization.  

2.1 Geometric discretization 
For discretizing the space, the computational domain is divided into a finite number of volumes, where 
the solution is to be calculated. The amount of volumes (=computational cells) influences the calculation 
effort and is therefore limited by the available resources. With decreasing cell size, the accuracy of the re-
sults and the computational effort is increased. Therefore, it is necessary to choose the grid size very care-
fully.  

The mesh in OpenFOAM is specified through cells with an arbitrary number of faces, which are de-
fined by a number of vertices (points). For each face an owner and a neighbour cell is specified. In the in-
put data, lists of the points, faces and cells are stored either as plain text or as binary files. In an additional 
file, the boundary faces and their boundary specification are assigned. With this simple but effective con-
cept of saving the mesh data in combination with the applied numerical concept for equation discretiza-
tion, the computational cells can be of arbitrary shape, which is a big advantage for modelling complex 
geometries. The mesh should fulfil typical quality considerations: The cells should not overlap, the faces 
of the cells should be flat and neighbouring cells should fulfil orthogonality, i.e. the face normal vectors 
should be on the connection line between the centres of the neighbouring cells. Since OpenFOAM uses a 
collocated variable arrangement, all primary variables are stored at the cell-centres.  

2.2 Equation Discretization 
To solve the equations that describe the flow transport, a transformation from partial differential equation 
to linearized algebraic equation is to be performed. For a generic transport equation this can be done as 
follows (Jasak 1996). 

The generic transport equation for the field variable  𝜙 in integral form can be formulated as: 
𝜕𝜌𝜙
𝜕𝑡

+ ∇ ∙ (𝜌𝑈𝜙) − ∇ ∙ �𝜌Γ𝜙∇𝜙� =  𝑆𝜙(𝜙) (1.) 

All terms are integrated over the time step ranging from 𝑡 to  𝑡 + ∆𝑡 and the control volume 𝑣𝑝: 

∫ � 𝜕
𝜕𝑡 ∫ 𝜌𝜙𝑑𝑉𝑉𝑝

+ ∫ ∇ ∙ (𝜌𝑈𝜙)𝑑𝑉𝑉𝑝
− ∫ ∇ ∙ (𝑉𝑝

𝜌Γ𝜙∇𝜙)�𝑡+∆𝑡
𝑡 𝑑𝑡 = ∫ �∫ 𝑆(𝜙)𝑑𝑉)𝑉𝑝

�𝑡+∆𝑡
𝑡 𝑑𝑡 (2.) 

By using the Gauss theorem, volume integrals can be converted into surface integrals, which can then be 
written as sums over the regarded control volume: 

1008

http://www.extend-project.de/


∫ ��𝜕𝜌𝜙
𝜕𝑡
�
𝑃

+ ∑𝐹𝜙𝑓 − ∑(𝜌Γ𝜙)𝑓𝑺 ∙ (∇𝜙)𝑓�
𝑡+∆𝑡
𝑡 𝑑𝑡 = ∫ �𝑆𝑢𝑣𝑝 + 𝑆𝑝𝑉𝜙𝑃�𝑑𝑡

𝑡+∆𝑡
𝑡  (3.) 

𝜌 represents the density, U is the velocity field, through which the variable 𝜙 is transported through the 
domain, Γ describes the diffusion coefficient and 𝑆 includes all source terms. Index P denotes the mid-
point of the control volume, index f indicates the value at the surface of the control volume.  

The first term accounts for the temporal variation of the generic variable 𝜙, the second term describes 
the convective transport, the third term quantifies the diffusive transport and the right hand side in the 
equations specifies sources and sinks. The exact way of discretization is defined through the chosen dis-
cretization scheme. Since the discretization in OpenFOAM works on a “per operator basis”, different 
schemes (e.g. upwind or different TVD schemes are available) for each operator can be chosen during 
runtime. As described below, this choice has a large influence on the accuracy of the results and must 
therefore be handled with care.  

