
 
1 INTRODUCTION 

Near initiation of motion, some of the coarsest 
size fractions in sand-gravel mixtures can become 
immobile (partial transport). Vertical sorting of 
size fractions can lead to the formation of an im-
mobile coarse layer that prevents further entrain-
ment of sediment from below this layer. The ac-
tive layer – the layer of bed load material on top 
of the immobile layer that is being transported –  
is too thin for the bedforms to develop to the equi-
librium dimensions that would be reached in fully 
mobile bed conditions (alluvial conditions). In this 
so-called supply-limited situation the limited se-
diment supply not only reduces the bedform di-
mensions, but also the bed roughness and the 
transport rate. Recent studies into bedform dimen-
sions, roughness and sediment transport under 
supply-limited conditions have resulted in model 
concepts for the prediction of these variables 
(Tuijnder, 2010). The volume of available bedload 
sediment (per square meter) is a central parameter 
in these concepts. Accordingly, prediction of the 
vertical sorting and the associated volume of bed-

load sediment on top of the immobile layer is crit-
ical in this situation. However, prediction of ver-
tical sorting is far from trivial (see e.g. Blom et 
al., 2006; Ribberink, 1987).  

In order to be able to model the development of 
immobile layers and the supply-limited sediment 
transport over these layers, we would like to an-
swer the following research questions I) How 
does the stratification and vertical sorting of a par-
tially-mobile sand-gravel mixture evolve in time ? 
II) Will a supply-limited condition develop that is 
comparable to the supply-limitation in case of 
sand transport over flat (pre-installed) immobile 
gravel beds ? III) How does the initial gravel con-
tent affect a) the bedforms and active layer thick-
ness, and b) the composition and thickness of the 
immobile gravel layer ?  

In order to gain insight into these questions and 
to obtain a data-set for model testing and devel-
opment, we conducted a series of flume experi-
ments at the TU-Braunschweig. These experi-
ments are an extension to the experiments of 
Tuijnder et al. (2009). In these earlier experiments 
an immobile gravel layer was installed prior to the 
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experiments, while in the present experiments the 
bed layer system (immobile layer with an active 
layer on top) forms naturally. In the new experi-
ments the initial bed is fully-mixed and thus no 
immobile layer and therefore no supply-limitation 
is initially present. Four experiments are presented 
in which the initial fraction of the gravel in the se-
diment is increased stepwise. In this way we want 
to study the effect of the gravel content on the ver-
tical sorting situation that develops: the thickness 
and composition of the gravel layer, the thickness 
of the mobile sand layer above it (active layer) 
and the average dune height that develops. The 
measured bed stratification and vertical sorting is 
presented and interpreted considering the re-
quirements of a morphological (layer) model that 
would be able to represent these processes. First, 
the set-up and procedure of the experiments are 
presented in Section 2. Next, the measured tem-
poral development of the bed stratification is pre-
sented in Section 3. In Section 4, detailed gravel 
concentration measurements are presented. These 
measurements give further insight into the struc-
ture of the gravel layer that developed in the final 
equilibrium situation. Finally, in Section 5 the 
consequences of the observations for morphologi-
cal modeling are discussed. 

2 EXPERIMENTS 

2.1 Set-up 
The experiments were conducted in a 30 m long 
and 1 m wide sediment recirculating flume at the 
Leichtweiss-Insitute in Braunschweig. The set-up 
is schematically shown in Figure 1. A constant 
head tank above the flume supplied the flume with 
water. The discharge in the supply pipe was 
measured with an IDM, an Inductive Discharge 
Measurement device. The accuracy of this device 
is approximately 1% of the measured discharge 
according to its specifications. A funnel caught 
the sediment discharge at the end of the flume. 
The sediment was pumped back to the upstream 
end with a small water discharge (±20 l/s) using a 
recirculation pump where the sediment-water mix-
ture was distributed over the width of the flume. 
In the return pipe another IDM measured the dis-
charge. 

