
 

1 INTRODUCTION  

Flows with high geomorphic potential, herein 
geomorphic flows, develop frequently a layered 
structure with intense sediment transport in the 
lowermost flow region. A large number of flows 
can be included in this category, including river 
flows in the upper regime exhibiting sheet flow 
and flows resulting from dam or dyke breaking or 
breaching. These flows have in common the 
ultimate driving mechanism, gravity, ii) and the 
fact that they are slender flows and the importance 
of the micromechanical characteristics of the 
sediment in the definition of the constitutive 
equations. The dynamics of the transport layer is 
thus determined by grain-scale interactions 
between the granular and the fluid phase. In 
general, these interactions can be classified as 
collisional, frictional and viscous (e.g. Iverson 
1997). 

The theoretical body for granular flows is well 
established within the dense limit of the 

Chapman-Enskog kinetic theory (Chapman & 
Cowling 1970). However, simple relations for the 
collisional stress tensor are not possible without a 
good number of approximations and hypothesis 
(Savage & Hutter 1989, Jenkins & Richman 1985, 
Jenkins & Hanes 1998). When the solid 
concentration exceeds a certain value, interparticle 
friction plays an important role. Kinetic theories 
have been modified to account for these effects 
(Nott & Jackson 1992, Jenkins 2006). The 
presence of an interstitial viscous fluid has not yet 
been incorporated with sufficient degree of 
completeness in spite of theoretical advances 
(Jenkins & Hanes 1998) and experimental work 
(Armanini et al. 2005). Some solutions have been 
proposed including viscous effects. Berzi & 
Jenkins (2008a,b) have used a linearized version 
of the phenomenological rheology proposed by 
GDR MiDi (2004) to obtain analytical solutions to 
the steady, fully developed flow of a granular-
fluid mixture over an erodible bed. Explicit 
translation of collisional-dominated rheologies of 
mixtures of granular material and viscous fluids 
into closure models for shallow-flow advection-
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dominated stratified flows have been attempted by 
Ferreira (2008) and Ferreira et al. (2009).  

The objective of this paper is to present the 
detailed development of a model for the thickness 
of the transport layer in stratified geomorphic 
flows such as sheet-flows or immature debris 
flows. The model is based on the granular flow 
theory rooted on Chapman-Enskog’s dense gas 
kinetic theory, namely from the equation of 
conservation of fluctuating kinetic energy, 
incorporating viscous and frictional effects.  

Section 2 is dedicated to the description of the 
physical system and to the presentation of the 
steady state solution of the conservation and 
constitutive equations of the granular-fluid flow 
over an inclined bed. Section 3 presents the main 
steps that conduct to the formula of the steady-
state thickness of the transport layer, from the 
simplified solution of depth-averaged equation of 
conservation of the fluctuating kinetic energy. 
Section 4 presents a discussion of the simplified 
model. The paper is closed by a Conclusion and 
recommendations. 

2 THE PHYSICAL SYSTEM  

Sheet-flow is a two-dimensional stratified flow 
involving a mixture of water and granular 
material, picked up from the bottom. The granular 
phase is composed of cohesionless sediment 
grains, nearly elastic, slightly rough and 
approximately spherical. The fluid is viscous and 
incompressible. The flow structure is depicted in 
Figure 1. Three main layers are identified: A, 
characterized by small mean sediment 
concentrations or by clear water and where 
turbulent stresses are dominant; B, a transport 
layer featuring decreasing concentrations upwards 
and stresses mainly originated in the granular 
phase; and C, the bed composed of grains with no 
appreciable horizontal mean motion. 

 

 
Figure 1. Detail of a sheet-flow with highlighted idealized 
layered structure. 

In layer B, it is expected that granular 
collisional stresses are dominant except in a thin 
bottom boundary layer where frictional stresses 

are dominant. Within the framework of the 
Chapman-Enskog theory, it is possible to derive 
the equations of conservation of mass, momentum 
and energy (associated to the fluctuating motion) 
for the granular phase (details in Ferreira 2005, 
pp. 231-250) in layer B. In steady flows, these can 
be written, respectively, as 

( ) ( )
, 0g g

i iuρ ν =  (1) 

( ) ( ) ( )
, 0g g gw

ij i j jT g f+ ρ ν + =  (2) 

