
 
1 INTRODUCTION  

The spatial amplification of the sand bars generat-
ed downstream of a point bar along a river bend is 
well known as the over-deepening phenomena of 
sand bars. Struiksma et al.(1985) formulated this 
phenomena mathematically, and derived the criti-
cal conditions for the spatial amplification of sand 
bars. Blondeaux & Seminara (1985) derived the 
analytical solutions on the temporal change of 
point bars in a sinuous meandering channel. The 
resonance relation between sinuous channel and 
bars is included in the solutions. It is well known 
nowadays that the condition of the spatial amplifi-
cation of bars by Struiksma et al. (1985) is coinci-
dent with the resonance relation by Blondeaux & 
Seminara (1985). In this paper, we don’t deal with 
the spatial amplification of sand bars but the spa-
tial variations of water surface in steady open 
channel flows downstream of an obstacle attached 
on the side wall of a flume.  

It is firstly shown theoretically that using the 
linearized equations of 2-D shallow flows, the pe-
riodic wavy patterns can exist for the supercritical 
flows condition (Froude number >1), but the am-
plitude of periodic wavy patterns always atte-
nuates downstream direction. The standing waves 
without attenuation can exist only for the case of 
zero friction factor. It is also shown that the atten-
uation rates of periodic wavy patterns increase 
with the increase of Froude number.  

Hosoda & Nishihama (2006) studied the re-
sponse of water surface to a sinuous open channel 
and the flow behavior near the resonance condi-
tion. Although there is no resonance condition in 
the case studied in this paper, it is pointed out that 
if the spatial variations are given on the uniform 
bottom, the flow can be amplified in the down-
stream of side disturbances. 

Hydraulic experiments are carried out to verify 
the theoretical findings shown in this paper, 
changing the hydraulic conditions such as depth, 
bottom slope, etc. 

2 THEORETICAL CONSIDERATIONS 

Referring to the coordinate system shown in Fig-
ure 1, common plane 2-D shallow flow equations 
are given by Eqs.(1), (2) and (3). 
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where ( )yx, : Cartesian coordinates, ( )vu, : ( )yx,  
components of depth averaged velocity vectors, 
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h : depth, θ : bottom slope and ( )bybx ττ , : 
( )yx, components of bottom shear stress vectors. 

For simplicity, the following formula with fric-
tion factor, fc , is applied to evaluate bottom shear 
stress vectors. 

Figure 1 Coordinate system and explanation of symbols 
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Considering the deviation of depth and velocity 
from the uniform depth and uniform velocity, we 
can derive the common linearlized equations. The 
uniform depth and uniform velocity in the x  di-
rection are given by the following equations: 

qUhUcgh f == 00
2

00 ,sinθ  (5) 

where 0h : uniform depth, 0U : uniform velocity 
and q : unit width discharge. 

Using the following non-dimensional variables 
with prime, Eqs.(1), (2) and (3) can be trans-
formed into the linearlized equations, Eqs.(6), (7) 
and (8). 
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where the non-dimensional parameters, 0,, Frλβ  
are defined as follows: 
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where B : width of channel, L : wave length. 
From here, primes indicating non-dimensional 

variables are omitted for simplicity. Periodic 
standing wave solutions for small disturbances of 

depth and velocity components, vuh δδδ ,, can be 
written as: 
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where hδ , uδ , vδ are small increment in h , u , v . 

Substituting Eqs. (9)-(10) into Eqs.(6)-(8) yields: 
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It can be shown easily that Eqs.(12)-(14) have 
solutions with physical meaning only in the case 
of 0=fc . The solutions are given by Eqs.(15), 
(16) and (17). 
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Eq.(17) shows the relation between Froude 
number of flow and wave length of standing 
waves. Eq.(17) indicates that the standing waves 
exist under the condition of super critical flow. 

Introducing the spatial functions of amplitudes, 
)(),(),( xaxaxa vuh  in Eqs.(18), (19) and (20), the 

equations on )(),(),( xaxaxa vuh  can be derived as 
Eqs.(21a,b), (22a,b) and (23a,b). 
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 We assume Eq.(24) as the mathematical expres-
sion of )(xah , )(xau  and )(xav .  
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Substituting Eq.(24) into Eqs. (21), (22) and 
(23), the basic relations on the spatial amplifica-
tion/attenuation rate, α , and the phase lag be-
tween depth variations and velocities can be de-
rived as Eqs.(25), (26), (27) and (28). 
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 Substituting the following functional form, 
Eqs.(29) and (30) with λ/fc  into Eqs.(27) and 
(28), the coefficients in these equations can be de-
termined as Eqs.(31) and (32). 
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Eq.(31) indicates that the spatial disturbances 
always attenuate in the downstream direction of 
supercritical flows, and the attenuation rate de-
creases with the increase of Froude number. 
Eq.(32) indicates that periodic disturbances can 
not exist in sub-critical flows. 

