
 
1 INTRODUCTION  

The majority of natural open channel flows are 
fully developed turbulent flows over rough beds. 
In the vicinity of a rough bed, flow is always 
spatially heterogeneous, so it is difficult to 
interpret experimental results because they depend 
on the position of the observation point. This 
difficulty can be overcome by sampling data from 
a large number of points (sufficient to provide 
statistically representative sample) and by 
subsequently interpreting the data using the 
double-averaging methodology.  

The double-averaging methodology is based on 
averaging fundamental equations twice, once in 
time (or over an ensemble) and once in space. The 
theory of spatial averaging was first developed for 
general conservation equations in multiphase sys-
tems in porous media flows (Whitaker 1967, 
Whitaker 1973, Gray 1975, Hassanizadeh and 
Gray 1979 etc.). The idea of applying spatial av-

eraging to time-averaged flow equations was 
gradually developed through the contributions of 
Smith and McLean (1977), Wilson and Shaw 
(1977), Raupach and Shaw (1982), Finnigan 
(1985), Raupach et al. (1991), Wang and Tackle 
(1994), Gimenez-Curto and Corniero Lera (1996), 
etc. Application of the double-averaging method-
ology to open channel flows over rough surfaces 
began only recently (Nikora et al. 2001, 2007).  

For fixed bed geometry, either order of 
averaging steps (i.e. first time, then space and first 
space, then time) produces identical results. In 
order to prove this, Pedras, de Lemos (2001) 
proposed the double decomposition of flow 
velocity, which results in splitting both mean 
velocity and turbulent velocity fluctuation, into 
spatial average and spatial perturbation 
(disturbance), producing, altogether, four velocity 
components.  

By using the double decomposition of 
instantaneous flow velocity at a point, it is 
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possible to decompose double-averaged 
momentum flux into four components. One of 
them is the momentum flux that remains resolved 
at large scale, whereas other three components can 
be interpreted as apparent stress terms. Two of 
these stress terms are defined in terms of turbulent 
velocity fluctuations: one contains their spatial 
averages and another one contains their spatial 
disturbances. It can be shown that adding these 
two components yields spatially-averaged 
turbulent stress. Pokrajac et al. (2008) termed 
them “large-scale” and “small-scale” ‘small-scale’ 
component of the spatially averaged turbulent 
stress, and presented the first literature data on 
experimental values of these stress components. 

This paper presents further analysis of large-
scale and small-scale turbulent velocity 
fluctuations and associated stress terms, based on 
laboratory experimental data on open channel 
flows over rough beds. Section 2 gives the 
definitions of the main concepts including double-
decomposition of flow velocity and the resulting 
terms composing large-scale momentum flux. 
Section 3 presents a brief overview of the 
experimental procedures. Results and discussion 
are presented in Section 4. Besides conventional 
velocity profiles the results contain the profiles of 
large-scale and small-scale shear stress, as well as 
the quadrant analysis applied separately to large-
scale and small-scale velocity fluctuations. These 
results provide insight into large-scale and small-
scale turbulence in rough wall boundary layers, 
which are summarized in Section 5. 

2 COMPONENTS OF THE SPATIALLY 
AVERAGED TURBULENT STRESS  

Only uniform (in spatially-averaged properties) 
flows are considered. Time-averaging is per-
formed over a very long time, while space-
averaging is performed over a volume of fluid 
which is sufficiently large to capture representa-
tive samples of flow variables, and sufficiently 
small to be unaffected by large-scale heterogenei-
ties. Spatial and temporal averages are denoted 
with square brackets and straight over-bar, respec-
tively, while deviations from the spatial and tem-
poral average are denoted with the wavy over-bar 
and prime, respectively. 

A right-handed coordinate system is used 
throughout the paper, with (x,y,z) and (u,v,w) the 
streamwise, spanwise and bed-normal coordinates 
and corresponding velocity components, respec-
tively. For simplicity only u and w velocities, and 
the associated component of turbulent shear stress 
are considered. Analogous analysis can be done 
with u versus v and v versus w.  

