
 
1 INTRODUCTION 

Open channel shallow flows, partially filled with 
vegetation, is a problem of increased importance 
in the last decades which affects many environ-
mental problems such as flow adjacent to terre-
strial and aquatic vegetation, discharge capacity of 
the channels and the mass and momentum ex-
change between the free flow and the vegetation 
region which in turn influences the sediment and 
erosion phenomena. 

In the past years several experimental mea-
surements and numerical computations have been 
performed by various researchers for the study of 
flow in partially vegetated shallow channels. Ike-
da et al. (1991) modeled the sediment transport in 
a vegetation region using a two-dimensional eddy 
viscosity model to predict the velocity distribution 
in the lateral direction of a channel. 

More recently Nezu & Onitsuka (2000) meas-
ured the turbulence characteristics and observed 
the development of coherent vortices, due to Kel-
vin-Helmholtz instability, at the interface region 
between the vegetation and the free channel flow. 
The presence of the coherent vortices has been al-
so observed from Large Eddy Simulation (LES) 
models by Nadaoka & Yagi (1998) and also 
Xiaohui & Li (2002). 

An experimental study has been performed by 
White & Nepf (2007) for shallow flow in a chan-
nel partially obstructed by an array of circular cy-
linders. They showed that vortices are developed 
due to the increased shear at the interface and also 
that the region is divided in two regions. The inner 
region which establishes the penetration of mo-
mentum into the vegetation and the outer region 
which establishes the scale of the vortices. 

Also White & Nepf (2008) proposed a model 
for the vortex-induced exchange and predicted the 
distributions of flow velocity and shear stress in 
shallow channels with a boundary of emergent 
vegetation. They also found expressions for the 
penetration length of momentum inside the vege-
tation and the width of the boundary layer in the 
main channel. 

Several numerical studies on 2D turbulent ve-
getated flow have been presented recently by var-
ious investigators. In these studies the Volume 
Averaged Reynolds Averaged Navier Stokes 
(VARANS) equations in conjunction with a turbu-
lence model, based on vegetation dynamics or 
porous media approach, are employed in order to 
simulate the effect of vegetation on channel flow 
and turbulence characteristics. 

Li & Yan (2007) used the Spalart-Allmaras 
model to simulate turbulence while Ayotte et al. 
(1999) and Choi & Kang (2004) developed Rey-
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nolds-stress turbulence models (RSM). Various 
researchers (Pedras & de Lemos, 2001; Uittenbo-
gaard, 2003; Foudhill et al., 2005 among others) 
also developed turbulence models of the k-ε type 
for the same purpose. 

In the present study three dimensional compu-
tations of the VARANS equations, in conjunction 
with the k-ε model of Uittenbogaard (2003) and 
the RSM of Ayotte et al. (1999), which both are 
based on a vegetation dynamics approach, are 
used in order to simulate the effect of vegetation 
on the channel flow. Although the k-ε model can-
not simulate the anisotropy of shear stresses, is 
used in order to be tested on vegetated flows. It is 
noted that the RSM model is modified (Souliotis 
& Prinos 2009), for improving the performance of 
the model. Two cases from White & Nepf (2008) 
with Cdα=9.2 m-1 and 28.5 m-1 are simulated by 
the models (Cd = drag coefficient, α = plant densi-
ty). In addition, numerical computations for two 
more cases with less dense vegetation (Cdα = 2m-1 
and 5 m-1) have been performed for assessing the 
effectiveness of the models in a wide range of ve-
getation densities. 

2 GOVERNING EQUATIONS 

In this section the VARANS equations are pre-
sented together with the transport equations for 
VA turbulence kinetic energy k, its dissipation ε 
and the Reynolds stresses jiuu . In the following 
equations the symbol < > indicates spatial aver-
aged values and for a general parameter ψ the spa-
tial average quantities according to Nikora et al. 
(2007) are defined as: 

1 < > = ∫ ψ ψ
ff A

dA
A

 (1) 

where Af =volume of fluid contained in the total 
volume. In the case of spatial–averaged quantities, 
Af is parallel to the channel bed and extensive 
enough to eliminate plant-to-plant variations in 
vegetation structure but thin enough to preserve 
the characteristic variation of properties in the 
vertical. 

