
 
1 INTRODUCTION 

The bed roughness geometry has a major influ-
ence on the turbulence production in the boundary 
layer causing different flow regimes, as has been 
shown in many works (e.g. Perry & Joubert, 1963; 
Grass, 1971; Cui et al., 2003). The flow regime 
classification proposed by Morris (1955) can be 
adopted in hydraulic engineering to study the in-
fluence of the bed roughness geometry on the tur-
bulent flow in a water flume(e.g. Khan et al., 
2005). Thus, by using the so-called aspect ratio 
h/w, with h and w being the height of the rough-
ness element and the gap distance that separates 
two of those elements, respectively, to describe 
three flow regimes: a) isolated roughness flow 
when the roughness elements are well separated 
(h/w < 0.3); b) wake interference flow when the 
disturbed flow does not have enough distance be-
tween obstacles to reorganize itself (h/w ൎ 0.5); 
and c) skimming flow characterised by the forma-
tion of a single vortex within each cavity as a con-
sequence of a small separation between roughness 
elements (h/w ൎ 1). 

Khan et al. (2005) investigated the transition be-
tween the skimming and wake interference flows 
using aspect ratios of 0.67 and 0.5 for an idealized 
bed roughness, whose elements were placed in a 
water flume of 6.2 m in length, 0.5 m in width and 
0.3 m in height. The roughness elements were 
formed from lengths of a 5ൈ10-3 m square brass 
bar. Khan et al. (2005) used Rhodamine-6G and 
water-soluble Nigrosine crystals as tracer dyes to 
visualize the turbulent structures. These authors 
found that the wake interference flows was asso-
ciated with an increase in the turbulence produc-
tion in the boundary layer, which caused a greater 
dispersion of the dye tracer inside the cavities, and 
a reduction in shear at the top of the roughness 
elements. 

With the aim of obtaining an increased know-
ledge of the influence of the skimming and wake 
interference flows on passive tracer transport time 
series, the coupling of the lattice Bhatnagar-
Gross-Krook (BGK) (e.g. Succi, 2001), Smago-
rinsky eddy viscosity (e.g. Pope, 2000) and flow 
visualization (Xia & Leung, 2001) models, used 
to simulated the conditions reported by Khan et al. 
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(2005), with the strange attractor multifractal for-
malism (Hentschel & Procaccia, 1983; Grassberg-
er, 1983; Halsey et al., 1986) is used in this work. 
The lattice BGK model is a numerical integration 
of the Navier-Stokes equations proposed by Chen 
et al. (1992) and Qian et al. (1992). It is based on 
a simplification of the lattice Boltzmann (LB) eq-
uation (Succi, 2001). Thus, the lattice BGK model 
shares the features of the LB method, which can 
be classified as an explicit, Lagrangian, finite-
hyperbolicity approximation of the Navier-Stokes 
equations. It is frequent the use of the LB method 
for dealing with problems of interest to the hy-
draulic engineering community involving turbu-
lent flows (Zhou, 2002) by applying, in these cas-
es, the large eddy simulation (LES) scheme that 
can describe turbulence in any dimension al-
though it was developed for 3D flows (Pope, 
2000; Davidson, 2004). 

2 METHODS 

2.1 Simulation of time series in passive tracer 
transport 

 
In the lattice BGK model, the fluid particles move 
in a regular lattice, in which each node is linked to 
its neighbours following a vicinity model that is 
chosen depending on the complexity of the phe-
nomenon to be simulated. The vicinity model 
d2q9 is used to calculate the fluid velocity field in 
two dimensions (e.g. Succi, 2001), with d = 2 
meaning the number of dimensions and q = 9 the 
number of particles considered. In this case, there 
are eight moving particles and one at rest. The in-
dependent variable if  varies continuously be-