 

2.1 Double-decomposition of instantaneous 
velocity  

Primary decomposition of any flow variable, for 
instance streamwise velocity, is defined as 

,u u u′= +  (1) 

based on time averaging, and 

,u u u= +  (2) 

based on spatial averaging. 
Each of the primary components is subse-

quently decomposed once more. Expressing the 
r.h.s. of (1) in terms of spatial averages yields 

u u u u u

u u

′ ′= + + +

′

. (3) 

Alternatively, the r.h.s. of (2) is expressed using 
time averages as 

u u u u u
uu

′ ′= + + +  (4) 

Pedras and de Lemos (2001) showed that all aver-
aging and the deviation operators commute, e.g. 

, , ,u u u u u u ′′= = =  

so it is easily established that the right hand side 
terms of (3) and (4) are identical. These terms rep-
resent components of instantaneous velocity at a 
point. In order of appearance on the r.h.s. of (3) 
these components are: the double-averaged veloc-
ity, the spatial perturbation in time-averaged ve-
locity, spatially averaged velocity fluctuation and 
the spatial disturbance in velocity fluctuation.  

2.2 Momentum flux terms resulting from two 
averaging steps 

Momentum flux term in the Navier-Stokes equa-
tion contains products of velocity components. 
According to the well-known rule of product, each 
averaging step applied to this term produces an 
additional term. In case of averaging first in time 
and then in space this yields : 

u w u w u w

u w u w u w u w

u w u w

′ ′= + =

′ ′ ′ ′= + + +

′ ′

 (5) 

where the second term of the middle equation had 
time and spatial averaging operators swapped be-
fore it was decomposed. It is easy to show that the 
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result on the right hand side can also be obtained 
with the reverse order of averaging steps, i.e. first 
in space and then in time.  

 

 
Figure 1. A matrix of terms appearing in temporal and spa-
tial averaging.  

Both procedures (i.e. time/space and 
space/time averaging) are summarised in Figure 1. 
The bottom left cell contains the starting point, 
namely instantaneous momentum flux at a point, 
uw. Temporal averaging is performed along the 
columns, from the bottom up and is denoted with 
an upwards pointing arrow with an overbar. It al-
ways produces two terms: the average of the 
product of fluctuations (i.e. turbulent stress term) 
and the product of time averages. Spatial-
averaging is performed from left to right along the 
rows and is denoted with a horizontal arrow below 
square brackets. It produces the average of the 
product of spatial deviations (i.e. in LES termi-
nology sub-grid stress), and the product of the 
spatial averages. The results of a single averaging 
step are shown in the left column for time averag-
ing and the bottom row for spatial averaging. 
Each of these terms is then subsequently averaged 
once more to produce two components. Either 
way, the two averaging steps produce the four 
terms in the grey cells of Figure 1. Among them 
the term in the top right cell (dark grey) contains 
the double-averaged velocities so it represents re-
solved momentum flux (at large scale), whereas 
the sum of the other three terms (light grey cells), 
can be considered apparent stress term, i.e.  

app u w u w u w
τ

ρ
′ ′ ′ ′= − − − . (6) 

The first two terms on the r.h.s. of (6) are the 
large-scale and the small-scale turbulent stress, re-
spectively. As indicated in Figure 1, added to-
gether they yield the spatially-averaged turbulent 
stress (the top cell in Figure 1).  The third term on 
the r.h.s. of (6) is the form-induced stress. Adding 
this term to the small-scale turbulent stress results 
in time-averaged sub-grid stress (shown in the 
right hand side cell in Figure 1). The form-
induced stress has so far received a reasonable at-
tention in the literature. In contrast, other two 

terms, i.e. the large-scale and small-scale compo-
nents of the spatially-averaged turbulent stress 
have been almost completely neglected so far. The 
remaining part of the paper explores these compo-
nents using experimental data on shallow open 
channel flows over rough beds.  

3 EXPERIMENTAL METHODOLOGY  

In the following text we provide a brief summary 
of the methodology and procedures used for the 
experiments presented in this paper. A more de-
tailed description can be found in Pokrajac et al. 
(2008) and Manes et al. (2007). 

