
 
1 INTRODUCTION 

In the last decade, two-layer models were devel-
oped for a large range of applications in the geo-
physical flow field, due to the clear physical 
meaning of the layered flow description. For in-
stance, Zech et al. (2008) discerned the efficiency 
of a two-layer approach for the simulation of dam-
break induced near-field sediment movement, 
while a classic one-layer model with bank failure 
operator appeared appropriate only for the far 
field. 

Fraccarollo & Capart (2002) developed a two-
layer flow model, in which the upper layer is 
made of clear water and the lower layer is a mix-
ture of water and sediment, representing a bed-
load transport layer. Mass and momentum conser-
vation is imposed separately to each layer while 
shear-stress closures are imposed between the lay-
ers and between the lower layer and the bottom, 
made of non-moving sediments. In this first 
model, a same constant sediment concentration 
and a same constant velocity in the layers were 
assumed. Capart & Young (2002) relaxed this as-
sumption by decoupling the depth-averaged ve-
locities of the two flowing layers. Spinewine 

(2005) further considered distinct granular con-
centrations in the layers and accounted for the 
granular phase dilatation resulting from grain en-
trainment across the bed interface. Chen et al. 
(2007) assumed that the superposed layers differ 
in velocity, density and also rheology to treat con-
fluence problems, but without considering granu-
lar dilatancy. Castro et al. (2007) applied a one-
dimensional two-layer model to lock-exchange 
problems and tested it for the case of the Strait of 
Gibraltar. Spinewine & Zech (2005) and Chen & 
Peng (2006) extended the Spinewine (2005) 
model to two-dimensional configurations. Leal et 
al. (2006) used the assumption of local equilib-
rium capacity of sediment transport in a two-layer 
description, adopting the energy principles of 
Bagnold to derive different types of closure equa-
tions between the layers. Savary & Zech (2007) 
investigated the boundary conditions and high-
lighted a possible loss of hyperbolicity of the two-
layer model equations (i.e. eigenvalues of the sys-
tem become complex) under certain conditions. 
The physical meaning of this loss of hyperbolicity 
is poorly documented. 

In this paper, a modified HLL solver is used. 
The conservation laws in each layer are written in 
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a form where most of the coupling between layers 
is accounted for by specific source terms, thus re-
moving those from the flux terms and hereby pre-
serving strict hyperbolicity of the homogeneous 
system of equations.  

Another difficulty for two-layer models is to 
balance the source terms induced by interfacial 
forces, a requirement to avoid spurious interface 
diffusion and preserve static configurations. Well-
balancing is achieved by summing balance equa-
tions for the two layers, while a specific procedure 
is used to prevent spurious interface diffusion. 

The present paper presents three applications 
of the two-layer solver in dam-break configura-
tions. The first considers classical dam-break 
waves propagating over a fixed bed. The second 
considers the collapse of a body of light fluid 
propagating over a uniform layer of a denser fluid. 
The third considers a dam-break wave propagat-
ing over a loose layer of sand. In the latter case, 
the dense “fluid layer” is made of a mixture of 
water and moving sediment being entrained by the 
flood wave; the two-layer solver has consequently 
been extended to allow for erosion and deposition 
of sediment. 

The paper is organised as follows. The govern-
ing equations of the two-layer model are first re-
called. The adapted HLL solver accounting for the 
coupling between the two layers as source terms is 
then briefly presented. Finally, the three applica-
tions are tested and conclusions are drawn. 

2 GOVERNING EQUATIONS  

The governing equations are developed for two 
layers of immiscible fluids of distinct densities, 
using the shallow-water assumption. This means 
that no mass exchange occurs between the layers. 
Frictionless motion of the fluid layers is further 
assumed. 

The governing equations can be written in con-
servation form by means of a continuity and a 
momentum equation for each layer. As sketched 
in Figure 1, subscript u denotes the upper layer, 
usually made of water, or, more generally, of a 
fluid of lighter density ρu and subscript l denotes 
the lower layer, usually a denser fluid of density 
ρl, for example a mixture of water and sediment.  