tween 0 and 1 according to the Boltzmann mo-
lecular chaos hypothesis and represents the 
probability of finding a fluid particle in a link i 
that connects a node with one of its neighbours. 
The interactions of the particles keep up the mass 
and momentum (Chopard & Droz, 1998). The 
equation of the lattice BGK model for a node r at 
time t, is (Succi, 2001) 

     eq1 1
, 1 , 1 ,i i i if t f t f t
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where ci is the velocity vector of a fluid particle in 
the link i, eq

if  is the local equilibrium function 

and  is the relaxation time parameter that repre-
sents the difference between if  and eq

if . Using 

the Chapman-Enskog expansion, it is mathemati-
cally demonstrable that Eq. (1) can recover the 
Navies-Stokes equations to the second order of 
accuracy (Chen & Doolen, 1998) if eq

if  is chosen 

in the following way: 
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where the Einstein summation convention has 
been adopted and  represents the spatial coordi-
nates, x and z. The parameter cs is selected accord-
ing to the vicinity model chosen and the i’s are 
weighting factors associated with the lattice direc-
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density and velocity, respectively. The relaxation 
time parameter determines the kinematic viscosity 

 2 0.5sc   . 

In the case of the simulation of turbulent flows, 
it is possible to use the LES scheme within the lat-
tice BGK model. According to Hou et al. (1996), 
the essential idea of LES, based on the smoothing 
of the flow velocity by applying a convolution 
with a filter, can be included in the lattice BGK 
model as a spatially-dependent effective viscosity 


t    , made up of  and an eddy viscosity t . 

The eddy viscosity is determined by using the 
Smagorinsky eddy viscosity model (Pope, 2000). 
Thus, a spatially-dependent relaxation time  

    0.5
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    as the 

non-equilibrium momentum flux tensor (Chopard 
& Droz, 1998) and Csmg being the Smagorinsky 

constant.  substitutes  in Eq. (1) allowing the 
calculation of the filtered fluid density and veloc-
ity. The original Smagorinsky model is too dissi-
pative in the presence of a wall (Davidson, 2004) 
when the “universal” or Lilly-Smagorinsky con-
stant, Csmg = 0.17-0.18, is used. However, most re-
searchers prefer Csmg = 0.1-0.12 (Lesieur et al., 
2005) as has been assumed in this work. Thus, the 
Smagorinsky model behaves well for free-shear 
flows, wall flows with wall laws and channel 
flows (e.g. Davidson, 2004) at relatively low Rey-
nolds numbers (Re = 2000-10000). 
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In order to visualize the simulated flow regime, 
the trajectories of the released passive tracer parti-
cles were determined by using a method based on 
that proposed by Xia & Leung (2001). Thus, at 
each time step t, the position rp of a particle was 
calculated from    p pt t t t    r r u , where 

the velocity u  was derived by applying a bilinear 
interpolation to the instantaneous velocity field 
obtained with the lattice BGK model, u. 
 

2.2 Multifractal analysis 

The strange attractor multifractal formalism was 
used to perform the multifractal analysis on the 
simulated time series in the tracer transport. In or-
der to apply this formalism, the series were di-
vided into non-overlapping intervals of a certain 
time resolution,  . Thus,  and the amount of 
tracer particles, ci, characterized each interval i. 
The minimum time resolution, ini, was chosen so 
that every initial interval contained at least one 
non-zero value of the amount of tracer particles, 
cini. ci was set to be equal to this value or to the 
average if there were several values in every ini-
tial interval. Thus, the probability mass function 
 ic   at time resolution  is defined in each in-

terval i as (e.g. Kravchenko et al., 1999) 
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where ci is calculated based on the cini values and 

inin  is the number of initial intervals of time reso-

lution ini. The distribution of the probability mass 
function was analyzed by using the method of 
moments (Evertsz & Mandelbrot, 1992), in which 
the partition function  ,q   of order q is calcu-

lated from the  ic   values: 

   
1

,
n

q

i
i

q c  


     (4) 

with n being the number of intervals of time reso-
lution  and q],[. The partition function has 
the following scaling property for a multifractal 
measure 

   , qq     (5) 

where  q  is a non-linear function of q and is 

known as the mass exponent function. For each q, 

 q  can be obtained as the slope of the linear 

segment of a log-log plot of  ,q   versus . For 

1q  , the value of  ,q   is mainly determined 

by the high data values, while the influence of the 
low data values contributes most to the partition 
function for 1q    (Kravchenko et al., 1999). 

