
 
1 INTRODUCTION  

The propagation of a dam-break wave over a mo-
bile bed has been the subject of several research 
studies in the last few years. Due to its very rich 
and complex behavior, the propagation of dam-
break waves over a mobile bed has recently 
gained the status of a standard benchmark for de-
veloping innovative solid transport models (e.g. 
Zech et al., 2004). From a physical point of view, 
the special features of the process suggest aban-
doning the hypothesis of immediate adaptation of 
solid transport to changes in hydrodynamics in fa-
vor of adopting non-equilibrium formulations, 
which are likely to provide a more accurate de-
scription (Fraccarollo & Capart, 2002, Greco et 
al., 2008). From the numerical standpoint, the ac-
curate tracking of the water and bed wave-fronts 
requires adequate numerical schemes (e.g. Fracca-
rollo et al., 2003). 

However, the development of new morphody-
namic models (two-layers or two-phases) remains 
a difficult task due to the complexity of the eigen-

structure. The main aim of the present work is to 
present a way to circumvent this difficulty by us-
ing a recent innovative numerical scheme. 

A two-phase morphodynamic model (Greco et 
al., 2008) has been considered here to simulate 
dam break on a mobile bed. The implementation 
using classic upwind methods remains a challeng-
ing task due to the complexity of the use of the 
Riemann solvers in multi-phase flow problems. 
Hence, the present study employs the GMUSTA 
method by Toro & Titarev (2006) to compute the 
numerical intercell fluxes. This method is consi-
derably simpler and avoids the necessity of solv-
ing a generalized Riemann Problem. 

GMUSTA is a first-order multi-stage centered-
scheme meant to be capable of reproducing the 
high accuracy of upwind schemes while keeping 
the simplicity and generality of centered schemes. 
It calculates the intercell fluxes as a particular av-
erage of symmetric fluxes, namely a weighted av-
erage of the Lax-Friedrichs and Lax-Wendroff 
fluxes (GFORCE flux), passing through predictor 
and corrector steps (MUSTA approach).  
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Simulations of laboratory experiments from the 
literature have been carried out using a one-stage 
GMUSTA method. The numerical results ob-
tained with GMUSTA have been compared 
against measured experimental data and numerical 
results given by a second-order accurate finite vo-
lume implementation of the same mathematical 
model, which requires a numerical viscosity in or-
der to damp spurious oscillations. 
It will be shown in the following that the numeri-
cal results obtained through a one-stage MUSTA 
implementation show a good agreement with the 
experimental results. A significant improvement is 
also achieved with respect to the classical upwind 
method in terms of simplicity and computational 
efficiency. 

2 THE MORPHODYNAMIC MODEL 

2.1 The Model 
The morphodynamic model proposed by Greco et 
al. (2008) is used here. It is a two-phase model, 
whose equations express mass and momentum 
conservation with reference to water and sedi-
ments separately. Here these equations are written 
in a 1D framework for sake of simplicity. 

Conservation of total mass and of sediment 
mass leads to: 

( ) 0SQ Qh Z
t x t

∂ +∂ ∂
+ + =

∂ ∂ ∂
 (1) 

(1 ) 0SQ Zp
t x t
δ ∂∂ ∂

+ + − =
∂ ∂ ∂

  (2) 

in which t is time, x is the abscissa, Q and Qs are 
the water and the solid discharge for unit width, 
respectively, h is the total flow depth, Z is the bot-
tom elevation above a datum, δ is the ratio of se-
diment volume to base area and p is the bed po-
rosity. 

Water and sediment momentum equations are 
written separately: 
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where Sf and Ss denote the water and sediment 
momentum source/sink terms, respectively, g is 
gravity, ρ and ρs are the water and sediment den-

sity, respectively, Δ = (ρs-ρ)/ρ and C is the solids 
concentration (assumed as a constant). 

The water source term Sf  is computed as the 
sum of the bottom friction (evaluated using a uni-
form flow formula like Chezy’s) and the drag ex-
changed between the two phases:  

2

2

1w
f

h

U DragS
C ghρ
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⎝ ⎠
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where Uw is the average water velocity, Ch is the 
non-dimensional Chezy coefficient, Drag is the 
drag force exchanged between the two phases.  
The corresponding solid source term Ss accounts 
for drag exchange and the collisional shear stress 
computed, after Bagnold, as a coefficient α mul-
tiplied by the square of the particle velocity Us: 

2
s s

s

DragS Uα
ρ

= − . 