The experiments were conducted in a tilting 
hydraulic flume which is 11m long and has a 
straight rectangular, 0.4m wide cross section. At 
the downstream end of the flume the flow is con-
trolled by means of six vertical vanes which can 
be rotated about their vertical axis to constrict the 
flow until it reaches uniformity. For each experi-
ment flow uniformity was checked by measuring 
the flow depth at different locations with a 
Vernier calliper. The entire flume bed was cov-
ered with two types of roughness elements: i) two-
dimensional square bars of size k=6.4mm and ii) 
12mm-diameter glass marbles.  

Square bars were positioned in the flume with a 
spacing of kkk 15,5,3=λ , where λ is centre-to-
centre distance between the bars. This is ex-
pressed as a dimensionless variable L=λ/k = 
3,5,15. According to Perry et al. (1969), these bar 
spacings correspond to “d-type”, “transitional” 
and “k-type” roughness, respectively. Alterna-
tively, according to Morris (1955) these spacings 
produce “skimming”, “transitional”, and “isolated 
obstacles” flow, respectively. 

Glass marbles were placed in the flume to form 
one layer of spheres packed in a cubic pattern.  

For both bed configurations flow velocities 
were measured by means of Particle Image Ve-
locimetry (PIV). Hollow glass spheres with a 
mean diameter of 15 μm were used as the seeding 
material. A Nd-Yag laser with pulse energy 300 
mJ was used as a light source to illuminate verti-
cal planes positioned along the longitudinal cen-
treline of the flume. PIV images were then cap-
tured with a digital camera synchronized with the 
laser and focused on a flow region covering at 
least one roughness wavelength in length and the 
whole flow depth in height. The images were then 
processed to work out the velocity field. The PIV 
set-up used for the experiments allowed to meas-
ure bed parallel and bed-normal velocities, i.e. u 
and w, with the sampling frequency of roughly 
13Hz. The sampling volume for each velocity 
vector was defined by a 32×32 pixels interroga-
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tion area, corresponding to the physical dimension 
which varied between 1.6 and 3mm. A 75% over-
lap between adjacent interrogation areas allowed 
to have high spatial resolution (0.4 to 1.5mm), re-
quired for the data analysis presented in this pa-
per.  

All experiments were performed with the bed 
slope 1/400. Other hydrodynamic conditions used 
for the experiments are summarized in Table 1 

 
Table 1. Hydrodynamic conditions of the experiments: k = 
roughness height; H = flow depth measured from the rough-
ness top to the free surface; *u  = friction velocity; U = 
depth-averaged velocity, Re=UH/ν  is the bulk Reynolds 
number; Rek =k *u /ν  is the roughness Reynolds number. ______________________________________________ 
Experiment k H *u  U Re Rek 
 mm mm m/s m/s ______________________________________________ 
BARS, L=3 6.4 44 0.0300 0.310 15500 192 
BARS, L=5 6.4 44 0.0316 0.232 11600 202 
BARS, L=15 6.4 44 0.0332 0.207 10350 212 
SPHERES 12 42 0.0300 0.340 16320 384 _____________________________________________ 

4 RESULTS AND DISCUSSION 

All experimental results are presented with the 
origin of the bed-normal coordinate z located at 
the roughness crest. 

4.1 Data processing  
Each experiment resulted in a time series of u and 
w velocity at a matrix of points across the 
measurement window. Time averaging was 
performed over the whole duration of the 
experiment (around 5min.) Spatial averaging was 
performed over a thin bed-parallel volume, whose 
height was equal to the height of the PIV 
interrogation area. In case of square bar roughness 
the averaging volume was spanning over two 
roughness wavelengths λ for L=3 experiment, and 
a single wavelength for other two experiments. 
This means that the averaging length was similar 
for L=3 and L=5 experiments but much larger in 
L=15. Use of a short window in the L=15 experi-
ment was not possible since it would not have 
produced representative averages, while longer 
window for the other two experiments was not 
available. We made an assumption that in all three 
cases there was enough scale separation to pro-
vide a stable result of Reynolds stress decomposi-
tion into large-scale and small-scale components. 
Unfortunately our data set for square bar experi-
ments does not cover a wide enough measurement 
window to allow a full test of this hypothesis.  