The Lipschitz-Hölder or singularity exponent  
quantifies the strength of the measure singulari-
ties. Its value is found from the scaling relation 
 ic   , when 0  .  is also known as the 

local fractal dimension and can be determined by 
Legendre transformation of the  q  curve 

(Evertsz & Mandelbrot, 1992): 

   d q
q

dq


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Let  ,N    be the number of intervals of a 

given time resolution , where a given value of  
is found, and define  f   from the scaling rela-

tion: 

   , fN      (7) 

 f  can be considered as the fractal dimension 

of the set of intervals that corresponds to a singu-
larity . A plot of  f   versus  is called the 

multifractal spectrum.  f   can be calculated 

from (Chhabra & Jensen, 1989; Chhabra et al., 
1989) 

     f q q q     (8) 

The spectrum is an inverted parabola for  ic   

multifractally distributed with a wider range of  
values when the heterogeneity of the distribution 
increases. In the case of  ic   monofractally dis-

tributed,  is the same for all the intervals of iden-
tical time resolution and the multifractal spectrum 
consists of a single point (Kravchenko et al., 
1999). The extreme values in the distribution of c 
are associated with the lower values of  f   in 

such a way that the high and low values in the 
amount of tracer particles are related to the left 
and right parts of the spectrum, respectively. The 
highest value of  f   corresponds to the capac-

ity dimension of the support (i.e. 1, when dealing 
with 1-D time series). 
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3 RESULTS  

The idealized bed roughness shown in Fig. 1 was 
used to perform the numerical simulations, con-
sidering h/w = 1 and 0.5, with the aim of repro-
ducing the skimming and wake interference flow 
regimes, respectively. In all the tests, the Rey-
nolds number Re = 5000, the free stream velocity          
U = 1 m s1 and the kinematic viscosity                
 = 10-6 m2/s, were kept constant. The length and 
time scales were r = 0.5×10-3 m and                  
t = 0.05×10-3 s, respectively, giving a relaxation 
time  = 0.5006. The value of Csmg was 0.12 in all 
the simulations. The dimensions of the entire 
computational domain were x/h = 30 and z/h = 6 
and the windward side of the first roughness ele-
ment was always placed at x/h = 5. The flow was 
set by assigning the free stream velocity U at the 
inlet in such a way that ux = U and uz = 0. The 
same values were considered for the velocity at 
the top of the computational domain hC = 6h. Al-
though this boundary condition was more restric-
tive than the rigid-lid approximation, it was cho-
sen because of its low cost in terms of execution 
time. In order to apply this boundary condition, 
the relaxation time parameter, , needed to be 
equal to 1 at these places. The so-called “porous 
plug” boundary condition described by Succi 
(2001) was used at the outlet in order to avoid the 
propagation of disturbances backward into the 
computational domain. This boundary condition 
works well when the outlet is not too close to the 
inlet as happens in the problem analyzed here, be-
cause the length of the computational domain is  
lC = 30h. The no-slip boundary condition was ap-
plied at the roughness element walls and the flume 
bed by reversing all the fi’s at these sites. 

