
 
1 INTRODUCTION 

Numerical simulation of high speed flow on steep 
channel is important for the study of sediment 
transport in the upstream rivers of steep slope 
(AGU Monograph 110, 1999). The lifting of large 
rocks and boulders at flood stage often is the con-
sequence of the shock waves (hydraulic jumps) of 
high turbulent intensity interacting with the mov-
able bed. Bank erosion causes the migration of 
sediments from the shore to the main stream. Re-
settlement of sediments on shore occurs in re-
circulating flow region behind large scale feature 
of the shore (Webb et al. 1999). The lateral turbu-
lence exchanges can be determined by reliable 
computational model. The computation must not 
collapse as the water negotiates through the large 
scale and complex features of the channel. It must 
be able to capture the depth-and-velocity disconti-
nuity across the shock waves. It must also allow 
the water to advance and retreat over the dry river 
bed. 

The classical computational fluid dynamics are 
based on the estimate of fluxes on the faces of the 
finite volume. In the computation of waves and 
turbulence in shallow waters, the use of a trun-
cated series to estimate the fluxes can lead to spu-
rious numerical oscillations, negative water depth 
and the subsequent collapse of the computations. 
Such numerical instability problem is most severe 
in regions across the shock waves and at the ad-

vancing-and-retreating fronts of water over dry 
river bed. Chu and Altai (2001, 2002) used blocks 
of fluid and Lagrangian advection of the blocks to 
conduct simulations in a stream-function and vor-
ticity formulation. Tan and Chu (2009a,b, 2010) 
applied the Lagrangian block hydrodynamics 
(LBH) method for one-dimensional (1D) simula-
tion of the waves in shallow-waters using the pri-
mitive variable formulation. Other Lagrangian 
methods such as the method of the particle-in-cell 
(PIC) of Harlow (1964) and the method of the 
smoothed particle hydrodynamics (SPH) of Mo-
naghan (2005) use artificial particles. The LBH 
method uses the real fluid blocks as the computa-
tional elements. Therefore, the kernel function 
used to calculate the interaction force between the 
artificial particles in SPH is not required. In this 
paper, the 1D LBH method of Tan and Chu 
(2009a, b, 2010) is extended for application to 
two-dimension (2D) problems and is applied to 
flood routing. Calculations are conducted using 
the LBH model to determine the advance-and re-
treat of water on dry bed and the macro flow resis-
tance in supercritical and subcritical turbulent 
streams over a wide range of Froude number. 

Lagrangian Block Hydrodynamics of Macro Resistance in a River-
Flow Model 

Lai Wai Tan & Vincent H. Chu 
Department of Civil Engineering, McGill University, Montreal, Quebec H3A 2K6, Canada 

ABSTRACT: A Lagrangian block hydrodynamics model has been developed for the computation of high 
speed river flow in steep channel during the flood stage. The model captures the depth-and-velocity dis-
continuities across the hydraulic jumps and the advance and retreat of water over the dry bed accurately 
with absolute computational stability. Turbulence simulations for a high speed river-flow model are car-
ried out to demonstrate the stability of the computational model. The macro flow resistance of the turbu-
lent shear flow is determined over a range of Froude number varying from Fr = 0.45 to 6.62. 

Keywords: Lagrangian block hydrodynamics, High-speed river flow, Macro resistance, Flood waves 

River Flow 2010 - Dittrich, Koll, Aberle & Geisenhainer (eds) - © 2010 Bundesanstalt für Wasserbau ISBN 978-3-939230-00-7

419



2 LAGRANGIAN BLOCK 
HYDRODYNAMICS 

The Lagrangian blocks are arrays of contiguous 
fluid elements. The transfer of mass and the mo-
mentum in the fluid are carried out in the compu-
tation by staggered systems of blocks. Figure 1(a) 
shows the staggered grid and the relative locations 
of the volume block (hΔxΔy), and the x- and y-
momentum blocks [(ρuhΔx), (ρvhΔy)] on the grid. 
The x- and y-components of the velocity are de-
fined at a distance of ½ Δx to the west and ½ Δy to 
the south of the water depth node, respectively. 
Figure 1(b) shows the advection of the volume 
block and Figs. 1(c) and 1(d) show the advection 
of the momentum blocks. A block of water for 
Lagrangian advection is defined by its water depth 
hL

i and the blocks widths xL
i+1 − xL

i = ΔxL and yL
i+1 

− yL
i = ΔyL. At the beginning of the Lagrangian 

advection, at time t, the blocks fit the Eulerian 
mesh, that is xL

i = xi and yL
i = yi. At the end of the 

advection step, at time t + Δt, ΔxLΔyLhL
i = ΔxiΔyihi 

for volume conservation. 
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Figure 1. (a) The staggered water depth and velocity nodes 
on the Eulerian grid, (b) the volume block, (c)-(d) the x- and 
y-momentum blocks at the beginning and the end of a La-
grangian advection time step. 