Apart from the choice of the spatial discretization schemes, the user has to define the temporal dis-
cretization method. OpenFOAM offers the choice between Euler implicit, Euler explicit or Crank-
Nicolson discretization. With the explicit discretization, all variables in the equation system stem from the 
previous time-step. With this approach, the result is of first order accuracy and the time step has to be lim-
ited strongly to ensure stability. In OpenFOAM, an automatic restriction based on the CFL-criterion is 
available. In contrast, the implicit method implies the usage of all variables from the next time-step, re-
sulting in a large linear system. The order of accuracy is also of first order, but the time-step restrictions 
are much less severe. For achieving second order accuracy, the discretization can be blended between the 
implicit and the explicit scheme. In standard literature an equally weighted blending between implicit and 
explicit calculation is labelled as Crank Nicolson Method (Ferziger und Perić 2002), however in Open-
FOAM the user can blend between a 50:50-weighting and the fully implicit method. That means, the en-
try ddtSchemes {default CrankNicolson 0;} refers to a fully implicit temporal discretiza-
tion, whereas ddtSchemes {default CrankNicolson 1;}implies the standard Crank Nicolson 
scheme with 50 % implicit and 50 % explicit discretization.  

The discretized equation results in a sparse matrix system with the form: [A] [𝜙] = [R], which can be 
solved using iterative solution techniques. The sparse matrix [A] contains all coefficients of the dependent 
variable, which are stored in the column vector [𝜙]. [R] holds all right-hand-side terms (Jasak 1996). For 
the solution of the sparse matrix system, OpenFOAM provides a library of several iterative, linear solv-
ers. This includes e.g. the “Conjugate Gradients” class of solvers (i.e. PCG, BiCG, BiCGStab) or, as state 
of the art, an “Algebraic Multigrid” solver (e.g. GAMG). For reducing the number of necessary iterations 
preconditioners of different type can be used. For more detailed information the interested reader is re-
ferred to standard references about linear solvers as Saad (2003). The choice of the matrix solver and the 
usage of preconditioners and smoothers has a significant influence on the calculation time, where the ap-
plicability of the solvers is mainly dependent on the matrix size. The results however should be compara-
ble, when the same residual sizes are set.  

3 MESHING 

The OpenFOAM toolbox includes a meshing toolbox that allows the generation and manipulation of 
structured and unstructured meshes. The meshing generation is performed with two main utilities: 
blockMesh and snappyHexMesh. blockMesh allows the generation of block structured, body-
fitted meshes. On the basis of coordinates, the boundaries of the domain are defined. In the further set-
tings, the names of the boundaries and the size of the cells can be specified. In general, all meshes are 
created in three dimensions. For a two-dimensional mesh, the mesh gets only one cell in the third dimen-
sion and the faces normal to the third dimension get a specific boundary condition (“empty”).  

With the snappyHexMesh utility the mesh can be adapted to complex external geometries. The 
mesh generation is based on a blockMesh grid and consists of three successive steps (see Figure 1): 

1009



Figure 1. Grid generation steps with the native OpenFOAM meshing tools: a) blockMesh grid, b) snappyHexMesh castellated, 
c) snappyHexMesh snapped, d) snappyHexMesh addLayers 

Castellated mesh generation: In the first step, the input mesh is locally refined according to the prede-
fined settings. Cells close to the surface of the external geometries and cells in predefined regions are re-
fined by orthogonal division of the block structured cells. Afterwards, all cells that overlap the external 
geometry are deleted from the mesh. This results in the so called castellated mesh.  

Snapping: In the second step, cells that are intersecting with the geometry surface are deformed such 
that the mesh fits the external geometry. This process is performed in an iterative manner to assure that 
the shape of the surface resembles the external geometry’s surface and fulfils the required mesh quality 
parameters. Cells on the inside are deformed, too, in order to avoid too distorted cells. 