The time series in the tracer transport were 214 
time-steps in length and they were obtained ac-
cording to the following method: i) Twenty pas-
sive tracer particles were released in each time-
step in the computational domain, at the source 

line marked in Fig. 1, once the flow was well es-
tablished. ii) The amount of particles passing 
through the downstream boundary of the test sec-
tion (Fig. 1) was determined in each time-step.  
The time series simulated are shown in Fig. 2. The 
effects of higher streamwise and vertical turbulent 
intensities for the skimming flow can be seen in 
this figure because of the relevant presence of ex-
treme high values in the time series of this flow 
regime compared to the wake interference flow. 
Table 1 lists the results obtained from the statisti-
cal analysis of the time series. It can be verified 
that the mean values (tracer particlesൈtime-step-1) 
are similar. However, the coefficients of variation 
(CV) are different as a consequence of the pres-
ence of a greater heterogeneity in the time series 
corresponding to the skimming flow due to higher 
turbulence intensity. The coefficients of skewness 
(CS) are positive for both turbulent regimes de-
noting that the right tails of the probability distri-
butions are longer than the left ones. According to 
the higher value of the CS, this fact is more rele-
vant in the case of the skimming flow. 
The transfer of momentum across the shear layer 
at the top of the roughness elements is the origin 
of this single vortex inside the cavities. 
The wake interference flow was fully developed 
for h/w = 0.5 (Fig. 3(b)). The secondary vortex in-
side the cavity was clearly visible, due to the ab-
sence of tracer particles at this zone, as reported 
Khan et al. (2005). Well-established vortices were 
found inside the cavities for the skimming flow. 
However, a more unorganized flow pattern was 
reproduced for the wake interference regime 
within the cavities except at the upstream corner 

The lower the values of h/w the lower the tur-
bulent intensities and this circumstance denotes 
the presence of a very weak, almost vanishing, 
shear layer for the wake interference regime. 
Thus, the interaction between the flow structures 
taking place outside and inside the cavities was 
enhanced. 

Figure 1. Scheme of the computational domain used in the simulations. The idealized bed roughness elements are marked from 
1 to 7. 
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Figure 2. Simulated time series in passive tracer transport 
for (a) skimming and (b) wake interference flows. 
 
In fact, the upper flow drove the secondary vor-
tices within the cavities. The number of tracer par-
ticles was increased inside the cavities for the 
wake interference regime demonstrating that is as-
sociated with shear reduction at the top of the 
roughness elements, as observed by Khan et al. 
(2005). 

It can be seen in Fig. 3 that the flow was less 
affected in the upper regions of the computational 
domain by the influence of the bed roughness. 
This fact caused the flow visualization method to 
reproduce paths that seem to be contour lines as a 
consequence of the less disturbed trajectories fol-
lowed by the tracer particles. The region of influ-
ence of the bed roughness on the flow extended to 
z/h  3. Cui et al. (2003) found a similar result 
when simulating the turbulent flow in a channel 

with rib roughness using LES, considering          
Re = 104 and applying the no-slip boundary condi-
tion at the top of the computational domain. They 
found that the region where the flow heavily de-
pends on the roughness geometry extends to z ≈ 
4h. 
 
Table 1. Statistical properties of the time series in the pas-
sive tracer transport 

Flow regime Mean CV CS
Skimming 14.16 1.12 14.91
Wake interference 13.96 0.49 5.07

 
It can be seen in Fig. 3 that the flow was less 

affected in the upper regions of the computational 
domain by the influence of the bed roughness. 
This fact caused the flow visualization method to 
reproduce paths that seem to be contour lines as a 
consequence of the less disturbed trajectories fol-
lowed by the tracer particles. The region of influ-
ence of the bed roughness on the flow extended to 
z/h  3. Cui et al. (2003) found a similar result 
when simulating the turbulent flow in a channel 
with rib roughness using LES, considering R = 
104 and applying the no-slip boundary condition 
at the top of the computational domain. They 
found that the region where the flow heavily de-
pends on the roughness geometry extends to z ≈ 
4h.  