3  HYDRAULIC EXPERIMENTS 

The laboratory tests were carried out to verify the 
results obtained by theoretical considerations. A 
schematic illustration of the experimental setup is 
shown in Figure 2. 

As shown in the figure, an obstacle with the 
shape of the function, )exp( 2BxAy −= , is at-
tached at  350 cm from the upstream end at the 
left side wall of the flume. A plot of the obstacle 
shape is shown in Figure 3. 

The hydraulic experiments were conducted to 
examine the amplification or attenuation of water 
surface variations in the downstream of the ob-
stacle. Water depth measurements were carried 
out using point-gauge instrument. 

10 cases were performed under different hy-
draulic conditions. 9 cases were carried under su-

percritical flow condition and one case under sub-
critical flow condition. The hydraulic variables for 
the laboratory tests are listed in Table 1.  

Figure 4 shows photographs of flows in Run 1 
and 4, while the contour maps of depth are shown 
in Figure 5.  

The water surface variations along the both 
side walls are shown in Figure 6. It is pointed out 
that the amplitudes of depth variations attenuate in 
downstream direction for both cases as predicted 
theoretically in the former section, while we can 
not identify the magnitude of attenuation rates. It 
should be noted that since the depth distribution is 
anti-symmetric, it is necessary to consider the 
nonlinear effects in the theoretical analysis. 
 Figure 7 shows the relation between wave 
length and Froude number for all cases. The solid 
line in Figure 7 is the linear theory given by 
Eq.(17). Experimental data are in good agreement 
with the theoretical curve based on linear analysis, 
although the nonlinear effect seems to be domi-
nant. 

 
 
 

20cm 
30cm 

5cm 

800cm 

Run 
number

Discharge 
(cm3/s) 

Upstream
water 
depth 
(cm)

Upstream 
average 
velocity 
(cm/s)

Froude 
number 

at 
upstream 

Bed 
slope 

Water 
Temperature

(℃) 
Flow 
type 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

6,400 
10,900 
5,950 
7,230 

11,410 
6,620 

11,110 
6,200 

11,200 
7,200 

1.74 
2.73 
1.45 
3.15 
3.88 
2.08 
2.96 
2.33 
3.28 
4.46 

122.6 
133.1 
136.8 
76.5 
98.0 

106.1 
125.1 
88.7 

113.8 
53.8 

2.97 
2.57 
3.63 
1.38 
1.59 
2.35 
2.32 
1.89 
2.01 
0.814 

1/34 
1/34 
1/13 
1/156 
1/156 
1/49 
1/49 
1/67 
1/67 
1/326 

19.0 
13.5 
19.2 
18.6 
13.2 
13.6 
13.6 
13.2 
13.2 
12.9 

Supercritical
Supercritical
Supercritical
Supercritical
Supercritical
Supercritical
Supercritical
Supercritical
Supercritical
Sub-critical

 

Table 1 Hydraulic variables of experiments 

Figure 2 Schematic illustration of flume 
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Figure 4 Water surface variation downstream 
the obstacle (a) Run 1 

Figure 4 Water surface variation downstream 
the obstacle (b) Run 4 
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Figure 5 Contour maps of depth 
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4 CONCLUSIONS 

This paper describes the spatial variations of flow 
depth in steady open channel flows downstream of 
an obstacle attached on the side wall of a flume. It 
is shown theoretically that using the linearized 
equations of 2-D shallow flows, periodic wavy 
patterns exist for supercritical flows (Froude 
number >1), but the amplitude of periodic wavy 
patterns always attenuates downstream direction. 
The attenuation rate increases with the increase of 
Froude number.  

These results are verified by hydraulic experi-
ments carried out in this study. Since the meas-
ured depth distributions show very anti-symmetric 
feature, the further investigation including the 
non-linear effects is necessary to clarify the gen-

eration mechanism of anti-symmetric depth distri-
butions. Numerical simulation will be also applied 
to reproduce the flows observed in laboratory 
tests. 
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