
 
1 INTRODUCTION 

Hydrodynamic river models are applied to design 
and evaluate measures for purposes such as safety 
against flooding. These numerical models are all 
based on a deterministic approach. However, the 
modeling of river processes involves numerous 
uncertainties, resulting in uncertain model out-
comes. Knowledge of the type and magnitude of 
uncertainties is crucial for a meaningful interpre-
tation of the model results and the usefulness of 
results in decision making processes. 

The Dutch flood defenses along the river Rhine 
are designed to withstand a flood with a probabili-
ty of exceedance of 1/1250 per year. The water 
levels that occur during such a flood are computed 
with the deterministic hydrodynamic model, 
WAQUA (Rijkswaterstaat, 2005), using a design 
discharge as input. However, uncertainty resides 
in all parts of this model. To quantify the uncer-
tainty in the design water levels we want to esti-

mate the uncertainties in these parts of the model 
that have the largest contribution to the uncertain-
ty in the design water levels. 

Elicitation of expert opinions showed that the 
uncertainty in the design discharge and the hy-
draulic roughness formulation of the main channel 
contributes mostly to the uncertainty in the model 
outcomes (Warmink et al., 2009). Also, the stu-
dies by Chang et al. (1993), Bates et al. (1996), 
Hall et al. (2005) and Pappenberger et al. (2008) 
show that the hydraulic roughness of the river bed 
is one of the main uncertainties in river models. 

The hydraulic roughness in the main channel of 
the Dutch river Rhine is dominated by the resis-
tance due to bed forms that develop on the river 
bed and increase in height with increasing dis-
charge. Different predictors exist that relate flow 
and dune characteristics to hydraulic roughness 
(e.g. Van Rijn, 1984; Vanoni and Hwang; 1967). 
In previous research the differences between re-
sults of different roughness predictors were found 
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to be large (Van Rijn 1993, Julien et al. 2002). 
Noordam et al. (2005) showed that different 
roughness predictors resulted in substantial differ-
ent roughness values for a series of measured bed 
forms and flow characteristics in flumes. Also, 
Van der Mark (2009) showed that different 
roughness predictors resulted in different rough-
ness predictions for uniform and alluvial flume 
data. The results from the study by Julien et al. 
(2002) show that also for field measurements in 
the Dutch river Rhine, different roughness predic-
tors result in different roughness values. Further-
more, they showed that there is a strong hysteresis 
effect between bed form roughness and discharge. 

The studies by Noordam et al. (2005) and Ju-
lien et al. (2002) only give an indication of the 
uncertainty in the bed roughness for measured 
discharges. However, we want to go a step further 
and quantify the uncertainty in the bed roughness 
under design conditions. Furthermore, both stu-
dies only take three roughness predictors into ac-
count, while many different roughness predictors 
exist that are valid to predict hydraulic bed rough-
ness of lowland rivers. Next to the uncertainty in 
the roughness itself, also the effect of the uncer-
tain roughness of the water levels is not taken into 
account. 

Therefore, the aim of this study is 1) to quanti-
fy the uncertainty in the bed roughness of the 
main channel under design conditions, by extrapo-
lation of field measurements and 2) to quantify the 
contribution of this uncertain roughness to the un-
certainty in the water levels at design discharge. 

2 DATA 

We used the data from the studies by Julien et al. 
(2002) and Wilbers (2004). The data from Julien 
et al. (2002) were measured during the 1998 peak 
discharge in the river Rhine. Longitudinal and 
cross-sectional profiles of the bed elevation were 
recorded by single and multi-beam echosounding. 
Bedform data were recorded about twice a day for 
ten days during the flood wave and about every 
three days for the next twelve days. The data were 
processed and classified into primary and second-
ary dunes using the procedure described by Ten 
Brinke et al. (1999). Next to the bedform mea-
surements also the water level, bed material and 
flow velocities were recorded.  