( ) ( ) ( )
, , 0g g gw

i i ij j iT u−Φ + − γ =  (3) 

where  

( )( ) ( ) ( ) ( )
, ,

g g g g
ij i j j iT u u= μ +  (4) 

is the granular stress tensor, ( )gρ  is the particle density, 
ν  is the solid fraction (concentration at a specific 
point in the flow), ( )g

iu  stands for the granular velocity 
field, g  is the acceleration of gravity, 

( )( ) 1
( ) ( ) 21/2

1 38 / 5g g
sdμ = π ρ νϑ ϑ Θ  is the granular 

viscosity, 1
3 ' 'i ic cΘ =  is the granular temperature, 

'ic  is the fluctuating component of the particle 
velocity,  

( )
,

g
i jKΦ = Θ   (5)

  
is the flux of fluctuating energy, 

( ) 1
( ) ( ) 21/2

1 44 /g g
sK d= π ρ νϑ ϑ Θ  is the granular 

thermal conductivity (or granular diffusivity),  

( ) ( )3
( ) ( ) ( ) 2 1/2

124 1 /gw g gw
se dγ = ρ − νϑ Θ π   (6) 

is the rate of dissipation (due to inelastic collisions 
and viscous damping) of the fluctuating energy, 

( )gw
jf  is the force per unit volume encompassing 

the interaction (essentially of viscous nature) of 
the fluid and granular phases and buoyancy, ds is 
characteristic diameter of the grains, 1ϑ , 2ϑ , 3ϑ  
and 4ϑ  are functions of the solid fraction (details 
in Ferreira 2005, p. 246) and ( )gwe  is the immersed 
restitution coefficient (Ferreira 2005, p. 248). 

 It should be noted that the granular normal 
stresses are isotropic, hence reduced to the 
granular pressure, ( ) ( )1

3
g g

iiP T= − , calculated by the 
equation of state  

( )( ) ( )
11 4g gP = νρ + ϑ Θ   (7) 

and the mixture behaves as an incompressible 
fluid. This result and the definitions of the 
granular viscosity and the granular conductivity 
are a direct consequence of the dense limit 
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approximation (see details in Jenkins & Richman 
1988, Ferreira 2005, pp. 231-238).  

The equation of conservation of fluctuating 
energy, Eq. (3), reveals that, unlike 
thermodynamic systems where every given 
constant temperature can be made to correspond 
to an equilibrium state, a granular system can 
maintain a steady state of agitation, characterized 
by a given granular temperature, if and only if the 
rate of production ( ( ) ( )

,
g g

ij j iT u ) equals the diffusive 
flux and the dissipation, i.e. if ( ) ( ) ( )

,,
g g gw

i iij j iT u = Φ + γ . 

A detailed characterization of the two-
dimensional (vertical) flow in layer B is obtained 
by solving numerically a set of ODEs including 
equations (2) to (7) and the equations of 
conservation of momentum of the fluid phase, 
subjected to appropriate boundary conditions 
(details in Ferreira 2008). Solutions reproducing 
experimental conditions of Sumer et al. (1996), 
namely plastic pellets with ds = 0.003 m, specific 
density s = 1.27 and dry coefficient of restitution e 
= 0.825 are shown in Figure 2.  

 
Figure 2. Computed profiles of the relevant non-dimensional quantities in the transport layer. (a) Velocity of the granular 
constituent. (b) solid fraction. (c) granular temperature. (d) flux of fluctuating energy. (e) granular shear stresses. (f) dissipation 
(negative, normal thickness), diffusion (thin lines) and production (positive, thick lines) of fluctuating energy; production is 
considered positive while diffusion and dissipation are negative. Simulations 1, 2 and 3 correspond to, respectively, θ = 1.74,  
θ ≈ 2.49 and θ ≈ 3.07. 

 
It was found that the immersed restitution 
coefficient is ( ) 0.005gwe e= − θ  where 

( )( )( ) ( 1)w
b sT Y g s dθ = ρ −  is the Shields parameter, 

where y  is the vertical coordinate and bY  is the 
bed elevation. It is observed that the solid fraction 
increases almost linearly with the flow depth (Fig. 
2b). The shear stress is not constant in the 
transport layer (Fig. 2e) because its work must 
balance that of the force of gravity in the direction 
of the flow. The modulus of the flux of the 
fluctuating kinetic energy increases towards the 
bed (Fig. 2d). This means that fluctuating energy 
is constantly being extracted from the mean flow 
and directed towards the bottom. As a 
consequence, the frictional sub-layer cannot 
increase indefinitely with increasing values of the 
Shields parameter and consequent increasing 
normal stresses.  
The flux of fluctuating energy is, as required, zero 
at a large distance form the bed, as the system 

becomes sufficiently rarefied. The derivative of 
the flux, i.e., the diffusion of the fluctuating 
energy is plotted in Fig. 2f along with the 
production and dissipation. It is clear that the 
diffusion term is much smaller than the production 
and the dissipation terms, which justify its 
elimination from some theoretical formulations 
(see Armanini et al. 2005). An increase in the 
Shields parameter represents an increase in the 
shear rate. Thus, the absolute value of all 
quantities in Fig. 2 increase with the Shields 
parameter since they are all increasing functions 
of the shear rate. 
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3 CLOSURE EQUATIONS FOR THE 
TRANSPORT LAYER   