The continuity equations read 
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Figure 1. Definition sketch for the flow variables. 

where hk is the depth of the kth layer and qk = uk hk  

is the unit discharge of layer k (uk is the depth-
averaged velocity of the flow in layer k). The 
momentum equation for the upper layer u can be 
written as 
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where g is the gravitational acceleration and zb is 
the bed level. In the same way, the momentum 
equation for the lower layer l reads 
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where χ = ρu / ρl and zl is the elevation of the in-
terface between the two layers, zl = zb + hl. Equa-
tions (1), (2) and (3) can be recast in vector con-
servation form as 
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with vectors U, F and S defined as follows 
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The Jacobian matrix A of system (4) is defined as 
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where the celerities cl , cu , c’l , are defined as fol-
lows 
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The celerity cu is the classical celerity of waves 
in still fluid, while cl is obtained by transforming 
the total depth (hl + hu) of the upper and lower 
layers into an equivalent depth (hl + χ hu). The 
equivalent depth is defined in such a way that the 
pressure gradient along a vertical in the upper 
layer u is the same as in the lower layer l. The 
quantity c’l , is introduced only for the convenience 
of notation. It does not bear any physical meaning 
such as a wave propagation speed in still fluid. 
Note that the coupling between the layers appears 
in the Jacobian matrix A only via χ. It is ac-
counted for by the pressure-driven term –
 ghu ∂ zl / ∂x in the source term S, which comes 
from the reaction exerted by the lower layer onto 
the upper layer 

As mentioned above, the eigenvalues of A are 
all real and distinct, i.e. this model does not ex-
hibit any loss of hyperbolicity 
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3 ADAPTED HLL SOLVER  

The present section briefly introduces a modified 
two-layer shallow-water solver.  

3.1 Finite-volume discretisation and principle of 
the HLL solver 

The governing equations (4) are discretised as fol-
lows by a finite-volume scheme with a splitting of 
source terms derived from the source term up-
winding technique (Bermudez & Vazquez-
Cendon 1994) 
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where the superscript n denotes the time level n, 
the subscript i denotes the average value of the 
variable over the computational cell i, Δt is the 
computational time step and Δxi is the length of 
the cell i. Vectors 2/1
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+
−

n
iiS  and 2/1
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+

n
iiS  represent 

the contributions of the source term at the inter-
faces i – 1/2 and i + 1/2 to the momentum balance 
in the cell i. The discretisation of the two source 
terms is detailed in Section 3.2. The flux 2/1
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at the interface i + 1/2 is computed by solving the 
following local discontinuity problem (Riemann 
problem) 
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where the subscripts L and R denote the value of 
the variable in the left state and the right state, re-
spectively. 

The Riemann problem is not solved exactly, 
which would require an analytical solution of sys-
tem (4). An approximate solver, derived from the 
HLL solver (Harten et al. 1983), is used.  

In the original version of the HLL solver, the 
fluxes are computed assuming that the solution of 
the Riemann problem is made of two discontinui-
ties separating the left and right state from an in-
termediate region of constant state (Figure 2). The 
exact nature of the discontinuities does not need to 
be known. The jump relationships across the two 
discontinuities can be solved for the intermediate 
region of constant state U* and F*  
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where λ
-
 and λ+ denote the propagation speeds of 

the discontinuities. In the present method, the fol-
lowing estimates, involving (8), are proposed : 
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Figure 2. Principle of the HLL Riemann solver. Simplifica-
tion of the multiple wave exact solution (top) into a two-
wave approximate solution (bottom). 

3.2 Discretisation of the source term 
Many approaches for the discretisation of the 
source terms, involved in equation (9), are avail-
able from the literature (see e.g. Gallouët et al. 
2003). In the proposed approach, the contributions 
of the source terms S as defined in equation (5c) 
are discretised as 
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where the term )(
,2/1

k
iiS +  represents the part of the 

source term applied to cell i and )(
1,2/1

k
iiS ++  is the 

contribution of the source term to cell i + 1, with 
k = l or u. These terms are computed using a clas-
sical source term upwinding technique (Bermudez 
& Vazquez 1994) 
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The wave celerities (12) are used in both layers 
for the upwinding procedure (13). This guarantees 
that the second and fourth components of the 
source term S (5c) are assigned in the same way to 
the cells on both sides of the interface. Conse-

quently, the principle of action and reaction be-
tween the two layers is satisfied.  

Finally, the source term S is computed as 
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4 APPLICATIONS  

Three dam-break tests are proposed: (i) with water 
as a single density fluid over a fixed bed, (ii) with 
a light fluid over a dense fluid over a fixed bed 
and (iii), with water over an erodible sand bed. 

4.1 Dam-break flow of single density fluid 
Numerical simulations for the propagation of a 
dam-break wave of pure water are compared to 
the experimental results obtained by Çağatay & 
Kocaman (2008) for dry (α = h1/h0 = 0) and wet 
bed case (α = 0.1 and 0.4), where the initial up-
stream water depth h0 is 0.25 m and where the ini-
tial downstream tailwater depth is denoted h1. 
(Figure 3). In the simulation, it is arbitrarily as-
sumed that hu = h0 and hl = 0 in the reservoir while 
hu = 0 and hl = h1 downstream. So the two bodies 
of water keep their original identity, while not dis-
tinguishable in the reality. 