The data from Wilbers (2004) were measured 
during the flood waves of 1995, 1997 and 1998 
using a single-beam echosounder for the 1995 
discharge, a single and multi-beam echosounder 
for the 1997 discharge and a multi-beam echo-
sounder for the 1998 discharge. Both measure-
ments were conducted in the river Rhine near Lo-

bith. Wilbers used a program called DT2D (Wil-
bers, 2004) to calculate the dune characteristics 
from the measured bed elevation profiles. To mi-
nimize the effect of hysteresis only the data from 
the rising limb of the flood waves are taken into 
account. 

Julien et al. (2002) and Wilbers (2004) used 
different methods to calculate dune characteristics 
from measured bed elevations. This means that 
the absolute values from both methods are not 
comparable. Therefore, the data from Julien et al. 
(2002) are used to compute the performance of the 
roughness predictors and the extrapolation of the 
roughness predictors is carried out using the data 
of Wilbers (2004). 

3 METHODS 

To quantify the uncertainty in the bed roughness 
under design conditions, we consider three 
sources of uncertainty. Firstly, the uncertainty due 
to the choice for the roughness predictors. This 
source of uncertainty is further referred to as the 
between roughness predictor uncertainty. Second-
ly, we consider the uncertainty due to the extrapo-
lation of the extreme value distribution. This as-
sumes that the fitted distribution is appropriate to 
describe the data. Thirdly, the uncertainties due to 
the simplifications within the roughness predictors 
are considered. The uncertainties in the measure-
ments of the dune and flow characteristics are in-
cluded in this source of uncertainty. This uncer-
tainty is further referred to as the within roughness 
predictor uncertainty. We quantified all three 
sources of uncertainty and combined them to 
quantify the total uncertainty in the hydraulic 
roughness under design conditions. 

A Generalized Extreme Value (GEV) is fitted 
through the predicted roughness values and extra-
polated to design conditions. To quantify the 
second source of uncertainty, we compute the un-
certainty due to the extrapolation of each rough-
ness predictor. The uncertainty within each 
roughness predictor is computed based on their 
performance for the field measurements and, fi-
nally, the three sources of uncertainty are com-
bined and propagated through the WAQUA model 
to yield the uncertainty in the water levels. 

3.1 Selection of roughness predictors 
Many different roughness predictors exist to com-
pute bed roughness based on characteristics of the 
bed, bedforms and flow characteristics. These can 
be classified in analytical, semi-analytical and 
empirical roughness predictors. The analytical 
predictors (Yalin, 1964; Engelund, 1966) are 
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based directly on the mass and momentum con-
servation laws. The semi-analytical roughness 
predictors (Engelund, 1977; Karim, 1999; Van der 
Mark 2009) are based on the conservation laws, 
but are calibrated to fit measured (flume) data. 
The empirical roughness predictors (Vanoni-
Hwang, 1967; Van Rijn, 1984, 1993; Engelund-
Hansen, 1967, Haque-Mahmood, 1983; Wright-
Parker, 2004) are empirical relations between bed-
form and flow characteristics and measured bed 
roughness. 

The data from Julien et al. (2002) are used to 
compare these roughness predictors for the 1998 
peak flood event in the river Rhine. The measured 
roughness is computed using the Darcy-Weisbach 
friction factor: 

2

8
V
ghS

f b=  (1) 

where g = gravity acceleration, h = water depth at 
river axis, Sb = bed slope, and V = flow velocity. 

3.2 Fitting the extreme value distribution 
The design discharge is a condition that has never 
occurred, therefore, we need to extrapolate the 
predicted roughness values to determine the un-
certainty due to the differences between the 
roughness predictors under design conditions. We 
fit a statistical extreme value distribution through 
the data, because we do not know the characteris-
tics of the bed forms under design conditions. Al-
though, the studies by Julien et al (2002) and Wil-
bers (2004) suggest that bed forms might flatten 
and secondary bed forms might develop, there is 
little knowledge on how this affects the hydraulic 
roughness. Therefore, we extrapolate the pre-
dicted hydraulic roughness to design conditions 
and in this way only include the development of 
the bed forms as far as visible in the available 
measurements. 

We used the historically observed discharges of 
the last 100 years for the river Rhine to generate 
an independent series of roughness values. These 
discharges are the annual maximum observed val-
ues at the location where the Rhine enters The 
Netherlands. 

