
 
1 INTRODUCTION  

In recent years free-surface flow models have 
been increasingly developed using explicit 
schemes. Because the result of numerical models 
behave better when used to simulate flows with 
sharp gradient free surfaces, such as dam-break 
flows (Namin et al. 2004). Several techniques 
have been published in the literature concerning 
the use of the finite volume method to solve the 
shallow water equations to model free surface 
flows. Shock capturing techniques in the frame-
work of finite volume discretisation, especially 
Godunov type methods, have recently drawn more 
attentions. At least five approximate Riemann 
solvers i.e. Roe, FVS, Osher, HLL and HLLC can 
be found in the literature, all of which are based 
on the characteristics theory (Toro, 2001). Zoppou 
and Roberts (2003) examined explicit conserva-
tive schemes for the solution of the one dimen-
sional homogeneous shallow water equations. In 
the conclusion, for the ease of implementation, ef-
ficiency and robustness, the HLLC and Osher 
schemes have been recommended for first-order 
schemes. Also in comprehensive study of Erduran 
et al. (2002), the performance of the approximate 
Riemann solvers has been evaluated according to 
five criteria including ease of implementation, ac-
curacy, applicability, simulation time and stabili-
ty. Finally, HLL and HLLC method were deter-

mined as the high-ranked schemes in terms of 
ease of implementation. It was highlighted that a 
first-order accurate solution algorithm using either 
Osher or HLLC schemes can be recommended for 
the simulation of all kinds of applications.  

There have been a number of studies, aimed at 
developing numerical models to predict dam-
break flows. Fraccarollo and Toro (1995) utilized 
a numerical model using a shock-capturing me-
thod of Godunov type. They used HLL method for 
modeling fluxes at the cell interface and TVD 
WAF method for achieving the second order accu-
racy. They compared the numerical model with 
their experiments of dam-break flow. Soares-
Frazão and Zech (2002) used numerical simula-
tions of the flow with three Roe-type finite vo-
lume schemes, including 1D, 2D and the hybrid 
approaches. They compared the results of numeri-
cal models with their experimental data for the 
dam break waves in a channel with a 90˚ bend. 
Valiani et al. (2002) simulated the flood wave us-
ing a Godunov-type method. In the model, the lo-
cal Riemann problem is solved by the HLL me-
thod. They used the TVD MUSCL technique in 
order to achieve second order accuracy in space 
and also time. They utilized the model for simulat-
ing Malpasset dam-break. Yu-chuan and Dong 
(2007) simulated dam-break flows in curved 
boundaries by the finite-difference method, in a 
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channel-fitted orthogonal curvilinear coordinate 
system. 

In this paper, the HLLC approximate Riemann 
solver is selected for computing the fluxes in the 
interface of the cells. In order to achieve second-
order accuracy, the Weighted Average Flux 
(WAF) method which was introduced by Toro 
(1989) is used. The following part consists of how 
to develop a two dimensional finite volume mod-
el. Then the model is verified by dam-break with a 
left dry bed and partial dam-break through a sluice 
gate. Then the model is applied for the dam-break 
in channel with 90◦ bend (CADAM test). 

2 NUMERICAL MODEL 

2.1 Governing equations 
Under the assumption of hydrostatic pressure, and 
neglecting the diffusion terms and Coriolis and 
wind effects, the obtained two-dimensional model 
of depth averaged shallow water equations ap-
pears as: 
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where h = water depth, u, v = depth-averaged ve-
locity components in the x and y directions, g = 
acceleration due to gravity, Sox, Soy= bed slopes in 
the x and y directions, S f x , S f y = friction terms in 
the x and y directions, respectively (Valiani et al., 
2002). 
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where n = Manning’s roughness coefficient. 

2.2 Discretisation  
The computational domain is divided into a set of 
quadrilateral finite volumes. Then the governing 
equations are integrated over each control volume, 

which yields by application of the divergence 
theorem: 

 
Figure 1. Generic control volume and notations  
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where THFUG ),()( = , ni =the unit normal 
vector outward from control volume that is shown 
in Figure 1. Equation (4) can be rewritten as: 
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where ΔV= the area of each control volume, 
m= the number of cell sides, dsij =the length of 
side j. The Rotational Invariance Property is uti-
lized between F and H over each side (Toro, 
1992): 
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Consequently, in order to compute the fluxes in 
the cell interface, the local one-dimensional Rie-
mann problems are utilized in the normal direc-
tions of the cell sides. Which F(TnijUi, TnijUj) is 
resolved via an HLLC method. The numerical 
flux of HLLC, Fi+1/2, evaluated as follows (Toro et 
al., 1994): 
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where SL, S* and SR are the speeds of the left, 
contact and right waves, respectively that is 
shown in Figure 2, and FL=F(UL), FR=F(UR), UL 
and UR are the left and right Riemann states of a 
local cell interface, respectively, F*L and F*R are 
the numerical fluxes in the left and right sides of 
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the star region of the Riemann solution which is 
divided by a contact wave (Toro et al., 1994). 

 
Figure2 Wave structure of HLLC Riemann solver 

In order to achieve second-order accuracy, the 
WAF method was selected. The WAF scheme, as 
being second-order accurate in space and time, 
produces spurious oscillations near steep gra-
dients, and so needs TVD stabilization. According 
to TVD WAF scheme the flux at the cell interface 
is calculated by the relation (Toro, 1992): 
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where )(
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k
iA +  is a WAF flux limiter function. 

There are various choices for computing the limi-
ter function in the present model such as Super-
bee, Van Leer, Van Albada and Minbee limiter 
functions (Toro, 2001).  