The mass and the momentum in the blocks are 
re-casted onto the Eulerian mesh at each computa-
tional time step. For the flood waves in shallow 
water, the forces on the blocks are calculated by 
assuming hydrostatic pressure variation over the 
depth. The edge positions of the blocks xL

i and yL
i 

at time t + Δt are calculated by Lagrangian inte-
gration of the momentum equations: 
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where uL
i = x-component velocity, vL

i = y-
component velocity, So = bottom elevation, g = 
gravitational acceleration, Sf = cf ui |ui|/(2gh) = 
friction slope, and cf = coefficient of bottom fric-
tion. In the Lagrangian reference frame, the posi-
tion xL

i(t) and the velocities uL
i(t) and vL

i(t) are 
functions of time only. A numerical solution is 
possible when the Courant number Co = 
max[uΔt/Δx, vΔt/Δy] is less than unity. This Cou-
rant stability condition is the only condition 
needed for a successful LBH computation. 

3 COMPUTATIONAL STABILITY AND 
ACCURACY 

The most significant advantage of the LBH over 
other computation methods is the computational 
stability. Besides the usual Courant stability re-
quirement, LBH computation is absolutely stable. 
The method is also accurate. Grid refinement stu-
dies have been carried out previously by Tan and 
Chu (2009a,b) to show the convergent of the 1D 
LBH computations toward the exact solutions. 
Validation of the computations has been obtained 
for the dam-break flood waves by Ritter (1892), 
Stoker (1957), Hogg (2006), Ancey et al. (2008), 
and for the runup and overtopping of the collaps-
ing bores by Shen and Meyer (1963) and Pere-
grine and Williams (2001). 

The computational stability and accuracy of the 
LBH is further demonstrated in this paper by the 
following 2D examples that have exact solutions. 

3.1 Oblique Dam-Break Waves 
The first example is the oblique dam-break shock 
wave in a 100 m × 100 m square basin. The initial 
water depth upstream is ho = 10 m and the down-
stream water depth hd = 1 m. The removal of a 
dam along the diagonal of the basin causes the 
water on the upstream to advance on a wet bed. 
Figures 2(a)-2(c) show depth contours obtained by 
the LBH computation for time t = 0.1 s, 2.5 s and 
4.0 s, respectively. Figures 2(d) and 2(e) compare 
the depth and velocity profiles computed by the 
LBH method. The circles denote the exact solu-
tion of Stoker (1957). The LBH computation is 
denoted by the solid line. The exact solution hs/ho 
= 0.396 is accurately captured without using any 
shock capturing scheme. Figure 2(f) shows the 
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convergence towards the exact solution as the 
block is refined follows the first-order accuracy in 
the sense of Celik et al. (2008). 
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Figure 2. (a-c) Simulated water depth contours of oblique 
dam-break waves on wet downstream depth using mesh size 
Δx = 0.04 m, (d-e) cross-sectional profile A-A at time t = 
2.5 s, (f) LBH convergence towards Stoker (1957) solution. 

3.2 Standing Waves in Parabolic Bowl 
Figure 3 shows the 2D LBH computation of the 
standing wave in a parabolic bowl. The motion is 
initiated by a parabolic mound of water.  The wet-
ting and drying on the surface of the bowl is a 
challenging numerical computation. At the wave 
front, numerical oscillations can produce negative 
water depth, and subsequently lead to computa-
tion breakdown. The 2D LBH has been able to 
simulate infinite number of cycles of flow oscilla-
tions as the water advances and recesses on the 
surface of the parabolic bowl without any sign of 
numerical instability. 