Figure 4 shows the plots of the partition func-
tions,  ,q  , versus the time resolution, that 

ranges from  = ini = 2 to  = 214 time-steps, for 
the tracer transport in the skimming and wake in-
terference flows. For all the statistical orders,        
q = 10 to 10 tested at 0.5 increments, the log-
transformed  ,q   can be fitted by linear re-

gressions with the values of the coefficient of de-
termination, r2, ranging from 0.98 to 0.99. This 
fact means that the estimation of  q  as the 

slope of the linear fits can be trusted. The mass 
exponent functions,  q , were obtained from the 

slopes of these fits and are plotted in Fig. 5a. 
Note that the  q curves are convex indicat-

ing that all the time series in the tracer transport 
are of a multifractal nature. Figure 5b shows the 
multifractal spectra obtained for the tracer trans-
port when the skimming and wake interference 
flows were simulated. The spectra are inverted pa-
rabolas exhibiting a longer tail to the left of the 
maximum value of  f   in all the cases. This 

part of the spectra corresponds to the higher val-
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ues in the amount of tracer particles, which are 
amplified by the positive orders 0q  , indicating 
that there was a greater heterogeneity of these 
values in the time series. This fact is related to the 
positive CS values obtained from the statistical 
analysis. The presence of rare high values (Fig. 
2a) in the time series simulated for the skimming 
flow should be noted, as can be inferred from the 
significant number of points located at the left ex-
treme of the spectrum. This behaviour is associ-
ated with the higher CV and CS values found for 
the skimming flow. 
 

 
Figure 3. Flow patterns reproduced by the lattice BGK 
model for different aspect ratios. (a) Skimming flow (h/w = 
1). (b) Wake interference flow (h/w = 0.5). 
 

The spectrum corresponding to the wake inter-
ference flow looked sharper compared to the 
skimming flow case. The width of the spectrum, 
related to the variability in the distribution, in-
creased as h/w became higher explaining the 
lower CV value detected in the time series ob-
tained for the wake interference flow regime. The 
lower the values of h/w, the lower the turbulence 
intensities over the roughness elements, denoting 
the presence of a weaker shear layer for the wake 
interference flow. 

As a consequence, the time series of the 
amount of tracer particles passing through the test 
section downstream boundary in each time-step 
showed less variability. 

 

 
Figure 4. Log-log plots of the partition functions  ,q   
versus the time resolution δ for (a) skimming and (b) wake 
interference flows. The mass exponent functions  q  were 

obtained from the slopes of the linear fits (solid lines) to the 
partition functions (symbols). 

4 CONCLUSIONS 

The numerical study carried out in this work dem-
onstrates the ability of the lattice BGK model to 
describe the skimming and wake interference 
flows in the presence of an idealized bed rough-
ness. The flow patterns and turbulent structures 
reproduced by the proposed lattice BGK model 
reasonably agree with the qualitative observations 
recorded in the experiments reported by Khan et 
al. (2005). The strange attractor multifractal for-
malism has been applied to describe the time se-
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ries in tracer transport for the simulated flow re-
gimes. The results obtained from the analysis of 
the multifractal spectra completed the information 
provided by the coefficients of variation and 
skewness. Thus, a greater heterogeneity for the 
high values of the time series was found for all the 
cases. In addition, the spectrum of the wake inter-
ference flow was sharper than the one correspond-
ing to the skimming flow confirming a greater 
variability in the time series simulated for the lat-
ter flow regime. The study of the extremes of the 
spectra tails revealed the presence of rare high 
values in the time series corresponding to the 
skimming flow. Both the greater variability and 
the existence of extreme values in the tracer trans-
port time series under the skimming flow condi-
tion, seem to be related to the increase in the tur-
bulence intensity due to the presence of a strong 
shear layer on the top of the idealized bed rough-
ness elements. 

The multifractal framework has shown itself to 
be a suitable and efficient approach to describing 
the temporal structure of the tracer transport for 
turbulent flows in water flumes with idealized bed 
roughness. Based on the results reported here and 
taking into account that further work needs to be 
done, the multifractal framework can be consi-
dered as a promising tool to improve the know-
ledge on the pollutant and sediment turbulent dis-
persion in open channels. 
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