The first step is to determine a relation between 
the observed discharge and the predicted rough-
ness based on the Wilbers (2004) data. The pre-
dicted roughness is expressed as a Nikuradse 
roughness coefficient, ks, because this coefficient 
is independent of the water depth. This paramete-
rization is carried out by fitting a linear or first or-
der power relation to the predicted roughness val-
ues given the corresponding measured discharge. 
Next, for all historically observed discharge val-

ues, a roughness value is computed based on the 
parameterized relation. 

Secondly, a Generalized Extreme Value (GEV) 
distribution is fitted to the generated series of in-
dependent roughness values for each roughness 
predictor (Coles, 2001). 
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where μGEV, is the location parameter of the GEV 
distribution, σGEV is the scale parameter and κ is 
the shape parameter. The GEV distribution is the 
general case for extreme values. The three types 
of the GEV distribution for κ > 0, κ < 0 and κ = 0 
(Gumbel distribution) have distinct forms of tail 
behavior. The GEV distribution has three parame-
ters and, therefore, three degrees of freedom dur-
ing the fitting procedure. The Gumbel distribution 
has a fixed tail behavior which is linear on a loga-
rithmic x-axis, while for the GEV distribution the 
data themselves determine the most appropriate 
type of tail behavior and there is no need to make 
an a priori judgment about which extreme value 
distribution to adopt (Coles, 2001). 

For each roughness predictor, the optimum 
values for the parameters of the cumulative GEV 
distribution are determined. The fitting of the dis-
tribution is carried out using the “ORCA rou-
tines”, a MatLab package for extreme value statis-
tics (Deltares, 2010) using probability weighted 
moments. The fitted GEV distributions are extra-
polated to the design return period of 1250 years. 

3.3 Uncertainty due to extrapolation 
Next to the uncertainty between the selected 
roughness predictors also the uncertainty due to 
the extrapolation of each roughness predictor af-
fects the uncertainty in the hydraulic roughness. 
The 95% confidence intervals for the GEV distri-
bution are computed by the ORCA-routines using 
a bootstrap technique, given the variances of the 
fitted parameters. The confidence intervals there-
fore assume that the distributions appropriately 
describe the data. To test if this is a valid assump-
tion we use a Probability Plot Correlation Coeffi-
cient test (Stedinger et al. 1993). 

3.4 Uncertainty within roughness predictors 
To quantify the third source of uncertainty, we in-
cluded the variability with the roughness predic-
tors. This uncertainty is caused by the simplifica-
tions of the roughness predictor and the 
uncertainties in the measurements of the bed form 
and flow characteristics. This uncertainty is quan-
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tified by the performance of the roughness predic-
tors for the river Rhine data. We assign a weight 
to the different roughness predictors based on 
their performance for the Julien et al. (2002) data. 
The performances of the roughness predictors, i 
are expressed by the Root Mean Squared Errors 
(RMSE). The weights are then computed by: 
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This equation is a normal standardization, in 
which we take the inverse of the RMSE as a 
measure for the performance, because the rough-
ness predictors with low RMSE values are as-
signed a large weight. We assume a to be one so 
the weights decrease linearly with the value of the 
RMSE. 

3.5 Propagation of uncertainties to the design 
water levels 

The final step is to compute the contribution of 
the uncertain roughness under design conditions 
to the uncertainty in the computed water levels. 
Therefore, a Monte Carlo Simulation (MCS) is 
carried out using a simplified schematization of 
the WAQUA model, which is used for the compu-
tation of the design water levels. The WAQUA 
model is a numerical, two dimensional, depth av-
eraged river model. 

First a model is created with dimensions simi-
lar to those of the river Rhine upstream of the first 
bifurcation in The Netherlands (figure 1). We use 
grid cells of 40 m and the model represents a 
straight river reach of 16 km long. The depth of 
the main channel is 8 m and the dikes are assumed 
to be infinitely high. This new WAQUA model is 
used for the Monte Carlo Simulation, because it is 
faster to simulate than the original WAQUA mod-
el for the Dutch Rhine branches. 