Over a length of 17.45 m the bed and water 
level were measured continuously using ultra 
sound (echo) sensors that were mounted on a 
measurement carriage. The measurements were 
taken every 3 minutes from x = 6.3 m to x = 23.75 
m, where x = 0 is located at the upstream end of 
the flume, at the location of the pivoting point. 

The carriage measured the bed level at three paral-
lel transects at y = 0.165, 0.500 and 0.835 m, 
where y = 0 is the left sidewall when looking 
downstream. The flume bottom is z = 0. The water 
level was measured approximately in the centre of 
the flow.  
 

 
Figure 1: Side view of the used flume setup. The supply of 
water came from a constant-head tank ca 5 m above the lev-
el of the flume. The flume is supported by jacks that allow 
the flume to be tilted to realize an equilibrium flow.  

2.2 Conditions 
Between the experiments, the gravel content of 
the sand-gravel mixture was varied. A uniform 
gravel and sand fraction were mixed in varying 
proportions (see the sediment characteristics in 
Table 1).  

We chose the experimental conditions in such a 
way that these experiments form an extension of 
earlier experimental work (Tuijnder et al., 2009). 
The conditions of these new experiments are the 
same as the conditions in Series 1 of Tuijnder et 
al. (2009). The water depth was 0.2 m and the 
flow velocity was 0.52 m/s. The bed slope was ad-
justed during the initial adjustment phase to main-
tain uniform conditions for a varying roughness.  

 
Table 1. Sediment characteristics of the sand, gravel and the 
mixtures used in the experiments. ________________________________________________ 

 fg (%) D10 (mm) D50 (mm) D90 (mm) σg (-) ________________________________________________ 
 Sand   0%  0.6   0.8   1.2   1.3 
 Gravel  100% 7.8   10.9   15.4   1.3 ________________________________________________ 
 Exp 1  5%  0.6   0.9   1.3   1.9   
 Exp 2  10%  0.6   0.9   4.1   2.3 
 Exp 3  15%  0.6   0.9   9.7   2.6 
 Exp 6  20%  0.6   0.9   10.9   2.9 ________________________________________________ 

2.3 Procedure 
Before the experiments, the sand and gravel were 
thoroughly mixed in the flume and distributed 
evenly over the length of the flume. The layer had 
a constant thickness and was screeded flat. An ini-
tial bed slope for equilibrium flow was set using 
the flume tilting mechanism and the flume was 
slowly filled with water. Once the required water 
level was reached, the required discharge was set 
and the measurements were started. 

Every three minutes a measurement profile was 
made showing the water level, bed level, depth 
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and dune height. With this data, uniform flow was 
maintained by adjusting the flume slope and 
downstream weir. Once equilibrium conditions 
were established, the setup could continue mea-
suring automatically without further adjustments. 

The duration of each experiment was two days, 
apart from Exp 4, which was stopped after 30 
hours. After the experiments, the bed was photo-
graphed, an additional bed level measurement was 
taken and the gravel concentration was measured 
at several locations along the flume. 

2.4 Gravel concentration measurements 
We measured the vertical level of each gravel par-
ticle within a 15 x 15 cm square metal frame. This 
frame was placed on the bed on different locations 
along the centre line of the flume. The sand was 
carefully excavated and the level of the top of 
each gravel particle was measured with a point 
gauge before removing the gravel particle. The 
frame was gradually lowered to make sure that a 
constant sampling surface was maintained. This 
procedure was continued until the bed was exca-
vated until 8 – 10 cm below the bed surface. 

The sampling volume (Vs) and the number of 
gravel particles in a sample (n) are known and 
therefore the gravel concentration (c), expressed 
as a volume fraction of the total volume can be 
calculated as: 

c =
nVg

Vs

 (1) 

Herein Vg is the average volume of a gravel par-
ticle (measured under water by water volume in-
crease). The porosity of the sediment needs to be 
taken into account in order to calculate the gravel 
fraction fg, i.e. the gravel volume relative to the to-
tal sediment volume. 