 

 
Figures 3. Initial conditions for the single density test. 

The dimensionless time T is obtained by multiply-
ing the dimension time t by (g/h0)1/2. Figures 4, 5 
and 6 give the water surface profiles at early 
stages following a dam break. For wet cases (Fig-
ures 5 and 6), the grey curve is the contact discon-
tinuity marking the point at which both initially 
separated fluids are in contact with each other.  

For the dry-bed case (Figure 4), the simulated 
mean slope of the water surface is in good agree-
ment with the experiments and the wave front ce-
lerity is slightly underestimated.  
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For the wet-bed cases (Figures 5 and 6), a 
negative wave front is propagating upstream while 
a positive one is observed in the downstream di-
rection. The upstream part is quite well simulated. 
With the positive wave, a front is forming at early 
times (Figures 5a and 6a) leading to oscillations 
and breaking waves at greater times (Figures 5b 
and 6b). These physical instabilities are not well 
reproduced by the two-layer model because of the 
hydrostatic pressure assumption. However the 
mean level of these waves is well reproduced. The 
wave front celerity is better simulated for a greater 
tailwater depth h1 (Figure 6 in comparison with 
Figure 5). 

4.2 Dam-break flow of light fluid over dense fluid 
This test aims to investigate different density ra-
tios between the light fluid layer (upper layer u) 
and the denser fluid layer (lower layer l). The ini-
tial conditions are as sketched in Figure 7. De-
pending on the density ratio χ = ρu / ρl, the free-
surface will evolve between two asymptotic pro-
files. For χ = 1, both layers have the same mobil-
ity and the free surface will be given by the 
Dressler solution of a dam-break flow in a channel 
with an initial tailwater depth, as presented in the 
previous section. For χ = 0, the top layer will not 
be able to set the bottom layer in movement, and 
the Ritter case of a dam-break flow over a fixed, 
initially dry bed is obtained, where the solution 
given by Stoker (1957) applies. 
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Figure 4. Dam-break flow over dry bed. Computed (black, 
solid line) and measured (dotted line) water surface profiles 
at time (a) T = 1.13, (b) T = 5.01. 
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(b) T  = 6.51
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Figure 5. Dam-break flow over wet bed (α = 0.1). Com-
puted (black, solid line) and measured (dotted line) water 
surface profiles at time (a) T = 1.57, (b) T = 6.51. Grey line: 
contact discontinuity between reservoir and tailwater. 
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Figure 6. Dam-break flow over wet bed (α = 0.4).Computed 
(black solid line) and measured (dotted line) water surface 
profiles at time (a) T = 1.5, (b) T = 6.51. Grey line: contact 
discontinuity between reservoir and tailwater. 
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Figure 7. Initial conditions for the light fluid over dense 
fluid test case. 
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Figure 8. Dam-break flow of a light fluid over a dense fluid 
(a) χ = 1, (b) χ = 0.2 and (c) χ = 0.05. Abscissa: x / (gh0)1/2, 
ordinate: h / h0. Solid black lines: numerical solution. Solid 
grey lines: limit case for χ = 1 (Dressler solution). Dashed 
grey lines: limit case for χ = 0 (Ritter solution). 

Figure 8 shows the computed results for the fol-
lowing density ratios: (a) χ = 1, (b) χ = 0.2 and (c) 
χ = 0.05. They are given for a non-dimensional 
time T = 2500. The depths h0 and h1 are 1 m and 
0.357 m, respectively. In each figure, the two as-
ymptotic profiles are indicated in light grey. The 
evolution from the Dressler / Stoker solution to 

the Ritter / Stoker (Stoker 1957) solution can be 
clearly observed for decreasing density ratios. In-
teresting to note is also the small wave propagat-
ing ahead of the main front that progressively 
evolves towards the classical shape of a dam-
break wave front over dry bed, where the free sur-
face is tangent to the bottom. This is referred to as 
a “Ritter pinch-off” by Spinewine (2005). 

4.3 Dam-break flow over granular bed 
This test studies the morphological evolution of a 
moving sediment layer (transport or bottom layer 
s) under the action of a water flow (top layer w). 
In particular, this test aims to reproduce the labo-
ratory results of small-scale dam-break waves on 
an initially flat sand bed obtained by Spinewine & 
Zech (2007). In this case, the bottom boundary is 
made of a loose sand layer which is allowed to 
erode or deposit. In the following, the top level zu 
becomes zw, the clear-water level, zl becomes zs, 
the upper level of the transport layer and, zb is the 
movable bed level (Figure 9). 