 

 
Figure 1. Cross-section of the new WAQUA model. The 
dimensions are similar to the river Rhine 

MCS consists of a large number of deterministic 
simulations where the uncertain roughness is ran-
domly generated (Morgan and Henrion, 1990). A 
single simulation of this new WAQUA model re-
quires a lot of computational time, therefore, only 
1000 simulations are carried out. The number of 

samples (m) for every selected roughness predic-
tor, i, is computed by: 

ii Nwm =  (4) 

where N=1000 is the total number of samples 
drawn from the distributions. The number of sam-
ples for each roughness predictor are rounded to-
wards the nearest integer, so that the sum of the 
samples equals N. 

The drawn samples from the different distribu-
tions give the combined uncertainties in the hy-
draulic roughness due to the three different 
sources of uncertainty. Subsequently, every sam-
pled roughness value is assigned to the main 
channel in the new WAQUA model as a constant 
Nikuradse roughness, which is independent of the 
water depth. The Nikuradse roughness for the 
floodplains is set constant at 0.6 m, which is ap-
proximately the average of the vegetated flood-
plains in the WAQUA model for the Dutch Rhine 
branches. A simulation is carried out for each of 
the sampled roughness values with a constant de-
sign discharge of 16000 m3/s set as upstream 
boundary condition (Parmet et al. 2001). A con-
stant water level is set as the downstream boun-
dary condition. We used a 60 km long model, be-
cause the downstream boundary condition affects 
the computed water levels and a significantly long 
model is required to reduce the effects of the fixed 
downstream boundary condition. 

4 RESULTS 

4.1 Selection of roughness predictors 
In this study we selected 5 roughness predictors 
that were considered applicable to predict the 
roughness for the main channel of the river Rhine 
under design conditions. Figure 2 shows the per-
formance of ten roughness predictors. It is shown 
that the analytical and semi-analytical roughness 
predictors perform worse than the empirical pre-
dictors. This was expected, because the (semi-
)analytical predictors do not account for variabili-
ty in the bedforms characteristics, because mainly 
flume data was used for calibration. 

Furthermore, figure 2 shows that the Vanoni-
Hwang, Van Rijn, Yalin, Engelund66, Enge-
lund77, Wright-Parker and Haque-Mahmood yield 
the best results. These roughness predictors are 
calibrated partly on field measurements of low-
land rivers, therefore they are assumed to also be 
able to predict the roughness in other lowland riv-
ers, such as the river Rhine. 

We selected the Van Rijn, Vanoni-Hwang, En-
gelund77, Haque-Mahmood and the Wright-
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Parker roughness predictors. The Yalin and Enge-
lund66 roughness predictors are omitted because 
the assumptions of abrupt flow expansion are not 
valid under field conditions. Furthermore, these 
predictors are adapted in the Engelund77 rough-
ness predictor by calibration of the analytical 
roughness predictors on irregular bed forms. The 
Wright-Parker roughness predictor is based on the 
Engelund-Hansen roughness predictor and 
adapted using field measurements. Therefore, the 
Wright-Parker predictor is more appropriate to 
predict bed roughness for the river Rhine. Fur-
thermore, the Karim and Van der Mark roughness 
predictors are not taken into account, because they 
are only calibrated on flume data and perform 
poorly for the data in this case study. 

 
Figure 2. Performance of the different roughness predictors 
for the rising limb data measured during the 1998 peak dis-
charge in the river Rhine, from Julien et al. (2002). The 
straight line represents the line of perfect agreement. 

 
Figure 3. Nikuradse roughness as function of discharge pre-
dicted by the five selected roughness predictors. 

Figure 3 shows the predicted roughness values for 
the data from Wilbers (2004) using the five se-
lected roughness predictors. This figure shows 
that for all roughness predictors, generally, the 
Nikuradse value increases with increasing dis-
charge. This was also expected, because the bed-
forms increase in height and length with increas-
ing discharge. Furthermore, there is a large scatter 
in roughness values, especially for larger dis-
charges. At a discharge near 12000 m3/s, which is 
75% of the design discharge, the predicted rough-
nesses range from 0.22 for the Haque-Mahmood 
roughness predictor to 0.65 for the Engelund, 
1977 roughness predictor. 