The fifth and last equation relates the bottom 
evolution to the mass exchange with the flow, eb 
and reads: 

b
Z e
t

∂
= −

∂
 (5) 

A closure relation for the entrain-
ment/deposition term eb is then required. Greco et 
al. (2008) assumed that entrainment occurs due to 
the unbalance among the sum of stresses exerted 
on the bed by water phase (Chezy) and solid 
phase (Bagnold) and the attrition among solid par-
ticles belonging to the bed: 

( ) max( , )
w s b

b
sc s s s

e
c w U

τ τ τ
ρ ρ

+ −
=

− ⋅
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where 2 2= /w w hU Cτ ρ  and 2
s s sUτ ρ α=  are, re-

spectively the stresses exerted by the water and by 
the solid phase and ( )  b s g tgτ ρ ρ δ ϕ= −  is the at-
trition among solid particles belonging to the bed, 
with Csc an empirical coefficient determined by 
calibration, ϕ   the sediment friction angle and ws 
the particle free fall velocity. 

Model parameters are then the drag coefficient 
(Cd) that accounts for momentum transfer between 
water and solid phases, the Bagnold α coefficient, 
the non-dimensional Chezy coefficient (Ch) and 
the internal friction angle (ϕ). More details are 
given in the original paper by the Authors (Greco 
et al., 2008). 
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2.2 Eigenstructure of the Model 
Equations (1) – (4) are a system of conservation 
laws since equation (5) can be substituted in (1) 
and (2). They can be written in the conservative 
matricial form as 

Qt + Fx (Q) = S(Q),   (6) 

where: 
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are, respectively, the vector of conserved va-
riables, the vector of fluxes and the vector of 
source terms. Qt and Fx(Q) are, respectively, the 
time derivative of the vector of conserved va-
riables and the space derivative of the flux vector. 
As demonstrated in the paper by Greco et al. 
(2008), the model (1) – (4) is strictly hyperbolic 
and its eigenvalues are: 

 
 

 
where Uw and Us are water and solids phases ve-
locities and rF  and SrF  are peculiar Froude num-
bers: 
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Because of the hyperbolicity of this system of eq-
uations, numerical methods for conservation laws 
can be applied for the numerical integration of the 
model (Toro, 2009).  

3 GMUSTA METHOD  

3.1 Selection of the method 
Application of conservative Godunov schemes for 
solving systems of conservation laws requires the 
use of a suitable Riemann solver. However this 
task can be quite involved in multi-phase prob-
lems due to the complexity of the eigenstructure 

of the model, such as the one presented in section 
2.2. In fact for 2-equation problems, such as clear-
water dam-break wave propagation over a fixed 
bed, it is easy to identify the so-called “star re-
gion” and, therefore, the solution of the Riemann 
Problem. However, when the number of equations 
is higher, this may become quite complicated. 
Moreover the coupling between the two phases 
(solid and liquid) renders the task of writing Rie-
mann invariants very difficult. 

Thus, numerical techniques which avoid the 
solution of the Riemann Problem in the conven-
tional sense appear more appropriate in terms of 
the simplicity of their implementation and their 
computational efficiency. Centered schemes allow 
the resolution of the Riemann Problem to be 
avoided, but they are in general not as accurate as 
upwind methods, which are widely considered, 
within the class of existing monotone first-order 
fluxes, the best in terms of accuracy (Toro, 2009). 
However, the superior accuracy of upwind me-
thods comes at the cost of the necessity of solving 
exactly or approximately the Riemann Problem. 

The GMUSTA method (Toro & Titarev, 2006) 
is a first-order centered scheme, which achieves 
the accuracy of upwind methods by incorporating 
the GFORCE flux into the MUSTA approach us-
ing predictor and corrector steps. 

Since the eigenstructure of the system (1) - (4) 
of non-linear hyperbolic equations is not com-
pletely available, the application of the GMUSTA 
method is of great utility in this case. The scheme 
may be interpreted as an “unconventional approx-
imate Riemann solver” that has simplicity and ge-
nerality as its main features. 