The integration of the equation of conservation of 
the fluctuating energy, equation (3), over the 
contact load layer reads 

( ) ( )d d d d d 0s s sg g

b b b

Y Y Y

y yx y xY Y Y
T u− Φ ξ+ ξ− γ ξ =∫ ∫ ∫  (8) 

where Φ  is the flux of fluctuating energy, Ys is 
the elevation of the top of the transport layer  

Considering that the flux of fluctuating energy 
is zero at the boundary between the suspended 
sediment and the contact load layers and applying 
the Leibnitz rule, it is obtained  

( ) ( ) ( ) ( )d d 0ssg g g g

b b b

YY

yx x c c x y yxY Y Y
T u h u T⎡ ⎤Φ + − γ − ξ =⎣ ⎦ ∫  (9) 

where γc is the depth-averaged rate of 
dissipation and hc is the thickness of the transport 
layer. Assuming that the shear stress associated to 
the granular phase is approximately linear (Fig. 
2e) ( ) ( )( )d d 1g

y yx bc y bcT y h h= τ − = −τ , being h 
the flow depth, and that the velocity at the bed is 

( ) 0g

b
x y Y

u
=

= , Eq. (9) becomes 

1 0
b

top top
c c c

b c c cY
c c

u h uu h
u h u

⎡ ⎤⎛ ⎞
Φ + τ − − − γ =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (10) 

where ( )

s

gtop
c x Y

u u= .  

The vertical velocity distribution in the contact 
load layer can be approximated by the empirical 
estimate of Sumer et al. (1996). Hence, the depth-
averaged velocity is    

( )
3

1 4
410 1

7
c

c s
s

hu g s d
d

− ⎛ ⎞
= − θ ⎜ ⎟

⎝ ⎠
 (11) 

and  

( )
3

1 4
45 1

2
top c
c s

s

hu g s d
d

− ⎛ ⎞
= − θ ⎜ ⎟

⎝ ⎠
 (12) 

so that 7 4top
c cu u = . Introducing (11) and (12), Eq. 

(10) becomes 

( ) ( )
3

3 4
2

10 7 31
7 4 4
0

b

w c c
sY

s

c c

h hg s d
d h

h

⎛ ⎞θ ⎛ ⎞Φ + ρ − − −⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
− γ =

 (13) 

The averaged value of the rate of dissipation is  

( )( ) ( ) 3
2

11 0
2

1 d

24 1 1 d

s

b

c

Y

c Y
c

gw g
h

c
s

y
h

e

h
d

γ = γ

− ρ
= νϑ Θ ξ

π

∫

∫
 (14) 

where  

( )
3 1

22 2
10

1 d Och

c c c
c

C G C
h

νϑ Θ ξ = Θ +∫  (15) 

and where ( ) ( )( )32 2 1c c cG C C C= − −  is the 

counterpart of Carnaham & Starling’s (1969) 
radial distribution function for averaged 
quantities, Cc is the mean sediment volumetric 
concentration in the contact load layer.  

The shear efficiency number, ℜ  (Savage & 
Jeffrey 1981), is a measure of the correlation 
between the generation of collisional stresses and 
the state of agitation of a granular system, 
measured by the fluctuation velocity field. It can 
be interpreted as a measure of the efficiency of the 
shear work in generating a particular state of 
agitation. This number will take on different 
values depending on the properties of particles, 
namely their coefficients of restitution and of skin 
friction. ℜ is Ord(1) for intermediate solid 
fractions, is much smaller than 1 for dilute 
systems and is much larger than 1 for dense 
systems. Parameter ℜ  can be re-written as  

( )
1 1 1
2 2 2

d 7
4

top
y x c c c c

s s s

c c

u u h u hd d dℜ = ≈ =
Θ Θ Θ

 (16) 

and can be used to relate the granular temperature 
and the depth-averaged velocity, as  