2.1 VARANS equations 
The volume averaged continuity and momen-

tum, equations, according to Raupach & Shaw 
(1982), Finnigan (2000) and Souliotis & Prinos 
(2009) are written respectively as: 
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where Ui = fluid velocity in the xi direction, ρ = 
fluid density, P = effective pressure, ji uu = Rey-
nolds stresses,. The third term in the rhs of Eq. (3) 
is an “additional dispersive” term, due to correla-
tion of spatial deviations of the mean velocity 
components, which can be assumed negligible in 
flows with high density. The last term in Eq. (3) is 
an extra drag term due to vegetation resistance. 

The Reynolds stresses, >−< jiuu , are calculated 
through the Boussinesq hypothesis for the <k>-
<ε>  model as follows: 
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where vt= turbulent viscosity (= Cμ<k>2/<ε> , 
Cμ = 0.09) and δij = Kronecker delta. 

2.2 Transport equations for <k>, <ε> and 
< i ju u > 

The transport equation for the turbulent kinetic 
energy, <k> and the dissipation rate <ε> are de-
rived from the VA (Volume Average) of the 
original transport equations for k and ε. For the 
<k>-<ε> model the equation for <k> is: 
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The last term is an additional source term due to 
vegetation while the additional dispersive terms 
resulting from the volume averaging of the con-
vection and the diffusion terms are assumed neg-
ligible. For the RSM model the turbulence kinetic 
energy <k> is not computed through a transport 
equation since it is obtained directly from the 
normal Reynolds stresses ( 0.5 i ik u u< >= < > ). 

For the <k>-<ε> (Uittenbogaard, 2003) and the 
RSM models the respective equations for <ε> are 
written in a similar way to the <k> equation and 
they take the respective forms: 
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where σκ, σε  =  constants (= 1.0, 1.3 respectively),  
cε1, cε2 = constants (=1.51, 1.92 for the <k>-<ε> 
model and =1.44, 1.92 for the RSM model), teff = 
time scale variable, based on geometrical and tur-
bulence characteristics (Uittenbogaard, 2003) and 
<dij> = foliage contribution associated with work 
against pressure and viscous drag on the vegeta-
tion (Ayotte et al., 1999). The last terms in Eq. (6) 
and (7) are additional production terms of dissipa-
tion ε due to vegetation. The <ε>-equation, for the 
RSM model of Ayotte et al. (1999) has been 
modified and a more detailed analysis of the mod-
ified approach can be found in Souliotis & Prinos 
(2009). 

The RSM model calculates the Reynolds 
stresses < >i ju u  using a transport equation which 
takes the following form: 
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where φij=pressure strain term (FLUENT INC., 
2001). The last term in Eq. (8) is an extra term 
due to the vegetation and is only used in the trans-
port equations for the normal stresses. 

3 NUMERICAL PROCEDURE - CASES 
STUDIED 

The FLUENT 6.0.12 CFD code, based on a finite 
volume technique, is used for the numerical com-
putations. The code solves Eqns. (2), (3), (5), and 
(6) when the <k>-<ε> model is applied while Eq. 
(2), (3), (7) and (8) are solved when the RSM 
model is used. The extra source terms, due to the 
presence of vegetation are introduced in the above 
equations, using User Defined Functions (UDF) 
which are based on a C code. 

For the grid construction the GAMBIT pro-
gram was used. The grid was three-dimensional, 
structured and the shape of the cells was orthogo-
nal. Several runs with different number of compu-
tational cells showed that the numerical results are 
grid independent. In the present work the grid size 
is equal to 5x240x20 (streamwise, lateral, and ver-
tical direction respectively). The grid density is 

increased near the walls and also at the interface 
region (vegetation-free channel) due to the in-
creased shear. 

At the entrance and the exit of the flow peri-
odic conditions were used in order to avoid the in-
creased length which is needed for the flow to be-
come fully developed. For the free surface, 
symmetry boundary conditions were used. In Fig-
ure 1 a three dimensional view of the vegetated 
and the free channel regions is shown. 