Addition of boundary layers: The third step adds boundary layers to the mesh. This is done by first 
shrinking the existing mesh and then inserting stretched block structured cells at the surface of the exter-
nal geometry. These layers have the purpose of improving the modelling of boundary layer flow. If local 
head losses are dominating the flow and friction losses can be neglected, the creation of boundary layers 
can be avoided. As the creation of boundary layers in snappyHexMesh often results in a decreased 
mesh quality, the necessity of boundary layers is to be thought over before the simulation setup. 

The snappyHexMesh grid generation can be performed in parallel. This is advantageous, if large 
meshes are to be created. With OpenFOAM it is also possible to use meshes that are not created with the 
native tools. For the conversion of these meshes, several tools are available (e.g. fluentToFoam, 
starToFoam etc.). To the experience of the authors, the usage of externally created grids can be diffi-
cult, since they often do not fulfil the required quality standards of OpenFOAM. 

For hydraulic engineering applications like the modelling of stretched river parts it is often useful to 
create anisotropic cells which are stretched in the flow direction and small in vertical direction. For that 
the blockMesh can be created in an anisotropic manner. Yet this is not always advisable because this 
affects the complete basic grid. After the grid generation the quality of the mesh can be reviewed with the 
utility checkMesh. This tool generates statistics for the mesh (amount of points, cells, outer bounds etc.) 
and checks the quality of the cells. Thereby the following quality parameters are considered: orthogonali-
ty, skewness, cell aspect ratio. This check compares all cells with an optimal hexahedral cell, with an or-
thogonality of 1, no skewness and a cell aspect ratio of 1. If cells do not meet the cell quality criteria, pre-
defined in the meshQualityDict, the mesh check fails. It is recommendable to carefully examine the 
critical cells, since they can severely influence the stability and accuracy of the simulation results. Since 
OpenFOAM only offers restricted methods for the manipulation of single cells after the mesh generation, 
grids with severe quality restraints should be generated again. Bad quality cells mostly evolve in the range 
of complex external geometries as well as in the boundary layer region. Experience has proven that 
avoidance of boundary layers or addition of refinement regions in the bad mesh quality zones helps im-
proving the mesh quality. Since quality controls and layer settings in snappyHexMesh can only be set 
for the whole domain, it can sometimes be useful to generate multiple grids separately and combine them 
afterwards. For merging multiple meshes into one, the mergeMesh and stitchMesh utilities can be 
used. When a mesh is to be transformed, scaled or rotated, the tool transformPoints can be used. A 
more detailed description of the meshing process with OpenFOAM’s native utilities can be found in the 
paper of Gisen (2014). 

4 CASE SETUP 

After the meshing, solver settings, calculation settings and boundary conditions have to be defined. For 
that, a case must contain at least the following subfolders: 0, constant, system. In the 0 folder, files 
with the boundary and initial conditions of all primary variables are stored. The constant folder con-

    

1010



tains all constant parameters like gravity, surface tension and the mesh data. In the system folder, the 
chosen discretisation schemes, iterative solving methods and parameters that control the solution process 
like the time-step size or the maximum Courant number are defined. The system folder will be read 
during runtime, which means that a change of settings in this folder is immediately effective. Since ap-
propriate choice of boundary conditions and discretization schemes are crucial for a successful simulation 
setup, more details on these topics are given below.  

4.1 Boundary Conditions  
In OpenFOAM boundary conditions are defined per variable at each boundary patch. It is possible to de-
fine generic type boundary conditions like fixed values (Dirichlet) or fixed normal gradients (Neumann), 
additionally derived boundary condition types are available that combine several generic conditions with 
additional restrictions. It is necessary that the conditions for various variables at one patch match, so that 
the boundary conditions result in a physically sound combination.  

4.2 Discretization Scheme and Iterative Solvers 
In the fvSchemes file the user has to define, which discretization schemes are to be used. As explained 
before, the discretisation of the equation is based on a per operator basis. This means that one discretiza-
tion scheme can be chosen for each operator. With the choice of the schemes, stability and accuracy of 
the calculation are strongly influenced. Therefore a lot of effort should be put into the choice of the 
schemes. The chosen schemes in the official tutorials of the toolbox are mostly chosen such that the simu-
lation runs fast and stable (i.e. using upwind schemes) whereas for real world applications higher accura-
cy (higher order schemes) is needed in most cases.  