33
2 7

4
c c

c s
u hd⎛ ⎞Θ = ⎜ ⎟ℜ⎝ ⎠

 (17) 

The mean sediment volumetric concentration 
can be obtained, under capacity conditions, from 
the integration of the equation of conservation of 
fluctuating kinetic energy in the frictional layer 
(details in Ferreira 2005, pp. 279-280), rendering 

( )tan
s

c
b c

dC
h

θ
=

ϕ
 (18) 

where bϕ  is the internal friction angle at the bed. 
Substituting (11) in (17) and (15), (17) and (18) 

in (14), one obtains 
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( ) ( )

( )

( )

2

1 3
2

3
13 4
42

24 5 11
2 tan

1

w
c c

b

c
s

s

Gh e s

hg s d
d

−

⎛ ⎞γ = − ρ ×⎜ ⎟ ϕ ℜ⎝ ⎠π

⎛ ⎞
× − θ⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠

 (19) 

The flux at the bed is calculated by the 
formulation of Jenkins & Askari (1991), modified 
by Ferreira (2005), p. 255 
 

( )( ) ( )
1
2

41/2 0

2

30

2 53 1 tan
4

gw

b
Q N eY b

⎡ ⎤π
= − Θ − − ϕ ϑ⎢ ⎥

π ϑ⎢ ⎥⎣ ⎦
(20) 

where N represents the weight of granular material 
per unit bed area, i.e. the granular pressure at the 
bed. Introducing the equation of state for the 
normal stress at the bed, Eq. (7), and Eq. (18), Eq. 
(20) becomes  

( ) ( )
( )

( )( ) ( )

3
2

2
0

0
3

0 0

1
tan

53 1 tan
4

b

w s
Y

b

gw
b

g s d
Q

e M
K

sG

⎡ ⎤− θ
= −ρ ×⎢ ⎥

ϕ⎢ ⎥⎣ ⎦

⎡ ⎤π
− − ϕ⎢ ⎥

⎣ ⎦×
π ν

 (21) 

where K0 and M0 are the counterparts of ϑ3 and ϑ4 
for averaged concentrations. Introducing (19) and 
(21) in (13) one obtains 

( )( ) ( )

( )

( )( ) ( )
( )

2
0

0
3 3

0 0

3 3
3 4 2
4

1
2

1 3
2

53 1 tan
40.49

tan

7 3
4 4

262.5 11 0
tan

gw
b

b

c c c

s s

gw c

b

e M
K

sG

h h h
d d h

G C
e s

−

⎡ ⎤π
− − ϕ⎢ ⎥

⎣ ⎦− ×
π ν ϕ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞×θ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

− − θ =
ϕ ℜ

π

 (22) 

Eq. (22) is the closure equation for hc. Notice 
that (22) can be written as 

( ) ( ) ( )
3 13 3
4 22 4

2 3; 0c c cx h h x
−

χ −β θ −β θ = where xc = 

hc/ds and ( ) 7 3;
4 4

c
c

hh h
h

χ = − . The large ℜ limit 

corresponds to dense flows with high dissipation 
of fluctuating energy due, for instance, to viscous 
effects from an interstitial fluid (Savage & Jeffrey 
1981). In this limit, (22) reduces to 

4
3

2c

s

h
d

⎛ ⎞β
= θ⎜ ⎟χ⎝ ⎠

 (23) 

which is a linear relation such as the one proposed 
by Wilson (1987). For typical values of the 
parameters involved, the slope in (23) varies 
between 2 and 5.5, which is two to five times 
smaller than the value proposed by Wilson in his 
equation 10c sh d = θ . It is thus proposed that the 
large ℜ limit does not represent the variation of hc 
correctly and full equation (22) should be used. 

The introduction of ℜ in (22) envisaged the 
introduction of the effects of the granular 
temperature. Thus, the parameter ℜ, computed 
with depth-averaged quantities, should be 
provided independently. Data from Ahn et al. 
(1992) and from the numerical simulations carried 
out to produce Fig. 2 are appropriate to estimate 
the shear efficiency number. Such data is re-
plotted in Fig. 3 along with estimates of ℜ, in the 
form of a family of lines parameterized in terms of 
(1 − e). Thus, as seen in that figure, the linear 
relation in the form  

( )0.65 8 1
1

cCe
p

ℜ = + −⎡ ⎤⎣ ⎦ −
 (24) 

where p is the bed porosity, describes the data 
fairly well.  
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Figure 3. Solid lines correspond to Eq. (24) with the 
parameter e taking on the values 0.7, 0.8 and 0.9. Crosses 
(+) correspond to the dry granular flow data of Ahn et al. 
(1992). Numerical results for Sumer’s (1996) sediment of 
type a (◊), and sediment of type b (♦). 