The porosity of a sediment mixture with two 
size fractions varies with a varying composition. 
Yu and Standish (1987) developed a model to 
predict this porosity variation (Frings, 2008). We 
calibrated the Yu-Standish model, using a series 
of porosity measurements for different sand-
gravel mixtures with the sediments used in our 
flume experiments. The calibrated porosity model 
that is needed to convert the gravel concentration 
(c) into a gravel fraction (fg) reads as: 

1.70 1.75     if    0.31
0.42 1.11      if   0.31

s s

s s

f f
V

f fε
− + <⎧

= = ⎨ + ≥− ⎩
 (2) 

In this formula V is the specific volume, ε is the 
porosity and fs is the sand fraction. With this po-
rosity the gravel fraction was calculated using: 

fg =
c

(1−ε)
 (3) 

3 IMMOBILE LAYER DEVELOPMENT 

Under the chosen experimental conditions, the 
sand fraction is mobile and the gravel fraction is 
immobile. However, the critical shear stress for 
initiation of motion for a grain size fraction de-
pends on the total composition of the sediment 
mixture. Hiding and exposure effects can decrease 
the critical shear stress for the gravel and increase 
it for the sand. At the start of the experiments, the 
gravel particles were mainly supported by the sur-
rounding sand. This situation is called a matrix 
supported situation. If the sand is eroded, the gra-
vel becomes exposed and is transported, or sinks 
to a lower level in place. The gravel particles are 
deposited in the troughs of the dunes that start to 
develop from the start of the experiment. On the 
dune crests the bed shear stress is high and the 
gravel particles do not find a stable resting place. 
However, in the troughs the probability of deposi-
tion is much larger, because of the smaller local 
bed shear stress, the coverage by sand-avalanches 
from the lee-side of the dune and the presence of 
more gravel particles. With dune dimensions 
growing in time, the concentration of gravel par-
ticles in the dune troughs increases. At the same 
time the threshold of motion of this gravel layer 
increases slowly because the gravel concentration 
increases. As a result of this vertical sorting 
process the transport rate of the gravel gradually 
decreases to zero. 

The gravel layer protects the underlying sand 
against erosion and reduces the rate of entrain-
ment of new sand into the layer above the gravel 
layer. The gravel layer in the dune trough can de-
velop until it is strong and dense enough to pre-
vent further entrainment of sand. The volume of 
mobile sediment on top of the gravel layer may 
still be smaller than required for alluvial condions 
after the vertical exchange process. This total vo-
lume above the gravel layer is expressed per 
square meter by the parameter d. The conditions 
are supply-limited if d is smaller than needed for 
alluvial conditions (d < d0). In that case and the 
dune height, bed roughness and sediment trans-
port are reduced compared to alluvial conditions. 

3.1 Determining the gravel layer level 
We want to know the level of the gravel layer in 
order to know the volume of sediment available 
for bedform formation and sediment transport. 
The level of the immobile layer has been deter-
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mined with the excavation method, but this only 
gives the level at a few locations in the final situa-
tion. We also determined the level of the gravel 
layer from the bed level measurements. We as-
sume – and show later on in this paper – that the 
gravel layer lies at the level of the deepest dune 
trough that has occurred at each location. Because 
of the high measurement frequency relative to the 
development and migration speed of the dunes we 
have measurements from which we can select the 
deepest trough at each location. The advantage of 
this method is that it gives insight into the devel-
opment in time towards the equilibrium sorting 
profile and it gives additional spatial information 
of the immobile layer level. Below, we will first 
present the results of this ‘deepest trough’ method 
since this can be used to study the temporal de-
velopment towards the equilibrium conditions. 
Subsequently, we will present the equilibrium 
sorting profiles and compare the results of the ex-
cavation method and the deepest troughs method. 