3.2 Description of the method 
The finite volume scheme to solve the generic 
m×m one-dimensional homogeneous system of 
hyperbolic conservation laws, given as 

Q F (Q) 0t x+ = ,  (7) 

where Q is the vector of the m conserved variables 
and F(Q) the corresponding vector of fluxes, 
reads: 

[ ]1
1/ 2 1/2Q Q F Fn n

i i i i
t
x

+
+ −

Δ
= − −

Δ
,  (8) 

in which i is the cell index, n is the time index, 
tΔ is the time step and xΔ the space step. 
Given two adjacent data states Qi

n and Qi+1
n, 

the corresponding intercell numerical flux Fi+1/2 at 
the interface 1/ 2+i  is evaluated as a GFORCE 
flux (Toro, 2006), a weighted average of the Lax-
Friedrichs and Lax-Wendroff fluxes. It is then in-
corporated in the framework of the MUSTA ap-
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proach, resulting in a version of the method called 
GMUSTA. 
The GFORCE flux is given by: 

( )1/ 2 1/ 2 1/ 2F F 1 FGFORCE LW LF
i g i g iω ω+ + += ⋅ + − ⋅ , (9) 

where: 

( )1/ 2 1/ 2F F QLW LW
i i+ +=  

is the Lax-Wendroff flux, with: 
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x
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is the Lax-Friedrichs flux, with ωg ( )1/ 1 CFL= + , 
where CFL is a prescribed Courant number such 
that 0  1≤ ≤CFL . 

In the MUSTA multi-stage approach, the nu-
merical flux Fi+1/2 for the conservative scheme is 
found by first approximating numerically the solu-
tion of the corresponding Riemann Problem to 
produce two modified states on either side of the 
cell interface (predictor step). In the corrector 
step the intercell numerical flux is corrected by 
evaluating a numerical flux function at the two 
modified states of the predictor step.  

The solution of the Riemann Problem is ap-
proximated numerically through a separate, inde-
pendent mesh called the MUSTA mesh, on a 

τ−d  plane of independent variables, where d de-
notes the spatial variable, associated with x, and 
τ denotes the temporal variable, associated with t.  

In Figure 1 the separate frame in the 
τ−d plane corresponding to the interface xi+1/2 is 

represented. The −d axis is discretized into an in-
teger number of M cells of regular size Δd . The 
states Qi

n and Qi+1
n are associated with the mesh 

points 0 and 1: the cells i and 1+i  in −x t plane 
correspond, respectively, to cells 0 and 1 on the 
MUSTA mesh, so that the intercell position 

1/ 2+i  corresponds to the interface 1/ 2 . 
 
 
 
 

 
 
 
 
 
 
 

Figure 1. Correspondence between the computational and 
MUSTA meshes in the MUSTA approach. [Toro & Titarev, 
2006] 

The initial condition for the numerical problem on 
the MUSTA mesh is: 

(0)

1

Q       if  0
Q

Q    if  1

n
i

l n
i

l

l+

⎧ ≤⎪= ⎨
≥⎪⎩

,  (10) 

where l is the cell index. 
The τ − time evolution of the problem (or multi-
staging) is performed via the conservative 
scheme: 

1
1/ 2 1/ 2Q Q P Pk k k k

l l l l
t
d

+
+ −

Δ ⎡ ⎤= − −⎣ ⎦Δ
,  (11) 

where τΔ is the time step in the MUSTA mesh and 
P(VL,VR), is a two-point monotone numerical flux 
for the MUSTA mesh, called the predictor flux.  
One usually takes 1Δ =d . The MUSTA time step 

τΔ  is computed as τΔ =  Cmusta Δd / Smusta
(k), 

where Cmusta is the CFL coefficient and Smusta
(k) is 

the maximum signal speed in the MUSTA mesh at 
stage k. In the examined problem, in particular,  

 Smusta
(k) 11w

r

U
F

⎛ ⎞
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⎝ ⎠
 

After a total number of stages K, i.e. K+1 time 
steps along theτ axis, the predictor procedure 
yields two new states Q0

(K) and Q1
(K) on either side 

of the cell interface in the MUSTA mesh, which 
are evolved from the initial states Q0

(0) =  Q1
n and 

Q1
(0) =  Qi+1

n. 
For a sufficiently large number of stages and a 

convergent scheme (11) one would obtain an ap-
proximation to the solution of the Riemann Prob-
lem at two positions left and right close to the in-
terface position, not at the interface itself. In order 
to obtain a numerical flux at the interface itself a 
corrector stage is performed, whereby the evolved 
data (Q0

(K), Q1
(K)) is resolved via a two-point, mo-

notone numerical flux C(VL,VR), called the cor-
rector flux. In this manner the sought intercell 
numerical flux Fi+1/2 for use in the conservative 
scheme (8) is found: 

( )( ) ( )
1/ 2 1/ 2 0 1F C Q ,QMUSTA K K K

i
−

+ = . 