4 DISCUSION OF THE THICKNESS OF THE 
TRANSPORT LAYER   

Equation (22) was tested against the experimental 
data of Sumer et al. (1996). These authors 
quantified c sh d  by two methods: direct visual 
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inspection and extrapolation from the solid 
fraction profile. 

Figures 4 and 5 display the experimental 
results Sumer et al. (1996) corresponding to visual 
inspection. It is believed that the extrapolation 
from the solid fraction, although more susceptible 
to be compared among researchers, greatly 
overestimated the thickness of the transport layer. 
A sensitivity analysis to the values of the 
restitution coefficient, to the total discharge, q, 
and to the solid fraction at the bed are performed 
in Figs. 4a, 4b and 4c. Fig. 4d shows a different 
kind of sensitivity analysis: several parameters are 
varied, corresponding to the geometrical and 
mechanical characteristics of the sediment 
employed by Sumer et al. (1996).  

In agreement with the findings of Zhang & 
Campbell (1992), the increase of the values of the 
coefficient of restitution results in an increase in 
the thickness of the contact load layer. The main 
effect of decreasing the total discharge while 
maintaining the bed shear stress is the narrowing 
of the ratio c sh d  , as seen in Fig. 4b. It was also 
found that the smaller the solid fraction at the bed 
the larger the values of hc.  

The most interesting result expressed in Fig. 4 
is the invariance of c sh d  as a response to the 
variation of the type of sediment. If the proper 
values for the relevant parameters are chosen, 
namely the restitution coefficient and the internal 
friction angle at the bed, the non-dimensional 
thickness of the contact load layer is virtually 
independent from the type of sediment. In Fig. 5, 
the specific conditions of the experimental tests of 
Sumer et al. (1996), namely the discharge rate and 
the flow depth, are reproduced in the computation 
of c sh d . The numerical values are efficiently 
represented by the power law 

1.7 5.5c

s

h
d

= + θ  (25) 

Thus, for faster, yet possibly less accurate, 
computations, Eq. (22) may be replaced by (25). It 
is noteworthy that Wilson’s (1987) equation for 
the thickness of the sheet-flow, 10c sh d = θ  was 
obtained from an equation such as (18) with Cc = 
0.625, the maximum packing of identical spheres, 
and Bagnold’s (1954) value of tan(ϕb) = 0.32. Eqs. 
(18), (22) and (25) state that the variation of hc/ds 
is not exactly linear with the Shields parameter 
and that the depth-averaged sediment 
concentration is not exactly constant, as in classic 
sheet-flow studies (e.g., Wilson 1987, 1989). 
These results seem to be in a better agreement 
with the two-dimensional numerical simulations 
performed previously in section 2. 
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Figure 4. Thickness of the sheet-flow layer as a function of 
the Shields parameter. Sensitivity analysis to (a) the 
restitution coefficient; e = 0.5, 0.8, 0.9 and 0.95;  
tan(ϕb) = 0.35; ν0 = 0.65; q = 1.0 m2/s; (b) maximum solid 
fraction at the bed; ν0 = 0.55, 0.60 and 0.65; e = 0.8; tan(ϕb) 
= 0.4; q = 1.0 m2/s and (c) the characteristics of the 
sediment grains. The four types of granular material used by 
Sumer et al. (1996), were plastic (ds = 0.003 m, s = 1.27, e = 
0.75 and ds = 0.0026 m, s = 1.14, e = 0.75), acrylic (ds = 
0.0006 m, s = 1.13, e = 0.75) and sand (ds = 0.00013 m, s = 
2.67, e = 0.8);  ν0 = 0.6; tan(ϕb) = 0.4; q = 1.0 m2/s. Circles 
(○) stand for Sumer’s et al. data.  

The results of the full 2DV numerical 
simulations are also shown in Fig. 5. Comparing 
with experimental results, it is observed that these 
simulations underestimate hc for high Shields 
numbers. This may be an effect of the techniques 
used to estimate experimentally the thickness hc. 
The agreement between the simplified models Eq. 
(22) and (25) and the full 2DV model is 
qualitatively good. The introduction of the 
simplifications led to an overestimation of hc 
relatively to the complete model.  