In modeling the bottom slope source terms, the 
numerical pointwise treatment of So is not so dif-
ficult if the bottom slope in the x and y directions 
can be easily determined. However, generally the 
four vertices of each cell do not lie on the same 
plane; therefore the slope of the cell is not trivially 
computable. To avoid this problem, the technique 
has been developed by Valiani et al. (2002) is 
used. 

3 MODEL TESTING 

3.1 Dam break problem with left dry bed 
The test has been designed by Toro (2001). The 
computational domain is a channel 50 m long, unit 
width, frictionless and horizontal bed. The down-
stream section of the dam is dry in this test case. 
Let hL=0, hR=1 m, uL=0 and uR=0, depth and ve-
locity in the left and right side of x0=30 m which 
is the position of initial discontinuity. In Figure 2, 
the model results and analytical water surface pro-
files are shown at t= 4 s. The solution consists of a 
single right rarefaction wave, with the wet/dry 
front attached to the tail of it. The propagation of 
wet/dry front at the correct speed is one major dif-

ficulty of numerical methods. In a real application 
in which such fronts are to be propagated by sev-
eral kilometers, the propagation speed and thus 
the predicted wave arrival time will suffer from 
considerable errors (Toro, 2001). The model result 
is shown in Figure 2 by the TVD WAF scheme 
with Superbee limiter function. The model has a 
good agreement with analytical solution especial-
ly in the beginning of the rarefaction part that is 
indicated by a circle in Figure 2. Most of the 
models with the second order accuracy are more 
diffusive in this part. 
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Figure 3. Dam-break problem with left dry bed 

3.2 Partial Dam-break through a sluice-gate 
The aim of this test case is to study the capacity of 
the present model to simulate the front wave 
propagation over a dry bed. The spatial domain is 
a 200×200 m2 flat region (Figure 4).  
 

 
Figure 4. Partial dam-break layout (Loukili and Soulaïmani, 
2007) 

The bottom is frictionless. The computational 
domain is a 40×40 square mesh. The upstream 
discharge is zero. The initial water levels are 10 m 
upstream and 0 m in downstream. The asymmetric 
breach is 75 m wide. There is no analytical refer-
ence solution for this test case, but in the literature 
numerical results of various authors are available 
e.g. Mingham and Causon (1998), Loukili and 
Soulaïmani (2007). Figures 5 and 6 show the re-
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sults of present model for water surface and water 
depth contours. The duration of the simulation is 
7.2 s. Figure 7 shows the water depth contour of 
Loukili and Soulaïmani (2007). The present model 
result shows a good agreement with the published 
results. 

 

 
Figure 5. Results of present model for water depth contour 

 
Figure 6. The results of present model for water surface 

3.3 Dam-break in channel with 90◦ bend 
This test problem is the experimental case de-
signed by Soares-Frazão et al. (1998) for verifying 
the capability of numerical methods to simulate 
dam-break flows. The flow domain consists of a 
square reservoir and L-shaped channel as shown 
in Figure 8. The bottom level of the channel is 
0.33 m higher than the bottom level of the reser-
voir, which means that there is a step at the en-
trance of the channel. Initially, the water depth 
was 0.53 m in the reservoir which is separated by 
a gate from the channel and then the gate is sud-
denly opened to produce a dam-break situation. 
The water depth in the channel was set to 0.01 m. 
Taking into account the effect of the bottom and 
the chute walls the average friction coefficient in 

the calculation is taken equal to 0.011 s.m-1/3 
(Prokof’ev, 2002). 
 

 
Figure 7. Results of Loukili and Soulaïmani for water depth 
contour (Loukili and Soulaïmani, 2007) 

The variation of water surface elevation with 
time is compared with the experimental data at the 
different gauge positions as shown in Figure 9. 
The comparison of results for gauge P1 is satisfac-
tory as it shown in Figure 9 (a). It shows that the 
numerical model computes the right discharge 
coming in to the channel. Figure 9(b) shows the 
arrival of the first shock traveling downstream of 
the reservoir and the arrival of the second shock 
reflected from the channel bend. The agreement 
for the second shock is very good. However, there 
are differences at P3 and P4 for the arrival of 
second shock. At most gauge positions, there is 
good agreement between the present model results 
and the experimental data. The deviation between 
the model results and experimental data may be 
due to the local head loss caused by sudden 
change in flow geometry at the entrance to the 
channel and due to eddy losses, which are not tak-
en into account in the numerical computations.  

 

 
Figure 8 Plane view of Channel with 90° bend (dimensions 
in cm) (Prokof’ev, 2002) 
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(f) P6  
Figure 9. Dam-break flows on wet bed at different gauges 

It is reported some discrepancy between the re-
sults of numerical models and the experimental 
data at the gauge stations P2 and P5 by previous 
researchers such as Prokof’ev (2002). However, 
the results of the present model at the mentioned 
stations are good agreement with experimental da-
ta which can be caused by good accuracy of TVD 
WAF method as mentioned in section 3.1. 

4 CONCLUSIONS 

A two dimensional finite volume model has been 
developed based on shallow water equations. In 
the current study the TVD WAF method with 
second order accuracy both in space and time has 
been used for modeling fluxes at the interface of 
the cells. Model verification has been made by 
comparison of the model results with analytical 
and numerical solutions. Comparison of the two 
set of results represent a reasonable degree of si-
milarity. Finally, the model was applied to one of 
CADAM test and the results of numerical model 
compared with measurements. The results of 
present model indicate that: 
- The model is applicable when the bed is dry. 
- The model has a good agreement in the begin-
ning of the rarefaction wave in 1-D dam break 
problem. 
- Comparison of the model results and experimen-
tal data in different gauge stations in channel with 
90˚ bend shows that the model operates well in 
predicting the wave caused by dam-break. 
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