 

 
Figure 1: 3-D view of the total channel region 

Experimental measurements from White & 
Nepf (2008) are used for the evaluation of the tur-
bulence models. In these experiments a 1.2m wide 
and 13m long flume partially filled with a 0.4m 
wide array of cylinders, with 0.0065m diameter, 
which simulates the vegetation, were used. The 
flow depth was varied between 0.066m and 
0.068m while the channel slope So was 2.29x10-4. 
The porosity of the modelled vegetation varied 
between a minimum value of 0.9 and a maximum 
of 0.98 which corresponds to Cdα = 274 m-1 and 
9.2 m-1 respectively. In the present paper two cas-
es from White & Nepf (2008) with Cdα = 9.2 m-1 
and 28.5 m-1 are used. In addition, numerical 
computations for two more cases with less dense 
vegetation (Cdα = 2 m-1 and 5 m-1) have been per-
formed. 

4 ANALYSIS OF RESULTS 

Initially the variation of fully developed local 
mean velocities <U>  and shear stress < − >uw , 
computed by both models, within the cross-
section is presented for Cdα=9.2 m-1. 

Figure 2 shows the contours of streamwise ve-
locity, made dimensionless with the maximum lo-
cal velocity at the free channel flow (Umax). Inside 
the vegetation low values are observed for both 
models. At the free channel region higher values 
are observed at the center of the channel and near 
the free surface. According to the <k>-<ε> model 
the distribution of flow velocity is more uniform 
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in the central part of the free channel, in contrast 
to the RSM model, which shows that at the chan-
nel corner a bulging of the contours  occurs due to 
the secondary currents predicted by the model in 
the corner region. 

 

 
Figure 2: Contours of dimensionless streamwise velocity 
< > maxU U  for Cdα = 9.2 m-1. 

In Figure 3 the contours of local shear stress 
(< − >uw ) are shown. The local shear stress has 
been made dimensionless with the depth-averaged 
shear stress at the interface (< − >intuw ).At the in-
terface region and for y/h>0.5 higher values of 
< − >uw  are observed due to increased velocity 
gradients in the lateral direction. Inside the vege-
tation shear stresses have very low values which 
mean that the presence of vegetation damps the 
turbulence within the vegetation and flow may 
become laminar. At the centre of the channel, the 
effect of the side wall and the interface region is 
reduced, and the values of < − >uw are reduced as 
it is expected. 

 

 
Figure 3: Contours of dimensionless shear stress 
< − > < − >intuw uw  for Cdα = 9.2 m-1. 

In the following paragraphs the distributions of 
depth-averaged mean velocity and turbulence cha-
racteristics (turbulence kinetic energy, Reynolds 
stresses and turbulent viscosity) are presented and 
compared with available experimental data and 
empirical relations from White and Nepf (2008). 
For the sake of brevity the subscript denoting 
depth-averaged values has been removed from all 
parameters. 

In Figure 4 the distributions of wall (bed, side-
walls) shear stresses as well as the depth-averaged 
shear stress < − >ρ uw  are shown. They have been 
made dimensionless with γhSo, (γ = ρg). For both 
cases the stresses at the side wall of the free chan-
nel are higher in comparison to those at the side 
wall adjacent to the vegetation, due to the high 
flow velocity in the free channel. The RSM model 
provides higher values at the free channel side 
wall. The bed shear stress in the vegetation region 
has low values due to the reduced flow velocity, 
while in the free region, where the distribution of 
τbed also follows the development of flow velocity, 
increased τbed values occur at the central part of 
the channel. The RSM model presents increased 
τbed values near the corner region, due the capabil-
ity of the model to compute the secondary cur-
rents generated by the anisotropy of the normal 
stresses.   

 

 
 

 
Figure 4. Distribution of wall shear stress τwall and depth-
averaged shear stress < − >ρ uw . 