In case of spherical roughness averaging vo-
lume was spanning along two spheres.  

Time series of turbulent velocity fluctuations at 
each measurement point, u’(x,z), were subsequent-
ly averaged in space, in order to obtain the time 
series of large scale velocity fluctuations, ( )u z′ . 
The time series of ( )u z′ was calculated for each 
averaging volume, i.e. for each bed-parallel plane 
located at different height z. Time series of the 
small-scale velocity fluctuations ( ),u x z′  were 
subsequently obtained by subtracting ( )u z′  
from u’(x,z). The analogous procedure was ap-
plied for the w velocity.  

The large scale component of the turbulent 
shear stress was obtained by averaging u w′ ′  
over time. The small scale component was calcu-
lated by double-averaging the product u w′ ′ . 

4.2 Double-averaged velocity  
All experiments analyzed herein involved uniform 
fully developed rough-bed open channel flow with 
the relative submergence (the ratio of flow depth, 
H, to the roughness height, k) of around 10. Since 
the top of the roughness layer may extend until 
several roughness heights (2-5k, Raupach et al, 
1991), and the top of the logarithmic layer is 
expected at approximately 0.2 flow depth (i.e. 
around 2k for H/k=10), the flow depth in these 
experiments did not provide sufficient space for 
development of the log-layer, i.e. the roughness 
layer was covering the space “reserved” for the 
log-layer. For this reason we did not attempt to fit 
the velocity profiles to the log-law.  

Figure 2 shows the vertical profiles of the 
double-averaged streamwise velocity, scaled with 
the u*, for all experiments. The profiles show how 
different bed roughness has different efficiency in 
extracting momentum from the main flow: 
uniform size spheres are smoothest, i.e. least 
efficient in extracting momentum, followed by the 
d-type roughness (BARS, L=3) where main flow 
skims over the roughness elements and hence does 
not “feel” their height, followed by transitional 
(BARS, L=5), and finally k-type roughness 
(BARS, L=15), which is roughest, i.e. the most 
efficient in extracting momentum. It is interesting 
to note that comparing the roughness Reynolds 
numbers would lead to different conclusion: based 
on Rek spheres would appear to be the roughest 
bed. The reason for this is that sphere diameter, 
used as a nominal roughness height, does not truly 
represent the height of the roughness “felt” by the 
flow– the latter is much smaller, so the Reynolds 
number that truly represents how rough is the 
rough surface should be based on this smaller 
roughness height. However, taking the grain 
diameter as roughness height is a common 
practice for gravel bed rivers, so it was adopted in 
this paper as well. 

78



 
Figure 2. Double-averaged velocity profiles.  

4.3 Spatially averaged turbulent shear stress  
Figures 3 and 4 show the vertical profiles of the 
large-scale and small-scale turbulent stress, as 
well as the sum of these two, i.e. the spatially av-
eraged shear stress. There is a notable difference 
in shape between the large-scale and the small-
scale shear stress profiles observed in all experi-
ments. The large-scale stress achieves its maxi-
mum value at around 0.2-0.25 of the flow depth 
and this maximum is smooth. In contrast, the 
small-scale stress has a very distinct peak around 
the roughness crest. This general shape is consis-
tent with the physical meaning of the shear stress 
components. Large-scale stress peaks around the 
middle of the flow depth, where the large turbu-
lent structures have enough space to develop, 
while the small-scale stress is more predominant 
at the roughness crest, in the zone of intense gen-
eration of small eddies. A very sharp peak in the 
small-scale stress is due to the constant roughness 
height, which creates a distinct shearing layer at 
the roughness crest.  