4 CONCEPTUAL RIVER-FLOW MODEL 

The capability (i) to track the advancing-and-
retreating fronts on dry bed and (ii) to capture the 
depth-and-velocity discontinuity across the shock 
waves, has made the 2D LBH an ideal computa-
tional method for the routing of the high-speed 
flood waves in steep river channel. Simulations 
are conducted to demonstrate the capability of the 
method using a conceptual river-flow model as 
shown in Fig. 4. The width and length of the com-

putational channel are B and L, respectively. An 
array of spur dikes lines the side of the channel. 
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Figure 3. Water depth h and velocity u in the parabolic bowl 
of an initial 2 km radius as computed by the block advection 
using Δx = Δy = 5 m are shown at a time interval of one-
sixth cycle. The computed profiles on the plane of symmetry 
y = 0 are the solid line. The exact solution of Thacker 
(1981) is denoted by the circle symbol. 
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Figure 4. Conceptual river-flow model for LBH simulation.  
The macro resistance is produced by lateral exchanges of 
fluids between the main flow and the array of shoreline fea-
tures. 

The basins between the dikes are squares. The 
dimension of the square basins, K, is the only 
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length scale that characterizes the macro resis-
tance. The flow is repeated over the length L using 
the periodic boundary conditions. This highly 
idealized river-flow model is designed for ease of 
computation and the generalization of the compu-
tation results. 

4.1 Flood Water into Dry Cavities 
The advance of flood water into dry cavity is the 
first flood routing problem computed by LBH us-
ing the conceptual river-flow model. Figure 5 
shows the water depth and vorticity profiles of the 
river over a period of time. The initial water depth 
in the main channel is ho = 6 m and the initial ve-
locity is Uo = 10 m/s. The basins are initially dry. 
The flow in the main channel is supercritical with 
a Froude number Fr = 1.30. Despite the high 
speed of the supercritical flow, the LBH has been 
able to simulate the advance of the water into the 
dry basins with absolute computational stability. 

4.2 Macro Flow Resistance 
The resistance to the flow on the one hand is de-
pendent on the bottom friction coefficient cf. It al-
so is dependent on the macro resistance produced 
by the channel features such as the flood plains, 
spur dikes and bends along the channel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The “macro resistance” to flow depends on the 
size and shape of the “macro roughness” and has 
to be determined case by case by calculating the 
flow around the macro roughness.   The real river 
channels however are variable in space and time 
due to erosion and deposition of sediments along 
the channel (Web et al. 1999). A reliable compu-
tational model should be able to determine not on-
ly the flow but also the morphological changes to 
the channel. 

To demonstrate the existence of macro resis-
tance, LBH simulations have been conducted for 
the conceptual river-flow channel. The Reynolds 
stresses at the junction between the macro rough-
ness and the main channel flow has been com-
puted and correlated with two dimensionless pa-
rameters: bed-friction number S = cfK/h and 
Froude number Fr = U/(gh)½. The bed-friction 
number characterizes the effect of the bottom fric-
tion and the Froude number on the effect of gravi-
ty-wave radiation. Both the bed-friction and the 
radiation of waves can have significant effect on 
the shear instabilities as demonstrated by the sta-
bility analysis by Pinilla and Chu (2008, 2009a,b).  

 The LBH simulations of the waves and turbu-
lence around the macro roughness in the concep-
tual river-flow channel has been carried out for 
two water depths ho = 1 cm and 6 cm, two channel 
slopes So = 0.1 and 0.01 and a range of different 
bottom friction coefficients cf = 0, 0.08 and 0.008.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Advance of flood waters onto the dry cavities at time t = 0.2 s to 0.8 s; (a) water depth h and (b) vorticity ω profiles 
of the flow of initial water depth ho = 6 m, initial velocity Uo = 10 m/s and initial Froude number Fr = 1.30; the bed slope So = 
0.1, the bottom friction coefficient cf = 0 and macro roughness K = 5 m. 
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The bed-friction number varies over the range 
from S = 0 to 0.413. The Froude number varies 
over the range from Fr = 0.45 to 6.62. Table 1 
summarizes the conditions of the simulations.  

Figures 6 and 7 show the dilation and vorticity 
profiles obtained by LBH for two of the simula-
tions. One is for the flow on a mild slope with So 
= 0.01, Fr = 1.06 and the other on a steep slope 
with So = 0.1, Fr = 2.68. Besides the coherent tur-
bulence, the breaking gravity waves are observed 
and have played a significant role in determining 
the macro resistance in both of these simulations. 
Breaking waves in the form of shock waves are 
observed in the supercritical flow with the high 
Froude number. 