3.2 Growth to equilibrium 
Each of the experiments was started with a flat 
bed. During the experiment the dune height slow-
ly increased in time and finally reached an equili-
brium dune height. We determined the average 
dune height using a zero-crossing method (Van 
der Mark and Blom, 2007). Figure 2 shows the 
temporal development of the average dune height 
with time intervals of 1 hour for each of the expe-
riments. This figure shows that the dune height 
increases during approximately 24 hours and then 
remains approximately constant. Additionally, it 
shows that the dunes grow to a larger equilibrium 
dune height if the gravel concentration in the ini-
tial sediment mixture is lower. An alluvial expe-
riment (without gravel) with the same flow veloci-
ty and water depth resulted in a dune height of 
0.08 m (Tuijnder et al., 2009). This shows that in 
all four experiments a supply-limitation has de-
veloped because of the gravel layer that was 
formed. 

 
Figure 2. The increase of the dune height in time for the 4 
experiments. 

 
Figure 3. The increase of active layer thickness d in time for 
the 4 experiments. 

In Tuijnder et al. (2009) it is shown that the aver-
age thickness of the sand layer on top of an im-
mobile layer (d) determines the relative dimen-
sions to which the dunes can grow under supply-
limited conditions. A ‘bedform dimension reduc-
tion’ (BDR-) function was presented, which de-
scribes the reduction in the dune height because of 
supply limitation relative to the alluvial dune 
height. This function reads as: 

Δ
Δ 0

=1 − exp −
d

0.39Δ 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (2) 

In this function ∆0 is the dune height that occurs 
with the same water depth and flow velocity but 
without the presence of gravel. This function has 
been developed for equilibrium conditions.  

In order to see whether this model concept is 
also applicable in the dune development stage we 
estimated d during the development stage. We ap-
plied the ‘deepest troughs’ method to determine to 
what depth the sediment had been active until then 
as a function of time. The average bed level minus 
this ‘deepest trough level’ provides an estimate of 
the average layer thickness d. Figure 3 shows that 
d initially increases quickly, simultaneously with 
growth of the dunes (compare with Figure 2). The 
initial rate of increase is smaller for the experi-
ments with more gravel. After this quick initial 
adjustment process (in the first 6 – 12 hours), the 
rate of increase reduces. The adjustment process 
proceeds with a lower rate until the final equili-
brium (until 48 hours or longer). The results indi-
cate that the entrainment rate of new sediment 
from below the gravel layer decreases with an in-
creasing gravel concentration in the gravel layer 
and increasing depth of the gravel layer. The layer 
thickness approaches a constant value towards the 
end of the experiments.  

The hourly values of d and ∆ are compared to 
the BDR-function in Figure 4, which shows the 
relative dune height ∆/∆0 against the relative se-
diment availability d/∆0. Two dashed lines are 
shown; one shows the relation ∆ = 2d, the other 
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the BDR-function. The figure shows that devel-
opment of the dune height follows the BDR-
function until the gravel layer becomes sufficient-
ly strong to stop further entrainment of sand from 
below the layer. The location of this final equili-
brium point (with supply-limitation) on the the 
BDR-function is different for each experiment and 
has a clear relation with the initial gravel content. 
The more gravel was initially present, the sooner 
the development of d and ∆ stops.  

Initially, the dunes develop along the relation ∆ 
= 2d. Considering that dunes are generally ap-
proximately triangular this suggests that all avail-
able sand above the gravel layer is effectively 
used for dune formation and regularly entrained. 
As the layer thickness d increases, an intermediate 
sand layer starts to develop on top of the gravel 
layer that is entrained only occasionally. Figure 4 
shows that this occurs if d/∆0 is between 0.2 and 
0.4. We will call this layer the exchange layer (af-
ter Ribberink, 1987). From this point on the rela-
tion ∆ = 2d and the BDR-function start to deviate 
since the sand in the exchange layer does not con-
tribute to the dune height very effectively (∆ < 
2d).  

 

 
Figure 4. The development of the relative dune height as a 
function of the relative layer thickness.  