Figure 5 reveals the contribution of free chan-
nel bed shear stress (τbed), wall shear stress at the 
side wall of the free channel (τwall) and the shear 
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stress at the interface (τint.), made dimensionless 
with the total free channel stress (τtot. = τbed + τwall 
+ τint). In order to get a more clear view, results 
from two more cases, with Cdα = 2 and 5 m-1, are 
used. As it is shown τbed has dominant role (86-
90% of the total stresses), while the effect of the 
interface and the side wall is lower, with a varied 
contribution of 6-10% and 4-4.5% respectively. 
The increased values at the interface region in 
comparison to those at the side wall can be attri-
buted to the momentum exchange between free 
channel and vegetation flows. 

 

 
Figure 5. Wall and interfacial stresses contributions to total                          
free channel stress for various vegetation densities. 

The <k>-<ε> Uittenbogaard (2003) model pro-
vides higher values for τbed in comparison to the 
RSM model while the respective values for τwall 
and τint. are lower. However, this behavior is not 
observed for the high density case. 

In Figure 6 the variation of depth-averaged 
streamwise velocity, made dimensionless with the 
maximum depth averaged velocity at the free 
channel flow (U2), in the lateral direction is 
shown, for both turbulence models. Inside the 
vegetated region the flow velocity is uniform and 
the computed results coincide with the experimen-
tal measurements. The momentum equation, in-
side the vegetation is simplified to a balance be-
tween the drag and the bed gradient. At the 
interface region an inflection point is observed 
due to the momentum exchange and the associated 
increased shear due to the difference of flow ve-
locity between free channel and the vegetated 
area. Shear layer type profiles are developed at the 
free channel region and, according to the <k>-<ε> 
Uittenbogaard (2003) model, the flow becomes 
uniform in a wider central area in comparison to 
that of the RSM model. The experimental mea-
surements are in agreement with the RSM results 
and as it is expected the region of uniform flow 
velocity is increased for the sparser case (Cdα =9.2 
m-1). The effect of the side channel wall is signifi-
cant for z/Lveg.>1.25 according to the RSM model, 
while the respective region according to the <k>-
<ε> model is decreased (z/Lveg.>1.6). 

 

 
Figure 6. Computed and experimental streamwise, depth-
averaged velocity distributions. 

In Figure 7 the distribution of the depth-
averaged shear stress (< − >uw ) is shown. The 
shear stress has been made dimensionless with the 
square of friction velocity at the interface U*

2 
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(=max(< − >uw ). The profiles demonstrate that 
maximum values occur at the interface. Inside the 
vegetation < − >uw  is reduced rapidly, while in 
the free channel the respective decrease is more 
gradual. The two turbulence models reveal identi-
cal behavior in the vegetation region, while in the 
free flow the values of < − >uw  according to the 
<k>-<ε> Uittenbogaard (2003) decrease more ra-
pidly in comparison to those of the RSM Ayotte et 
al. (1999) model. In this region the experimental 
measurements are in agreement with the RSM 
model for both cases while at the interface the 
maximum values are higher in comparison with 
the computed results. This means that shear at the 
interface is higher and hence the length in which 
high momentum fluid penetrates inside the vege-
tation is increased as it is shown for the sparse 
case (Cdα = 9.2 m-1). The higher value of experi-
mental shear stresses, for the denser case, has neg-
ligible effect on the penetration of high momen-
tum fluid, which means that the increased 
vegetation density has dominant role. 

 

 
Figure 7. Distributions of computed and experimental 
depth-averaged shear stress < − >uw . 

Similar results are observed from Figure 8 
where dimensionless (with U*

2) distributions of 
turbulent kinetic energy are shown. Inside the 
vegetation the RSM model computes negligible 
values in comparison to those of the <k>-<ε> 
model, which is caused due to an extra source 
term in <k> equation which simulates the pres-
ence of vegetation. For the <k> there are no avail-

able experimental measurements for comparison 
with the computed results. The above results are 
in agreement with White & Nepf (2007) who have 
shown that two distinct regions exist in the shear 
layer. The region, called inner layer, where mo-
mentum can penetrate into the vegetation with 
length δI and the region (outer layer) outside the 
vegetation, with length δO, where boundary layer 
profiles are developed. The δI is taken as the dis-
tance from the interface to the point where Rey-
nolds stresses decays to 10% of its maximum val-
ue (Nepf et al., 2007) while δO is taken as the 
distance from the interface to the point where flow 
velocity reaches its uniform value in the free 
channel. The distance δI can be computed with 
high accuracy since the number of the grid points 
is increased in this region and hence the error is 
negligible. 