In order to account for the bed erodibility, the 
physical and numerical model presented in Sec-
tions 2 and 3 is extended following Spinewine 
(2005) and Savary (2007). The hypotheses of im-
miscible and frictionless fluids are no valid any-
more. Indeed, mass and momentum transfer may 
occur between the layers, due to the change in 
sediment concentration (Cb, Cs) and velocities 
(ub = 0, us, uw). Granular dilatancy is considered, 
i.e. the mobilization of bed material is associated 
with an expansion of the granular matrix so that 
the volumetric sediment concentration in the mov-
ing layer is lower than in the static bed (transition 
from solid-like to fluid-like behaviour). For in-
stance, in case of erosion, sediments from the bed 
are incorporated in the transport layer and, to re-
cover a constant sediment concentration in the 
transport layer, water is leaving the clear-water 
layer to enter the transport layer. The transport 
layer depth is thus increasing while the clear-
water layer depth is diminishing and the bed level 
is lowered. From the point of view of the clear-
water layer, there is a loss of mass, but also a loss 
of momentum associated with water leaving the 
clear-water layer at velocity uw to enter the trans-
port layer at velocity us. Moreover, diffusive mo-
mentum transfers occur due to friction at the inter-
face between the layers. 
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Figure 9. Two-layer model with a moving sediment layer. 

The definition of an erosion rate eb is thus 
added to the system of governing equations. This 
erosion rate is the evolution of the interface level 
with time –∂zb/∂t, due to vertical sediment transfer 
between the bed and the transport layer. It is posi-
tive in case of erosion. In a similar way, the rate 
es, related to the displacement of interface –∂zs/∂t 
is defined and can be related to eb.  

Three source terms are also added to the gov-
erning equations: they express (i) geomorphic in-
teractions between the layers (involving the inter-
face displacement rates eb and es), i.e. mass and 
convective momentum transfer, (ii) friction at the 
interface between the water layer and the transport 
layer (involving the shear stress exerted by water 
on the transport layer τws) and, (iii) friction at the 
interface between the transport layer and the bed 
(involving the resistance shear stress to the flow 
exerted by the bed τb).  

The modification of system (4) becomes  
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with the displacement rates given by  

sb

bs
b u

e
ρ

ττ −
=  (18) 

b
s

sb
s e

C
CCe −

−=  (19) 

and with the shear stresses  

( )swswfwwws uuuuC −−= ρτ  (20a) 

( )ssfsss uuCρτ =  (20b) 

( ) swscritb hgtg ρρϕττ −+=  (20c) 

where ρw, ρs and ρb are the water, transport layer 
and bed volumetric mass, respectively, Cfw and Cfs 
the water and sediment friction coefficients, τcrit 
the threshold value of τb allowing for erosion and 
ϕ the angle of repose. The following values are 
adopted (Spinewine 2005): ρw = 1000 kg/m³, 
ρs = 1369.6 kg/m³, ρb = 1890.4 kg/m³, Cs = 0.22, 
Cb = 0.53, Cfw = 0.008, Cfs = 0.06, τcrit = 0 and 
ϕ = 30°. 

Figure 10 shows the simulated and experimen-
tal levels for the early times of a dam-break with a 
initial water level hw0 of 0.35 m in the reservoir 
and an initial flat bed at zb = 0 m. Although the 
general trend is well reproduced by the model, the 
simulated wave front celerity is overestimated and 
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Figure 10. Dam-break wave over mobile bed, simulated 
(solid line) and experimental (dashed line). From up to 
down water, transport and bed levels. 

the transport layer depth hs is underestimated at 
the earliest time (Figure 10a).  

5 CONCLUSION  

Two-layer models may be useful when two bodies 
of fluids interact, for instance in case of dam-
break over mobile bed. In the literature, one of the 
main problems associated with two-layer models 
is the loss of hyperbolicity that occurs under cer-
tain flow configurations (Savary & Zech 2007). 
This is due to the interactions between the two 
fluid layers.  

This paper described an adapted HLL solver to 
face this difficulty. Including the pressure-induced 
terms in the source terms allows the loss of hy-
perbolicity to be avoided. Three dam-break appli-
cations are tested. The first one consists in a single 
density fluid, namely water, propagation over 
fixed bed in dry and wet conditions. The second 
test treats a light fluid over a denser fluid. These 
two first cases assume immiscible and frictionless 
fluids. A third application shows the possibility 
for the model to treat mobile-bed cases, if fric-
tional and geomorphic source terms are added to 
the system, allowing erosion and deposition of 
bed sediment.  

These applications give good confidence for 
further research in the dam-break simulation with 
two-layer shallow-flow models. Some possible 
improvements could be explored: relaxed assump-
tions about velocity distribution in the layers, nu-
merical second-order accuracy developments, and 
a two-dimensional extension of the presented 
model. 
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