4 FINAL BED STRATIFICATION  

In the final equilibrium conditions, the average 
dune height remains constant and the immobile 
layer has fully developed. We studied the vertical 
sorting profile that developed in the end situation 
with the excavation method and the deepest 
trough method. The results of these methods are 
compared in Figure 6. This figure shows a longi-
tudinal bed level profile of the end situation of the 
experiments. The level of the immobile layer, as 

obtained from the deepest trough method, is 
shown in a (spatially) filtered and in an unfiltered 
way. The echo sensor does not pick up the tops of 
the gravel particles, but the stronger sound reflec-
tions from a few millimeter beneath it where the 
bed porosity is smaller. Tests showed that the 
echo sensor measures approximately a half gravel 
diameter (Dgr) below the top of the immobile 
layer. The fat solid line shows the filtered level of 
gravel, the thin gray lines parallel to it are ½Dgr 
above and below it. The thin irregular line through 
it shows the unfiltered level measurements.  

The gravel content, as measured in the excava-
tions, is shown in the overlay graphs at the loca-
tion in the flume where they were measured. The 
vertical axis of each overlay graph indicates the 
sampling level. On the x-axis the gravel fraction fg 
is shown. The dashed vertical line in this graph 
shows the initial gravel content of the fully-mixed 
bed. 

Figure 6 shows that the peak of the gravel con-
tent is generally observed at the deepest-trough 
level. Furthermore it can be seen that the dune 
troughs in Exp 1 only occasionally reach the gra-
vel layer and that the gravel layer has indeed de-
veloped at the deepest trough level that occurred 
at that location until then. Comparison to the ex-
periments 2, 3 and 6 reveals that the immobile 
layer develops at a higher level within the bed if 
more gravel is present initially. At the same time a 
smaller volume of sand is present above the gravel 
layer and the supply-limitation is stronger.  

The increase in d and ∆ with decreasing initial 
gravel fraction in the sediment mixture is shown 
in Figure 5. It can be seen that d increases more 
rapidly than ∆. This is caused by the formation of 
the exchange layer as discussed above. The avail-
able sand (d) is used less efficiently for dune for-
mation. 
 

 
Figure 5. Variation in the parameters d ∆ and fg,max with va-
rying initial gravel content.  
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Figure 6. Bed level profile showing the position of the gravel layer and the measured gravel fraction profile in the overlaying 
graphs. The left side of the overlaying graphs indicates the x-coordinate of the measurement in the flume. The fat solid line be-
low the dunes shows the filtered level of gravel, the thin gray lines parallel to it are ½Dgr above and below it. The irregular line 
through it shows the unfiltered bed level measurements.  
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Figure 7. Histogram with smoothed trend line of the average gravel fraction in the bed as function of vertical distance to the 
average bed level. 

4.1 Structure of the gravel layer 

Figure 6 shows the individual gravel fraction pro-
files. Each profile is different, even in the undis-
turbed still fully-mixed bed below the gravel 
layer, due to small imperfections in the mixing 
and sampling process. Below the gravel layer, the 
gravel fraction should equal the gravel fraction of 
the initial sediment mixture since this sediment 
never moved after installation. The measured val-
ues vary around the initial gravel content. In order 
to remove this variation, we compose an average 
profile by taking the average over all profiles of 
an experiment. Figure 6 also shows that the peaks 
of the individual profiles are not at the same level 
with respect to the mean bed level. The compari-
son with the deepest trough levels shows that this 
is caused by the wavy nature of the gravel layer. 
For the average gravel fraction profile we there-
fore shift the profiles up or down, matching  the 
gravel fraction peaks at the average peak level. 
Figure 7 shows the result of the averaging of the 
gravel profiles. The zero-level is the average bed 
level over the reach 12-23 m.  