In this paper the number of multi-stages K cho-
sen for the calculation is equal to 1 (i.e. GMUS-
TA-1), as suggested by Toro & Titarev (2006) for 
practical applications. The gains to be obtained by 
using 2 or 3 stages (GMUSTA-2 and GMUSTA-
3) do not seem to justify the extra expense in cal-
culation. 

The GMUSTA 1−  scheme is illustrated in Fig-
ure 2. The initial data is prescribed in the domain 
of just two cells, namely 0l = and 1l = . The 
boundary fluxes P-1/2

(0) and P3/2
(0) are computed on 

the initial data, namely P-1/2
(0) = F(Q0

(0)) and P3/2
(0) 
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= F(Q1
(0)). The only non-trivial flux is P-1/2

(0). Us-
ing (8), the vectors Q0

(0) and Q1
(0) will be evolved 

as: 
(1) (0) (0) (0) (0)

0 0 1/ 2 1/ 2Q Q P Pτ −⎡ ⎤= − Δ −⎣ ⎦  (left cell) 

(1) (0) (0) (0) (0)
1 1 3/ 2 1/ 2Q Q P Pτ ⎡ ⎤= − Δ −⎣ ⎦ . (right cell) 

 
 
 
 
 
 
 
 
 
Figure 2. One-stage MUSTA-1 scheme (K=1). [Toro & Ti-
tarev, 2006] 

The spacing has been set as 1dΔ =  and (0)τΔ is 
the size of the stable time step calculated on the 
initial data (Q0

(0), Q1
(0)). 

As 1K = , the multi-staging is complete and the 
sought numerical flux is simply obtained by ap-
plying a corrector flux C(VL,VR) to the evolved 
data Q0

(1) and Q1
(1): 

( )1 (1) (1)
1/ 2 1/ 2 0 1F C Q ,QMUSTA

i
−

+ = . 

Treatment of source terms is performed using a 
fractional step approach (Leveque, 2002). 

4 NUMERICAL RESULTS  

4.1 Simulations and experimental data for 
comparison 

A numerical implementation of the morphody-
namic model has been performed using a GMUS-
TA-1 scheme. It allows performing simulations of 
sample phenomena of dam break on movable and 
fixed bed for one-dimensional and two-
dimensional cases.  

A large number of simulations were performed 
with GMUSTA-1 taking into account different 
boundary conditions and bed morphologies.  

In this paragraph a comparison of the numeri-
cal results of a one-dimensional dam break against 
some experimental data are shown.  

The experimental data are the ones collected 
during the experiences of Spinewine and Zech 
(2007). The bed is made of sand (d50 1.82 mm) in 
the first case (Figure 3 and Figure 4) and spherical 
PVC particles (d50 3.9 mm) in the second one 
(Figure 5).  

A dam break is simulated starting from an ini-
tial water level of 0.35 m on a 8-m long horizontal 
channel, with a gate positioned in the middle. 

4.2 Sand tests 
The values of the parameters assumed for the cal-
culation in the sand case are: time step tΔ = 0.005 
s, computational mesh space xΔ = 0.02 m, MUS-
TA-mesh space dΔ = 1.00 m, Courant number 
CFL =0.90, water density ρ =1000 kg/m3, sedi-
ment density ρs =2680 kg/m3, water kinematic 
viscosity ν =1.0e-06 m2/s, sediment internal fric-
tion angle ϕ =30°, average sediment particles di-
ameter d50 =0.00182 m, average sediment volume 
concentration in the transport layer C =0.5, bed 
porosity p =0.5, Bagnold coefficient α =0.07, 
gravity g =9.81 m/s2, empirical factor scale for 
erosion Csc =0.80, Drag coefficient Cd =0.015, 
non-dimensional Chezy coefficient Ch =30. 

Figure 3 shows the bottom profile, the interface 
between the transport layer and the clear water 
and the free surface, respectively, at 0.50, 1.00 
and 1.50 s after the removal of the gate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

Figure 3. Comparison of GMUSTA numerical results 
against experimental data from Spinewine and Zech (sand 
d50 1.82 mm) and FIV2I numerical results, respectively at 
0.5, 1.0 and 1.5 s after the removal of the gate. 
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The numerical results obtained with GMUSTA-1 
are also compared, for the case of sand bottom, 
against the ones obtained by the numerical tech-
nique used by Greco et al. (2008), which is based 
on a Finite Volume Second Order Interpolation 
Technique (FV2I) proposed by Leopardi (2001). 