It should be pointed out that all shear stress 
terms result from averaging over the volume of 
fluid only. Below the roughness crest this volume 
is smaller than above, because an averaging vol-
ume contains the solid phase (roughness ele-
ments). As a result the spatially averaged momen-
tum balance equation contains the (spatially 
averaged) shear stress multiplied with the ratio of 
the volume of fluid and the total volume = poros-
ity φ  (e.g. Nikora et al. 2007). This also applies to 
the large scale and small scale stress terms pre-
sented in this paper. In the SQUARE BAR ex-
periments porosity has a step change at the rough-
ness crest (just above the crest it is unity, and just 
below it becomes 0.67, 0.80, and 0.93, for L=3, 
L=5 and L=15 experiment, respectively). The 
sharp change of porosity causes a second peak of 

the shear stress just below the roughness crests 
(z=0, Figure 3). The lower peak is visible for ex-
periments L=3, L=5, but not for L=15 where the 
change of porosity, compared to other two ex-
periments, is smaller. The second peak can be ex-
plained as follows. Turbulent momentum fluxes 
through the planes just above and just below the 
roughness crest are similar. (The difference comes 
from the viscous shear stress across the roughness 
crest, which is much smaller than other terms in 
momentum balance). However, the corresponding 
bed-parallel area is considerably larger above the 
roughness. In order for the similar momentum 
flux to pass through the smaller area below the 
roughness crest, its magnitude has to increase. In-
deed, when the stress terms are multiplied with 
the appropriate porosity, the lower peaks in the 
stress profiles disappear and the graphs monotoni-
cally decrease below the roughness crest.  

 

 
Figure 3. Profiles of: large-scale turbulent stress (full line), 
small-scale turbulent stress (dashed line) and the total turbu-
lent stress (dotted line) in square bar experiments 

Figure 4 Profile of large-scale turbulent stress (full line), 
small-scale turbulent stress (dashed line) and the total turbu-
lent stress (dotted line) in spherical roughness experiment 
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4.4 Quadrant analysis of large scale and small 
scale velocity fluctuations  

The conventional quadrant method involves 
studying the relationship between temporal fluc-
tuations of velocity components, u’ and w’, par-
ticularly their distribution between four quadrants 
numbered in the counter-clockwise order, starting 
with Quadrant 1 where both u’ and w’ are posi-
tive. Correlation between u’ and w’ reveals the 
presence of turbulent coherent structures, e.g. 
sweep-like events belong to Q4 (u’>0 and w’<0) 
while the correlation between u’<0 and w’>0 
(Q2) indicates ejection-like events (Lu & Will-
marth 1973, Nezu & Nakagawa 1993).  

In this study an analogous technique has been 
applied to the large-scale and small-scale velocity 
fluctuations. A quadrant diagram for large-scale 
fluctuations can be plotted for each averaging 
volume (bed-parallel slice), whereas a quadrant 
diagram for small-scale fluctuations can be plotted 
for each measurement point. Figures 5-8 present 
the quadrant diagrams for large-scale velocity 
fluctuations for 3 selected planes, and for small-
scale velocity fluctuations at a single point within 
each of these planes. In square bar experiments 
the position of the point for the small-scale quad-
rant diagrams was always at 6mm (in x direction) 
from the downstream end of the bar. In the 
SPHERE experiment the point was in the centre 
between the two adjacent spheres. Small-scale 
diagrams are shown for just a single point in order 
to save space. Inevitably there is some variability 
in x direction, but the small-scale diagrams for 
other points are generally similar to those shown 
in Figures 5-8. 

There is a notable difference in shape between 
large-scale and small-scale quadrant diagrams: the 
former are much less scattered and form a well-
defined strip located mainly in Quadrants 2 and 4; 
in contrast, the small-scale diagrams form a cloud 
with more even coverage of all four quadrants. In 
other words, the small-scale turbulent flow in our 
experiments was more isotropic than the large-
scale flow. This is another confirmation of the 
well-known feature of small-scale turbulence. In-
deed, the concept that small-scale turbulence re-
mains unaffected by the large-scale flow geome-
try, and is therefore more isotropic, is the 
underlying idea of the LES turbulence modelling. 

Further inspection shows that the magnitudes 
of large-scale and small-scale fluctuations of the 
streamwise velocity are similar, whereas the bed-
normal fluctuations are larger for small scale 
events. In other words the movement of a lump of 
fluid perpendicular to the main flow direction is 
faster when the lump is small. 