The fvSolution file specifies the iterative solvers and limiters that should be used for solving the 
PDE systems. The choice for the iterative solvers strongly affects the simulation time but only has small 
influence on the actual results, if the error tolerances of the different solvers are set to the same order. 

5 MULTIPHASE SOLVERS  

In OpenFOAM, multiple multiphase solvers are available. These are namely: 
- interFoam, LTSinterfoam InterDyMFoam: Solvers that are based on the Volume-of-Fluid Method 

(as explained below). These are useful for simulations, where a sharp and well defined interface 
between the fluid phases exists. 

- twoPhaseEulerFoam, multiphaseEulerFoam, multiphaseInterFoam: Solvers that are based on the 
Eulerian-Eulerian approach (for detailed information refer to Rusche, 2002).  

For hydraulic engineering applications the first three are of most relevance, whereas the last three are ra-
ther used for applications where small-scale flow regions (i.e. as in chemical engineering) are considered. 
In the following the interFoam solver is analysed in detail. The interFoam solver is made for simulating 
flow of two inmiscible fluids, which share an interface that is significantly larger than the cell size. The 
continuous fluid regions should contain a multitude of cells. In this approach, only one mass and one 
momentum conservation equation is solved for both fluids. For that, density and viscosity of both fluids 
are averaged according to the volume fractions in the cell. Mass and momentum transfer between the 
phases is neglected.  

5.1 Basic equations 
The Volume of Fluid (VoF) method is used for tracking the position and shape of the interface through 
solving an additional advection equation for the volume fraction in each cell. Together with the Navier-
Stokes equations this results in the following set of equations that has to be solved for each cell during 
each time step: 
𝛻 ∙ 𝑈 = 0 (4.)  
𝜕𝜌𝑈
𝜕𝑡

+ 𝛻 ∙ (𝜌𝑈𝑈) = −𝛻p−𝑟𝑔ℎ + [𝛻 ∙ (𝜇𝛻U) + 𝛻U ∙ 𝛻µ] + 𝜌 ∙ 𝑔 + ∫ 𝜎S 𝜅𝛿(𝑥 − 𝑥𝑠)𝑛𝑑S(𝑥𝑠) (5.)  

𝜕𝛼
𝜕𝑡

+ 𝛻 ∙ (𝑈𝛼) + 𝛻 ∙ (𝑈𝑟𝛼(1 − 𝛼)) = 0 (6.)  

1011



With 𝜌  = density; U = velocity; t = time; p−𝑟𝑔ℎ = 𝑝 − 𝜌𝑔 ∙ 𝑥 = modified pressure, obtained by subtrac-
tion of the hydrostatic pressure from the pressure; 𝑥 =special position vector ; µ= dynamic viscosity; g 
=gravity; S  = interface between the phases; 𝜎 = surface tension coefficient; 𝜅 = curvature of the surface; 
𝛿 = dirac delta; (𝑥 − 𝑥𝑠) = distance from the considered point to the surface; n = normal vector on the in-
terface; 𝛼 = volume fraction of the first phase (water); 𝑈𝑟 = compressive velocity counteracting numerical 
diffusion. The first equation accounts for the conservation of mass, the second represents the momentum 
conservation equation and the third describes the transport of the volume fraction 𝛼. For counteracting 
numerical diffusion in the VoF equation, an artificial compression velocity 𝑈𝑟 is introduced. This term 
creates a flux in the direction of the gradient of the volume fraction ∇𝛼, e. g. the smeared interface is arti-
ficially compressed. It only acts within the zone of the interface as it becomes 0 where 𝛼 = 0 or 𝛼 = 1.  