Figure 7 shows that the gravel layer has a 
thickness of approximately 1.5 – 2 cm. Compared 
to the average grain size of the gravel layer of 12 
mm this is surprisingly thin. The maximum gravel 
fraction is approximately constant, with a value of 
0.4, and does not show a systematic increasing or 
decreasing trend with the initial gravel content 
(see Figure 5). The most compact packing of the 
sand-gravel mixture occurs if the gravel particles 
form a clast supported framework with the void 
space completely filled with sand. This is the situ-
ation that occurs if the sand fraction is approx-
imately 0.3 according to the calibrated Yu-
Standish model (Eq. 2). The sand fraction in the 
gravel layer is larger, which suggests that the 

closest packing of the gravel in the gravel layer is 
not reached. These measurements indicate that the 
gravel layer is mainly a single row of loosely 
packed gravel particles, with some scattered gra-
vel particles above and below it. 

5 IMPLICATIONS FOR MORPHOLOGICAL 
MODELLING 

The goal of these experiments was to gain insight 
into, and to obtain a set of quantitative data on: I) 
the bed stratification and vertical sorting process 
and II) the development of supply-limitation if a 
sand-gravel mixture is transported. A follow-up  
goal of the research is to apply these new insights 
for the development of a morphological layer 
model concept that would be able to represent 
these processes.  

A number of implications of the results pre-
sented above for morphological modeling can be 
mentioned here: 

1) Supply-limited bedforms which develop 
naturally by vertical sorting and bed stratification 
show a strong similarity with those observed 
above pre-installed flat immobile beds. Supply-
limited sediment model concepts as developed for 
the latter situation (Tuijnder, 2010) may therefore 
also be applicable for the former situation.  

2) Depending on the degree of supply-
limitation three bed layers can be distinguished, 
an active layer, an exchange layer and an immo-
bile layer, each having a different function in the 
vertical exchange process.  

3) Possibly the 2-layer model concept as sug-
gested by Ribberink (1987) or the diffusion model 
of Armanini (1995) can be extended for this pur-
pose. See also Blom (2008) for a discussion on 
this issue, and Sloff and Ottevanger (2008) for 
some first experiences with a similar approach.  
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4) Additional sub-models will be needed for 
I) the vertical sediment fluxes between the layers, 
II) the (equilibrium) thickness and composition of 
the layers, and III) the mobility of size fractions in 
the layers (hiding / exposure effects). The data 
and insights obtained from the present experi-
ments can contribute to the development / valida-
tion of these sub-models.  

5) Apart from the modelling of layer devel-
opment from fully-mixed sediment beds, a further 
challenge will be to model the transition from one 
layer system to the next, which should also in-
clude the possible breaking-up of immobile lay-
ers. 

6 CONLUSIONS 

A set of new laboratory experiments with different  
sand-gravel mixtures showed that a small percen-
tage of immobile gravel in the initial mixture is 
able to induce supply-limitation with strongly re-
duced bedform dimensions, bed roughness and 
sand transport. 

The BDR-function derived for supply-limited 
situations in case of pre-installed immobile layers 
(Tuijnder et al., 2009) is also applicable for (thin) 
immobile layers as formed naturally by vertical 
sorting. This agreement was found during the de-
velopment process of the dunes as well as in the 
final supply-limited equilibrium situation. 

The new data show the following characteris-
tics of the immobile layer in the final equilibrium 
situation: I) The immobile gravel layer has a 
thickness of  approximately 1.5-2 gravel diame-
ters and has a gravel content of approximately fg = 
0.4. These values are more or less constant and 
not influenced by the dunes on top of the immo-
bile layer. The dunes differed considerably in size 
and shape between the different experiments. II) 
With increasing gravel content the level at which 
the immobile layer is formed is higher and the 
supply-limitation is stronger. If the gravel content 
is high (20%) the transport layer forms directly on 
top of the gravel layer.   

These characteristics confirm the idea that the 
growth of dunes and of the active layer can only 
come to an end after a certain critical volume of 
immobile gravel - sufficient for the formation of a 
more or less continuous single gravel layer - has 
been exposed to the flow. For higher gravel con-
tents of the initial mixture this critical volume is 
reached earlier. 
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