 

 
Figure 8. Computed distribution of turbulent kinetic energy. 

 
In Figure 9 the inner layer profiles are shown 

and are compared to an hyperbolic profile pre-
sented by White & Nepf (2008): 

1 tanh
⎡ ⎤⎛ ⎞−−

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

o1

s I

z zU
U

U
δ

 (9) 

where U1= the depth-averaged uniform velocity 
inside the vegetation, zo = the inflection point 
(which coincides with the interface) and Us = the 
depth averaged slip velocity, equal to Uzo - U1. 
The computed normalized velocity profiles and 
the hyperbolic profile are in agreement at the in-
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terface, however in the inner layer the comparison 
is less satisfactory. Inside the vegetation region 
the profiles from the turbulence models and from 
Eq. (9) coincide. 

 
Figure 9. Normalized inner layer profile. 

Outside the vegetation the hyperbolic profile 
fails to follow the computed profiles. For this re-
gion the computed outer layer profiles are com-
pared (Figure 10), to a parabolic velocity profile 
presented by White & Nepf (2008): 

2
1
4

⎡ ⎤⎛ ⎞− − −
⎢ ⎥= − ⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

m o m

2 m O O

U U z z z z
U U δδ
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where zm = the point at which the inner and the 
outer layer slope match and Um = the velocity at 
zm. In the present work zm = 0 (coincides with the 
interface) and Um is equal to the velocity at the in-
terface. The comparison shows that the computed 
velocities from the turbulence models are devel-
oped more rapidly and reach uniform values, at 
the free channel, earlier than those computed by 
the parabolic profile. 

In Figure 11 the profiles of normalized eddy 
viscosity for the two cases are shown. The eddy 
viscosity has the higher values for both models at 
the free channel region (z/δO = 0.2) where the co-
herent vortices, due to the shear at the interface, 
are increased. Inside the vegetation vt decreases 
rapidly and for z/δO < -0.2 has negligible values 
which means that the vortices are unable to pene-
trate deeper, due to the increased vegetation densi-

ty. Both models demonstrate similar behavior for 
the two cases. 

 
Figure 10. Rescaled outer layer profiles. 

 

 
Figure 11. Distributions of normalized eddy viscosity. 

5 CONCLUSIONS 

In the present study flow and turbulence characte-
ristics have been computed for a three- dimen-
sional partially vegetated shallow flow. Distribu-
tions of flow velocity, shear stresses and turbulent 
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kinetic energy, in the lateral direction, show that 
at the interface region increased shear is observed 
due to the momentum exchange and the interac-
tion between the vegetation and the free channel 
flow. 

The produced coherent vortices penetrate into 
vegetation and this penetration length decreases 
with density while in the outer region the effect of 
vegetation density is negligible and boundary pro-
files of flow velocity are developed. Inside the 
vegetation where the coherent vortices are unable 
to penetrate the flow is uniform and the computed 
values for shear stresses (< − >uw ) and turbulent 
kinetic energy (<k>) are very low. At the central 
part of the free channel, where the effect of vege-
tation is also decreased, reduced variations of flow 
and turbulence characteristics are observed, with 
the <k>-<ε> Uittenbogaard (2003) model to pro-
vide wider areas of constant values. However the 
modified RSM model demonstrates in general bet-
ter behavior when its numerical results are com-
pared with experimental measurements for <U> 
and < − >uw . As it is also shown the channel bed 
provides the higher contribution to the total wall 
shear stress and also the wall stress, at the corner 
region, demonstrates increased variation in com-
parison to that of the <k>-<ε> model due to the 
capability of the RSM model to predict secondary 
currents correctly. 
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