5.2 Discretization with appropriate schemes 
Since the numerical solution of advection equations tends to produce numerical diffusion and thereby 
smear discontinuities, a special solution technique for the VoF equation is available in OpenFOAM. To 
guarantee a bounded solution with sharp interface between the phases, the total variation dimishing 
scheme “interGamma” (Jasak 1996) is,used mostly in combination with the flux corrected transport ap-
proach “MULES” (MUltidimensional Limiter for Explicit Solutions) (Damian 2013). However, other ad-
vection schemes for the flux calculation can also be used. The experience of the authors showed that for 
free-surface hydraulic engineering simulations, the choice of the divergence schemes for the VoF equa-
tion has significant impact on the quality of the results. In particular, the usage of the Minmod scheme for 
the discretisation on the convection term div (alpha, phi) and the interfaceCompression 
for the artificial compression term div (alpha, phir) showed good results. For the discretization 
of the momentum transport div(U, rho) it is absolutely necessary to use discretization schemes of 
higher order, as first order upwind discretization smears the results. 

5.3 Pressure-velocity coupling 
For the mass and the momentum conservation equation incompressibility is assumed, therefore the densi-
ties of the phases do not change over time. The equations of the system are strongly coupled; therefore a 
special solution algorithm is needed. In the interFoam solver, a segregated approach is adopted for the 
pressure velocity coupling. For this, the PISO (Pressure Implicit Splitting of Operators (Issa 1986)) algo-
rithm is applied. To avoid the “checkerboarding” phenomena, an interpolation method “in the spirit of the 
Rhie Chow method” is used (Peng Kärrholm 2006). In particular, the complete solution procedure of the 
interFoam solver consists of the following steps (Damian 2013), when the standard PISO algorithm is set: 

1 Solve VoF equation on basis of the old velocity field from the previous time step. This gives new 
values for the volumetric phase fraction and the dependent density in each cell. 

2 Perform the momentum predictor step, where the new momentum is calculated on basis of the 
previous velocities which are interpolated as fluxes from the cell midpoints to the cell faces, the 
old pressure values and the new density distribution from step 1. 

3 The predicted (2.) or the old velocities from the previous timestep are used to set up a linear equa-
tion system for solving the new pressure values. 

4 The new pressure is calculated. 
5 In the last step the predicted velocities are corrected, so that continuity is fulfilled. 

The momentum predictor step (2.) is not mandatory, but it can reduce the calculation time in some cases. 
The last two steps are performed several times within one time-step; the number of cycles is user-defined 
and can be set in the fvSolution file for each case. The fact, that the volume fraction is solved on the 
basis of the old velocity field, results in a solution where the variables are “temporally staggered”. This 
could be avoided when an additional correction of the volume fraction variable would be performed after 
the PISO algorithm. Since the PISO algorithm is based on the assumption, that the time-step size is small 
(Co<1) (Jasak 2006), the temporal offset can be neglected. Alternatively, the SIMPLE or PIMPLE algo-
rithm can be selected instead. PIMPLE (in other software this is called SIMPISO) is an extension of the 
SIMPLE algorithm which performs only one momentum corrector step but applies a more detailed treat-
ment for the pressure gradient arising from non-orthogonality similar to the PISO algorithm (Aguerre et 
al. 2013). When the non-orthogonal correctors are set to unity, PIMPLE reduces to the PISO algorithm.  

1012



5.4 Boundary conditions for hydraulic engineering applications 
In the standard toolbox of OpenFOAM, the available generic boundary conditions are often not practical 
for hydraulic engineering investigations. Only with some workarounds it is possible to set a fixed water 
level or a specific water inflow condition, when simulating with the VoF-solver interFoam. This was the 
motivation to develop a set of boundary conditions for hydraulic engineering purposes. In particular, a 
boundary condition for a fixed water level (to be used primarily at the downstream side of a model) and 
one for a fixed flow rate of water independent from the water level (to be used at the upstream side) were 
developed amongst others at the Federal Institute for Waterway Engineering and Research. A more de-
tailed description of this code extension can be found in Thorenz und Strybny (2012). A release of the 
code to the public is planned in the near future.  