4.3 Lateral Resistance Coefficient 
Once the flow velocity is computed, it is divided 
into mean and fluctuating parts: u = U + u’, v = V 
+ v’. The lateral exchanges of the momentum -
ρ<u’u’>, -ρ<u’v>, and −ρ<v’v’> are evaluated 
subsequently. The exchange at the junction be-
tween the cavities and the main flow where y = K 
determines the lateral resistance coefficient CLR, 
which is as follow: 
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where -ρ<u’v’>y = K = Reynolds stresses obtained 
by averaging along the flow at the junction where 
y = K, and U = mean velocity of the main flow. 
 
Table 1. LBH simulations for subcritical and supercritical 
flows with B = 20 cm and K = 5 cm  

ho 

(cm) 
So cf UQS (cm/s) Fr 

S 
=cfk/ho 

CLR 

1 0.01 0 65.11 2.09 0 0.060 
1 0.01 0.008 39.82 1.28 0.041 0.056 
1 0.01 0.080 15.12 0.49 0.413 0.024 
1 0.1 0 207.61 6.62 0 0.011 
1 0.1 0.008 128.36 4.08 0.040 0.046 
1 0.1 0.080 48.19 1.55 0.408 0.042 
6 0.01 0 80.66 1.06 0 0.018 
6 0.01 0.008 65.95 0.87 0.007 0.020 
6 0.01 0.080 34.04 0.45 0.068 0.030 
6 0.1 0 204.13 2.68 0 0.069 
6 0.1 0.008 183.20 2.41 0.007 0.072 
6 0.1 0.080 106.81 1.40 0.068 0.055 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Dilation Θ and vorticity ω profiles for the river flow of water depth ho = 6 cm, slope So = 0.01, bottom friction coef-
ficient cf = 0, and Froude number Fr = 1.06. 
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Figure 7. Dilation Θ and vorticity ω profiles for river flow of water depth ho = 6 cm, slope So = 0.1, coefficient of friction cf = 
0, and Froude number Fr = 2.68. 
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Figure 8. (a-l) Reynolds stresses <u’v’ >/U2 obtained for flows in ascending order of Froude number, (m) lateral resistance 
coefficient CLR dependence on Froude number Fr, and (n) later resistance coefficient CLR dependence on bed-friction number 
S. 
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The Reynolds stresses and the lateral exchange 
coefficients obtained from the presented series of 
simulations are correlated with the bed-friction 
number and the Froude number. These correla-
tions are shown in Fig. 8. Since the macro rough-
ness is large compared with the width of the 
channel in these simulation, the strong depend-
ence on the Froude number is expected. The ra-
diation of waves from the shear flow may explain 
why the significance of the Froude number on the 
exchanges.  

5 CONCLUSIONS 

The tracking of flood waves on dry land and the 
capture of the depth-and-velocity discontinuities 
across the breaking waves has been carried out by 
the Lagrangian block hydrodynamics (LBH) with 
absolute computational stability. The phenomenon 
of the lateral exchanges due to macro roughness is 
complex. The results in this paper show only the 
capability of the LBH method. Nevertheless, the 
simulations have suggested how the method can 
deal with flood routing problems of even greater 
complexity.  

The stability of the method is an advantage over 
other computation methods in negotiating waters 
through the complex bathymetry in steep channel 
flows. The LBH method is also accurate as dem-
onstrated in the simulations of (i) the advancing-
and-retreating front over the dry bed in a parabolic 
bowl, and (ii) the oblique shock waves in the 
square basin and their comparison with the exact 
solutions in this paper. Not only the method is 
successful in the simulation of surface water 
waves the method is also capable of simulating 
turbulent flows. The results presented in this paper 
have shown how turbulence is simulated around 
the macro roughness so that the lateral resistance 
of the roughness in both the subcritical and super-
critical turbulent shear flows is computed by 
LBH.  

Laboratory investigation is part of the overall 
project to study the lateral exchanges in steep 
channel flow of complex geometry. The analysis 
of the laboratory data has not been completed. 
However, the numerical simulations of the flows 
are available. Figure 9 shows one of the simula-
tion results carried out for the conditions of the 
flow and the dimensions of the channel in one of 
the laboratory experiment. Qualitative agreement 
between simulation and laboratory has been ob-
served. The quantitative verification of the LBH 
model against the laboratory data should be ready 
by the time this paper is presented in the confe-
rence. 
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Figure 9. Dilation Θ and vorticity ω profiles for the channel flow of water depth ho = 0.69 cm, slope So = 0.0001, coefficient 
of friction cf = 0.008, and Froude number Fr = 0.55. The width of the main open-channel flow is 1.41 m. The dimension of the 
square basin on the side of the main channel flow is 0.45 m. 
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