Both the Haque-Mahmood and the Wright-
Parker roughness predictor show a concave 
shaped trend of roughness with discharge, while 
the other three roughness predictors indicate a 
more linear increase. Note that only the rising 
limb data of the flood wave is taken into account. 

4.2 Extreme value distribution fitting and 
confidence interval 

Figure 4 shows the fitted GEV distributions for 
the five selected roughness predictors. The fitted 
GEV distributions are extrapolated to the return 
period of 1250 years. The roughness values at the 
design discharge range from 0.36 m for the Ha-
que-Mahmood roughness predictor to 0.92 m for 
the Engelund roughness predictor. The figure 
shows that all hydraulic roughness predictors 
show a clear increase in the hydraulic roughness 
with increasing return periods. However, the GEV 
distributions slightly underestimate the predicted 
roughness values at higher return periods.  

The tail behavior of the GEV is determined by 
the data and not fixed a priori. The trend in the 
GEV distribution shows a convex shape, which is 
expected as dunes flatten with increasing dis-
charge and the roughness is reduced. This is in ac-
cordance with the expectation that the hydraulic 
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roughness does not infinitely grow with increasing 
discharge (Van Rijn, 1984; Julien et al. 1995). 

We carried out a Probability Plot Correlation 
Coefficient (PPCC) test (Stedinger et al. 1993) to 
test if the predicted roughness values could have 
been drawn from the fitted distributions. The 
analysis showed that for the GEV distributions, 
there was no reason to reject these distributions at 
the 95% confidence interval. This means that the 
samples could have been drawn from a GEV dis-
tribution and that the assumption that the data can 
be described by the GEV is valid.  

 

 

 
Figure 4. Fitted GEV distributions for the five roughness 
predictors. The dotted lines show the 95% confidence inter-
val 

Furthermore, figure 4 shows the 95% confi-
dence intervals for the fitted distributions. This 
figure shows that the 95% confidence intervals in-
crease with increasing return period. The width of 
the confidence intervals compared to the extrapo-
lated roughness at the design discharge is about 
50% of the extrapolated roughness value for the 
first four roughness predictors, ranging from 43% 
for the Haque-Mahmood roughness predictor to 
55% for the Engelund77 roughness predictor. The 
width of the confidence interval for the Wright-

Parker roughness predictor is only 18% of the 
extrapolated roughness at design discharge. 

4.3 Monte Carlo Simulation 
Figure 5 shows the samples drawn from the distri-
butions at the design return period for the five 
roughness predictors. The number of samples is 
determined based on the performance of the 
roughness predictors for the Julien et al. (2002) 
data. The number of samples ranges from 121 
samples for the Engelund77 predictor to 292 sam-
ples for the Vanoni-Hwang roughness predictor, 
for a total of 1000 samples.  

Figure 5 shows that with 95% confidence the 
roughness under design conditions lies approx-
imately between 0.32 m and 1.03 m with a mean 
of 0.57 m, which is a range of 71 cm. Further-
more, the smaller 95% confidence intervals for the 
Haque-Mahmood and Wright-Parker roughness 
predictors in figure 4 result in high and narrow 
peaks in figure 5, while the Van Rijn, Vanoni-
Hwang and Engelund77 roughness predictors 
show less high and wider peaks in figure 5. 

Figure 6 shows the uncertainty in the water le-
vels at Lobith (the location of the cross-section). 
This figure shows the sum of five peaks for each 
roughness predictor. The left peak results mainly 
from the Haque-Mahmood and Wright Parker 
roughness predictors. The larger peak on the right 
is the combination of the other roughness predic-
tors that overlap. 

 
Figure 5. Uncertainty within and between roughness predic-
tors for the GEV distributions. The samples are drawn from 
the lognormal distribution at the design return period. 
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Figure 6. Uncertainty in water levels in the river Rhine due 
to uncertain roughness for a constant design discharge. 

The figure shows that the uncertainty in the water 
level has a maximum range of 88.3 cm. If we only 
take a single roughness predictor into account (not 
shown in the figure), this range is approximately 
20 to 40 cm depending on the selected roughness 
predictor. The uncertainty between the different 
roughness predictors, therefore, has a large influ-
ence on the uncertainty in the modelled water le-
vels. Furthermore, Figure 6 shows that with 95% 
confidence the design water level at the observed 
location lies approximately between 16.52 m and 
17.22 m above MSL with a mean of 16.85 m, 
which is a range of 70 cm. 