(

(

a)

b)

c)

e = 0.5
e = 0.8
e = 0.9
e = 0.95

ν0 = 0.65 
ν0 = 0.60 
ν0 = 0.55 
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Figure 5. Non-dimentional thickness of the sheet-flow layer. 
Crosses (+) stand for the results of (22); triangles (Δ) and 
circles (○) stand for the experimental results of Sumer et al. 
(1996). Dashed line (- - - -) stands for the results of equation 
(25). Large circles stand for the results of the full 2DV 
model. Black circles (  ) stand for plastic (ds = 0.003 m, s 
= 1.27, e = 0.75) and white circles (  ) stand for acrylic (ds 
= 0.0006 m, s = 1.13, e = 0.75). 

It is noteworthy that Fraccarollo & Capart 
(2002) used a relation similar to (18) in order to 
compute the thickness of their transport layer. In 
order to derive (18), they assume that there is a 
discontinuous state of shear stress across the 
interface between the bed and the transport layer. 
This interface acts like a phase interface and 
requires that there is a basal slip velocity. At the 
sharp interface they apply Rankine-Hugoniot 
shock conditions thus obtaining (18). Fraccarollo 
& Capart (2002) then assume that the 
concentration in the transport layer is constant and 
use (18) to compute hc. The advantage of the 
present formulation is that the thickness of the 
transport layer is computed from an independent 
formula, using energy considerations, allowing for 
a variable mean sediment concentration.   

 

5 APPLICATION TO DAM FAILURE TESTS  

The dam failure experimental results of Ferreira et 
al. (2006) are used to test the validity of the 
closure equation for the thickness of the transport 
layer devised in this paper (Eq. 25). The 
experiments were composed of different water 
levels upstream and downstream. The bed was 
composed of PVC pellets with equal or different 
levels upstream and downstream. The main 
features of the experimental tests are presented in 
Table 1, where hL and hR are the initial water 
depth, respectively, upstream and downstream, YbL 
and YL are the initial upstream bed and water 
levels, respectively. More details can be found in 
Ferreira et al. (2006). 

 

Table 1.  Main features of experiments of Ferreira et al. 
(2006) ______________________________________________ 
 TEST hL (m) YbL (m) hR (m) YL (m) ______________________________________________ 
35_00_00 0.35 0.00 0.00 0.35 
35_10_00 0.25 0.10 0.00 0.35 _____________________________________________ 
 

The non-dimensional flow experimental and 
numerical profiles are presented in Fig. 6. In that 
figure, x is the longitudinal coordinate, starting in 
the gate (dam) location, and z is the elevation 
measured from the initial bed level downstream. 

 

 
Figure 6. Non-dimensional flow profiles: a) test 35_00_00; 
b) test 35_10_00. Black lines represent the numerical 
solutions obtained using Eq. (25) and grey lines stand for 
experimental dam failure results of Ferreira et al. (2006). 

The results presented in Fig. 6 show a 
reasonable agreement between the calculated (Eq. 
25) and the measured thickness of the transport 
layer. In the region behind the wave-front, where 
high shear stresses occur, the agreement is better 
than in low velocity regions, which may indicate 
that inertial effects, absent in the present 
formulation, will have to be introduced for a better 
overall agreement. 

6 CONCLUSIONS  

The main results of the present work may be 
summarized as follows. 

The thickness of the transport layer may be 
derived from the equation of conservation of the 
particle fluctuating energy. 
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The driving mechanism is similar to that 
controlling the flow depth in turbulent, uniform 
(in the longitudinal direction) open-channel flows: 
the stronger the energy production (in this case 
due to large coefficient of restitution or otherwise 
increased granular stresses), the more important 
the vertical flux of fluctuating energy and the 
thicker the transport layer to allow for complete 
energy dissipation. 

The proposed model, by introducing the 
solution of an extra conservation equation, allows 
for a variable sediment concentration in the 
transport layer.  
Preliminary tests reveal that the normalized 
thickness of the transport layer may be 
independent of the bed material. 

A simplified model, suitable to be introduced 
in layered shallow flow models was derived, 
maintaining the main features of the complete 
model. 

Dam-break simulations, incorporating the 
proposed model, show a reasonable agreement 
between the measured and the calculated 
thickness of the transport layer. 

The main differences occur for low velocities, 
where the model overestimates the thickness of 
the transport layer. Research is needed in the 
inertial terms of the equation of conservation of 
energy to obtain an unsteady flow formula for the 
thickness of the transport layer.  
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