6 APPLICABILITY AND LIMITATIONS OF INTERFOAM 

As with every CFD simulation, the accuracy and credibility of the results is highly dependent on the grid 
resolution. With a too coarse grid important effects of the flow can get lost. For some aspects, models can 
be applied, which compensate the lost information. In hydraulic engineering turbulence and free-surface 
modelling is essential. Due to the programme structure of OpenFOAM, all available turbulence modelling 
approaches can be combined with almost every solver. OpenFOAM’s VoF-solver interFoam is a valuable 
tool for many hydraulic engineering investigations. Through the volume of fluid approach it is suitable, 
when the free surface between water and air is of interest. However, the user must be aware, that the in-
terface between the fluids can only be represented with a limited accuracy that is mainly dependent on the 
size of the cells. Bubbles or droplets, which are smaller than the control volumes, cannot be represented 
appropriately. Therefore, air entrainment or bubble transport and detrainment cannot be modelled in most 
hydraulic engineering simulations.  

For parallelization the mesh is divided into parts by domain decomposition, for which the computa-
tions can then be performed simultaneously. A 0-halo layer approach is used for the information ex-
change at the domain boundaries (Jasak 2006). When choosing the number of domains, it is necessary to 
consider, that the information exchange between the domains can be costly compared to the actual com-
putation time if the domains are chosen too small. An optimal number of cells per computation unit is 
amongst other things dependent on the hardware and has to be found via trial and error for every high per-
formance computer. At the BAW typically decompositions that result in a workload of 50 000 to 100 000 
cells per core are used for standard cases.  

In general, the computation time and the stability of the interFoam simulations are strongly dependent 
on the mesh size and quality, the chosen numerical schemes and matrix solvers. For simulations, where 
parts of the structure or the grid have to be moved during runtime, the interDyMFoam solver can be used. 
interDyMFoam solves the same set of equations as the interFoam solver but additionally includes all nec-
essary features for dynamic simulations. However, the setup of a case with moving parts is not trivial and 
there is hardly any official documentation available. 

7 CONCLUSIONS 

Most information described in this paper stems from years of experience with OpenFOAM at the BAW, 
where the tool is used to investigate complex questions concerning the flow in and around waterway 
structures like locks, weirs, fish passages or the interaction between ship and waterway. The included 
meshing tool and the solvers allow the modelling of complex systems, which can be post processed with 
tools like ParaView, Gnuplot or similar software. Due to the sophisticated structure of the library massive 
parallel computing is possible, which is almost only limited to the available hardware resources. The ex-
perience shows, that the above described interFoam solver is a suitable tool for typical hydraulic engi-
neering questions based on the investigation of water levels, velocities, pressures etc. The named solver is 
capable of simulating turbulent two-phase flow, with long, stretched water-air interfaces.  

The quality of the results is mainly dependent on the grid quality and the chosen discretization 
schemes. In comparison to many commercial CFD software packages OpenFOAM is very sensitive con-
cerning the grid quality; it is therefore advisable to put effort into the grid generation. Further, the user 
should be aware, that the chosen discretization schemes have a great influence on the stability of the cal-
culation and the quality of the results. As usual in numerical simulations, the definition of the domain ex-

1013



tent, the definition of the boundary condition as well as the adjustment of all other settings is also crucial 
for getting plausible results.  

As only little user-friendly documentation and no graphical user interface exist, the start with Open-
FOAM might be not as easy as with commercial CFD software. However, once the concept of setting up 
cases is understood, the handling of the OpenFOAM is not more costly than other CFD tools. Further, the 
open code concept allows the introduction of new boundary conditions and the adaption of the code.  