5 DISCUSSION 

The study by Julien et al. (2002) shows that hyste-
resis has a large effect on the relation between 
roughness and discharge. We corrected for hyste-
resis by taking only the rising limb data of the 
flood wave. However, hysteresis is still present in 
the discharge-roughness relation. There is still a 
constant lag between discharge and bedform 
roughness. This may result in a shift of the aver-
age roughness values and may affect the absolute 
values of the extrapolated roughness and water le-
vels. However, the hysteresis effect results in a 
constant lag and, therefore, does not significantly 
affect the uncertainty around the mean values. In 
further research, however it is recommended to 
account for the hysteresis effect. Furthermore, in 
this study we only considered a constant discharge 
thereby omitting the interaction between varying 
discharge and roughness. However, if in future 
studies we want to be able to compute the rough-
ness under varying discharge, this hysteresis ef-
fect has a significant effect on the bed forms and 
therefore on the computed water levels (see for 
example Paarlberg 2008). 

The uncertainty in the water levels is sensitive 
to the selected roughness predictors that are in-
cluded in the uncertainty analysis and the selected 
distribution used to extrapolate the hydraulic 
roughness to the design discharge. The selection 
of the hydraulic roughness predictors has been 
carried out with care by using only the predictors 
that are valid for the river Rhine. 

The comparison of the predicted roughness 
values to the calibrated roughness in the WAQUA 
model shows that all predicted roughness values 
are larger than the calibrated roughness. This indi-
cates that the other roughnesses in the model, such 
as vegetation roughness or roughness due to 
groynes are overestimated.  

The presented uncertainty analysis shows that 
the uncertainty due to the used roughness predic-
tor significantly contributes to the uncertainty in 
the design water levels. To reduce the uncertain-
ties, more research is required on the physical 
processes in lowland rivers that cause the devel-
opment of bed forms and resulting hydraulic 
roughness. In future research, we recommend to 
include more physical information in the extrapo-
lation of the discharge. More measurements are 
required to give insight in these processes. Effort 
in an improved estimation of the hydraulic rough-
ness can significantly reduce the uncertainties in 
the hydraulic roughness especially under design 
conditions. 

6 CONCLUSIONS 

The aim of this study is to quantify the uncertainty 
due to the hydraulic roughness predictor for the 
river bed in the main channel and assess its effect 
on the uncertainty in the modelled water levels for 
design discharge conditions. This uncertainty con-
sists of uncertainty between different roughness 
predictors, the uncertainty due to extrapolation 
and the uncertainty within each roughness predic-
tor. To quantify the uncertainty between the se-
lected roughness predictors, we selected the Van 
Rijn, Vanoni-Hwang, Engelund, 1977, Haque-
Mahmood and Wright-Parker roughness predic-
tors that are appropriate to predict bed roughness 
for the river Rhine, based on a comparison of the 
performance of these roughness predictors for 
measurements of bed forms characteristics and 
water levels under varying discharge. It is shown 
that different roughness predictors result in a wide 
spreading of roughness values for the same mea-
surements of bedform and flow characteristics. 

The Generalized Extreme Value distribution is 
used to extrapolate the predicted roughness values 
for each roughness predictor to design conditions. 
The Generalized Extreme Values distribution ac-
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counts for the fact that we deal with extreme val-
ues. The three different sources of uncertainty are 
quantified and combined to show that the 95% 
confidence interval of the Nikuradse roughness 
for the main channel of the river Rhine under de-
sign conditions ranges from 0.32 m to 1.03 m, 
which is a range of 56 cm. A Monte Carlo Simula-
tion shows that this result in a 95% confidence in-
terval for the design water levels with a range of 
70 cm. The uncertain hydraulic roughness of the 
main channel has therefore a significant influence 
on the modelled water for the Dutch river Rhine. 
Improving the roughness predictions has the po-
tentials to significantly reduce the uncertainties in 
modelled (design) water levels. 
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