 
Figure 5. Quadrant diagrams of: large-scale velocity fluctua-
tions for 3 different bed-parallel planes (left panels); small-
scale velocity fluctuations at selected points in the same 
planes (right); for the SQUARE BARS experiment with L=3 

 
Figure 6. Same as Figure 5 for the SQUARE BARS experi-
ment with L=5 

 
Figure 7. Same as Figure 5 for the SQUARE BARS experi-
ment with L=15 
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Figure 8. Same as Figure 5 for the SPHERES experiment. 

Comparison of the quadrant diagrams for three 
different spacings of square bars (Figures 5-7) 
shows that above the roughness crest there is very 
little difference. Below the crest (z=-3mm), how-
ever, there is a clear difference between: 

• L=3, skimming flow, where the gap be-
tween the bars contains a stable stationary 
vortex which suppresses turbulence gen-
erated at the roughness crest,   

• L=15, flow over isolated obstacles, where 
the vortex behind the bar is much less 
stable because the re-attachment points 
fluctuates back and forth, and 

• L=5, the transitional flow with the fea-
tures between the former two. 

The overall features of both large-scale and small-
scale quadrant diagrams for SQUARE BARS ex-
periments are similar to those for the SPHERES 
experiment. The latter experiment had somewhat 
wider range of large-scale w fluctuations, and 
somewhat more rounded shape of the small-scale 
quadrant diagrams. Both features are probably due 
to the shape and size of vertical gaps between the 
spheres: these gaps have longer vertical than hori-
zontal length, whereas the gaps between the 
square bars are elongated in the x direction, even 
for L=3. The gaps between the spheres are there-
fore likely to enhance bed-normal velocity fluctu-
ations and result in more rounded quadrant dia-
grams, especially for the small-scale turbulent 
motions. 

All features of the quadrant diagrams presented 
in this section are consistent with their physical 
meaning, which was first discussed in Pokrajac et 
al. (2008). 

5 CONCLUSIONS 

We applied double-averaging methodology to 
study open channel flows over rough beds with 
regular geometry. In particular we investigated 
large-scale and small-scale velocity fluctuations, 
and the corresponding large-scale and small-scale 
turbulent shear stress.  

Laboratory experiments involved fully devel-
oped turbulent open channel flows over two types 
of roughness: square bars at different spacings and 
uniform size spheres. PIV was used to obtain time 
series of instantaneous velocities at a large num-
ber of points across the measurement window (a 
vertical rectangle along the longitudinal centreline 
of the flume). These measurements were used to 
calculate large-scale and small-scale velocity fluc-
tuations and shear stress terms. The structure of 
the shear stress terms was further investigated us-
ing quadrant analysis.  

The following conclusions were drawn from 
this study: 

• Double-averaging is very convenient for 
studying spatially heterogeneous flows 
such as flows over rough boundaries. 

• Decomposition of turbulent velocity and 
shear stress into large-scale and small-
scale components offers new possibilities 
for studying heterogeneous turbulent 
flows: conventional analysis of velocity 
statistics and other methods such as qua-
drant analysis can now be applied to 
large-scale and small-scale turbulent mo-
tions separately. This methodology has a 
potential to provide new insights into the 
structure of spatially heterogeneous 
flows. 

• In our experiments small-scale turbulent 
stress always had a very sharp maximum 
at the level of the roughness crest, whe-
reas large-scale turbulent stress profile 
was more gradual, with a maximum 
around 0.2 of the flow depth. 

• Quadrant analysis confirmed that small-
scale turbulent flow in rough bed boun-
dary layers is more isotropic and has rela-
tively higher bed-normal velocity than the 
large-scale flow. Furthermore bed-normal 
velocity was enhanced when the gaps be-
tween the roughness elements had a sig-
nificant bed-normal length, compared to 
the streamwise length. 

These conclusions apply solely to rough beds with 
regular geometry. Further research is required to 
establish to what extent they can be extrapolated 
to irregular beds of natural streams. 
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