REFERENCES 

Aguerre, H. J.; Damián, S. M.; Gimenez, J. M.; Nigro, N. M. (2013): Modelling of compressible fluid problems with Open-
FOAM using dynamic mesh technology XXXII, pp. 995–1011. Available online at 
http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/4404/, checked on 5/29/2014 

Damian, S. M. (2013): An Extended Mixture Model for the Simultaneous Treatment of Short and Long Scale Interfaces. Doc-
toral Thesis. Universidad Nacional del Litoral, Santa Fe, Argentinia. Facultad de Ingeneria y Ciencias Hidricas. Available 
online at https://docs.google.com/file/d/0B2lpdhG-Zh05Y0ZzOHVLb3lGekk/edit?pli=1, checked on 5/22/2014. 

Ferziger, J. H.; Perić, M. (2002): Computational methods for fluid dynamics. 3rd, rev. ed. Berlin, New York: Springer. 
Gisen, D. (2014): Generation of a 3D mesh using snappyHexMesh featuring anisotropic refinement and near-wall layers for 

hydro power dam tailwater. In: Proceedings of the 11th International Conference on Hydroscience & Engineering (ICHE) 
2014. Hamburg. 

Hinkelmann, R.-P. (2003): Efficient Numerical Methods and Information-Processing Techniques in Environment Water. Ha-
bilitation. University of Stuttgart, Stuttgart. Institute of Hydraulic Engineering.  

Issa, R.I (1986): Solution of the implicitly discretised fluid flow equations by operator-splitting. In Journal of Computational 
Physics 62 (1), pp. 40–65. DOI: 10.1016/0021-9991(86)90099-9. 

Jasak, H. (1996): Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Doctoral 
Thesis. Imperial College of Science, Technology and Medicine, London, Great Britain. Department of Mechanical Engi-
neering. Available online at http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/docs/HrvojeJasakPhD.pdf, checked on 
5/22/2014. 

Jasak, H. (2006): Numerical Solution Algorithms for Compressible Flows. Lecture Notes. Zagreb. 
Peng Kärrholm, F. (2006): Rhie-Chow interpolation in OpenFOAM. Chalmers University of Technology. Available online at 

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/rhiechow.pdf, checked on 5/22/2014. 
Rusche, H. (2002): Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Doctoral Thesis. Impe-

rial College of Science, Technology and Medicine, London, Great Britain. Department of Mechanical Engineering. Availa-
ble online at http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/docs/HenrikRuschePhD2002.pdf, checked on 5/22/2014. 

Saad, Y. (2003): Iterative methods for sparse linear systems. 2nd ed. Philadelphia: SIAM. 
Thorenz, C.; Strybny, J. (2012): On the numerical modelling of filling-emptying systems for locks. In. Hinkelmann R.-P, Li-

ong, Y. Savic, D., Nasermoaddeli, M., Daemrich, K.-F., Fröhle, P., Jacob, D. (Eds.): Proceedings, 10th International Con-
ference on Hydroinformatics HIC 2012. International Conference on Hydroinformatics. Hamburg, July 14-18 2012. Ham-
burg: TuTech Innovation. 

Weller, H. G.; Jasak, H.; Fureby, C. (1998): A tensorial approach to computational continuum mechanics using object-oriented 
techniques. In Journal of Computational Physics 12 (6), pp. 620–631. Available online at 
http://www.foamcfd.org/Nabla/main/PDFdocs/CompInPhys98.pdf, checked on 5/22/2014. 

 

1014


	Mini-Symposium: CFD in the Nearfield of Structures
	The Multiphase Capabilities of the CFD Toolbox OpenFOAM for
Hydraulic Engineering Applications
	1 The toolbox OpenFoam
	2 Finite Volume Discretisation
	2.1 Geometric discretization
	2.2 Equation Discretization

	3 Meshing
	4 Case setup
	4.1 Boundary Conditions
	4.2 Discretization Scheme and Iterative Solvers

	5 Multiphase solvers
	5.1 Basic equations
	5.2 Discretization with appropriate schemes
	5.3 Pressure-velocity coupling
	5.4 Boundary conditions for hydraulic engineering applications

	6 Applicability and limitations of interFoam
	7 Conclusions