There is good agreement between the position 
of the wave front predicted by GMUSTA-1 and 
the experimental data, which is quite important in 
dam break problems. Many numerical models fail 
to predict the thickness of the transport layer cor-
rectly. It is interesting to note that the thickness 
predicted by GMUSTA-1 agrees quite well with 
the measured data. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Detail of the wave front position: comparison of 
GMUSTA numerical results against experimental data from 
Spinewine and Zech (sand d50 1.82 mm) and FIV2I numeri-
cal results at 0.5 s after the removal of the gate. 

It is also evident that the numerical results ob-
tained with GMUSTA-1 have a better accuracy 
than those obtained using FV2I. This is more evi-
dent in Figure 4, which shows in detail the wave 
front position at 0.5 s after the removal of the 
gate. 

It is important to note that 1-stage GMUSTA 
method is computationally efficient and requires 
shorter computational time compared to FV2I. 

4.3 PVC tests 
The values of the parameters assumed for the cal-
culation in the PVC case are: time step tΔ =0.005 
s, computational mesh space xΔ =0.02 m, MUS-
TA-mesh cell size dΔ =1.00 m, Courant number 
CFL =0.90, water density ρ =1000 kg/m3, sedi-
ment density ρs =1380 kg/m3, water kinematic 
viscosity ν =1.0e-06 m2/s, sediment friction angle 
ϕ =38°, average sediment particles diameter 
d50 =0.0039 m, average sediment volume concen-
tration in the transport layer C =0.5, bed porosity 
p == 0.5, Bagnold coefficient α =0.075, gravity 
g =9.81 m/s2, empirical factor scale for erosion 
Csc =0.80, Drag coefficient Cd =0.017, Chezy 
coefficient Ch =30. 

In this case the prevision of the thickness of the 
transport layer is particularly satisfying, consider-
ing the fact that the PVC sediment particles have a 

diameter almost twice the size of the sand sedi-
ment particles.  

 
 

 
 
 
 
 
 

 

 
 

 
 
 
 
 

 

 
 

 

 

 

 

 

Figure 5. Comparison of numerical results against experi-
mental data from Spinewine and Zech (PVC d50 3.9 mm), 
respectively at 0.5, 1.0 and 1.5 s after the removal of the 
gate. 

5 CONCLUSIONS 

A two-phase morphodynamic model has been 
numerically implemented using the 1-stage 
GMUSTA method (GMUSTA-1) for the simula-
tion of dam break flows on a mobile bed. The re-
sults have been compared against literature expe-
rimental data. 

It is shown that the numerical results obtained 
through this 1-stage GMUSTA implementation 
give a good agreement with the experimental re-
sults. The good agreement between the simulation 
results and the experimental data proves that 
GMUSTA method allows a high accuracy despite 
its simplicity. The comparison with the implemen-
tation through a classical technique also shows a 
good accuracy and computational efficiency of the 
method. 
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LIST OF SYMBOLS 

t   time 
x   abscissa 
h   total flow depth 
Q  water discharge for unit width 
Qs  solid discharge for unit width 
Z   bottom elevation above a datum 
δ   ratio of sediment volume to base area  
p  bed porosity 
Sf   water momentum source/sink term 
Ss  sediment momentum source/sink term 
g   gravity 
ρ   water density 
ρs  sediment density 
Δ = (ρs-ρ)/ρ  
C   solids concentration in the transport layer 
α   Bagnold coefficient  
Drag drag force between the two phases 
Cd drag coefficient  
Ch non-dimensional Chezy coefficient  
ϕ  friction angle  
eb  entrainment/deposition term 

wτ   stress exerted by the water phase  
sτ  stress exerted by the solid phase 
bτ  attrition among solid particles of the bed 

Q  vector of the conserved variables 
F(Q) vector of the fluxes 
S(Q) vector of the source terms.  
Qt  space derivative of the vector Q 
Fx(Q) time derivative of the vector F(Q) 
Uw  water velocity 
Us  solid velocity  
Fr  Froude number for the water phase 
Frs  Froude number for the sediment phase 

1,2λ , 3,4λ eigenvalues of the system of conservation 
laws 

CFL Courant number 
d, τ  MUSTA mesh space and time variables 
M   number of cells 
K   number of stages 
Cmusta CFL coefficient in the MUSTA mesh 
Smusta

(k) maximum signal speed in the MUSTA 
mesh at stage k, 
i   cell index 
n   time index 

tΔ  time step  
xΔ  space step  

d50  average sediment particles diameter 
Csc empirical factor scale for erosion  
ws  particle free fall velocity 
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