
 
1 INTRODUCTION 

Two-dimensional numerical simulation of debris-
flow is becoming a key instrument not only for 
back analysis but also for forecasting analysis, i.e. 
for hazard mapping. It is therefore important to 
keep on developing models with increased capac-
ity to describe real events.  

In the Alpine regions, debris flows are very of-
ten characterized by a two-phase behaviour with a 
rheology that is essentially grain-inertial (Arma-
nini et al., 2009). Therefore much of the research 
effort is devoted to this type of flow. The relevant 
system of equations can be obtained from the 
mass and momentum conservation of each phase. 
Several simplifications are generally accepted as 
good approximations for most of the flow condi-
tions that occur in actual real debris-flow events 
(see sect. 2) and the shallow-water assumptions 
are applied in order to obtain two-dimensional 
models.  

From a numerical point of view, the system of 
partial differential equations presents challenging 
problems connected to its intrinsic non-
conservative nature and to the strong nonlinearity 

of the relations between primitive and conserved 
variables. 

In this paper we present the result of our effort 
to improve the capabilities of the TRENT2D 
model (acronym for Transport in Rapidly Evolu-
tive, Natural Torrent, see Armanini et al., 2009). 
In particular we present a new numerical scheme 
that appears to be much less diffusive respect the 
original one employed in the TRENT2D model. 
This scheme is based on a generalized Roe-type 
approach that allows dealing with the non con-
servative term of the equation in the solution of a 
Riemann problem that develops on the sides of the 
cells in a Godunov numerical framework. Moreo-
ver, this scheme is intrinsically well-balanced (i.e. 
it solves exactly the steady-state solutions) be-
cause it is based on exact Rankine-Hugoniot rela-
tions. 

The other novelty introduced in this paper is 
the introduction of a “diffusive” terms in the sys-
tem. In fact, the original system, allows some 
steady discontinuous solutions that are not physi-
cally acceptable. This is essentially due to the fact 
that the original system neglects some mechan-
isms that can play a fundamental role in some 
two-dimensional situations. For instance, depth-
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averaged sediment velocity may deviate from the 
averaged fluid velocity because of the transversal 
slope of the bed. This mechanism, well known in 
classical sediment transport, is not yet observed in 
debris flows and its actual existence must be sup-
ported by suitable experimental evidence. Other 
mechanisms that actually occur in mobile-bed sit-
uations are bed sliding, bank failure and so on. In 
this work, we have propose an approach for in-
cluding all of these mechanisms, all lumped in one 
extra term. 

The paper is structured as follows: section 2 
presents the mathematical model while in section 
3 the numerical strategy is outlined. In sec. 4 we 
present the comparison between the new approach 
and the old one. Conclusions end the paper. 

2 THE MATHEMATICAL MODEL 

The mathematical model is a free-surface, mobile-
bed, depth-integrated, shallow-water two-phase 
flow in which the solid and the liquid fraction in-
teract each other and with the bed. The mathemat-
ical system is constituted by the conservation equ-
ation of solid mass, mixture mass and mixture 
momentum in which the following assumptions 
are then introduced: interphase forces due to poss-
ible slight deviations between velocities of the 
solid and liquid phases are negligible; the pressure 
distribution are linear along the vertical direction; 
the concentration is constant through the flow 
depth; the tangential stresses act only along the 
bed. More detail on the equations and the assump-
tions can be found in Armanini et al. (2009).  

The resulting model is described by the follow-
ing system: 
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where the vector of conserved variable U and the 
conservative fluxes F and G are defined as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+
+

=

vhc
uhc

zcch
zh

bb

b

δ

δU  (2) 

( )
( )⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
=

2
2

2
2

2

2

gh

gh

hvc
uvhc

cvh
vh

uvhc
huc

cuh
uh

δ

δ

δ

δ G;F  (3) 

where h is the mixture depth, zb is the bed eleva-
tion above a reference horizontal plane, c is the 

mixture concentration, cb is the sediment concen-
tration in the bed (assumed constant), u and v are 
the x and y components of the depth-averaged 
mixture velocity and cδ = (1+cΔ), where Δ=(ρs- 
ρw)/ρw, being ρs and ρw the densities of the liquid 
and solid phase respectively. Hx∂W/∂x and 
Hy∂W/∂y are the non conservative terms deriving 
from the pressure exerted by the bed on the con-
trol volume, where W= (h, zb, u, v)T is the vector 
of the primitive variables and  
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where Γ = cδgh and g is the gravitational accelera-
tion.  Finally,  
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where τb = (τx,τy)  are the x and y component of the 
bed tangential stress vector.  

In order to close the problem, some relation-
ships must be introduced. Regarding the tangen-
tial stress τb, we used Bagnold's relation inte-
grated on the depth and modified by Takahashi 
(1978) on the basis of experimental data. Assum-
ing that there is no phase-lag in module and direc-
tion between the depth-averaged velocity vectors 
of the solid and the liquid phases has been consi-
dered, Bagnold's scalar relation can be written in a 
vectorial framework as follows: 

uu ),(/ hFwb =ρτ  (6) 
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where dφ  is the dynamic friction angle of the ma-
terial, Y = h/da½ where d is the grain size, a is a 
constant that has been set to 0.042 by Bagnold and 
estimated equal to 0.32 by Takahashi (1978). In 
order to avoid numerical singularity when 0→h  
and to reduce the computational burden, we as-
sumed Y  as a characteristic parameter of the si-
mulation, to be defined through a calibration 
process considering a series of experimental tests 
on the material of each simulated site.  
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As for the concentration c, we used the same 
relation that has been adopted in several works 
(Armanini 2009, Rosatti and Fraccarollo 2006, 
Rosatti et al. 2008), a closure relation that does 
not generate an excessive numerical burden but 
has a physically based structure. The adopted rela-
tion can be written in the following form:  

2
2

Frbb c
gh

cc ββ ==
u

 (9) 

Where β is a dimensionless transport parameter, 
estimated from laboratory data. 

 

2.1 Eigenstructure of the homogeneous system 
Considering the x-split homogeneous part of sys-
tem (1) with the relevant closure relation (9), it 
presents four real and distinct eigenvalues where 
one of them is equal to the velocity in the y direc-
tion v. The connected fields are genuinely nonli-
near (and therefore they can develop either rare-
factions or shocks) for three eigenvalues while 
one is linearly degenerate for the field connected 
with λ = v. A symmetric result can be obtained for 
the y-split equations (with v in place of u). 

2.2 The generalized Rankine-Hougoniot relations 
The relations valid across a shock are not the 
standard Rankine-Hugoniot relations because the 
relevant system is not fully conservative. The role 
played by the non conservative term can be ob-
tained by writing the momentum conservation 
principle in integral form applied to a mobile con-
trol volume with speed equal to the shock speed 
(see Fig. 1).  

 
Figure 1. Sketch of the 1D control volume used to derive the 
Generalized Rankine Hugoniot equations.  

The resulting relation, called Generalized Ran-
kine-Hugoniot relation, present one more term re-
spect the standard formulation (Rosatti and Frac-
carollo, 2006): 

)( LRSLR S UUDFF −=−−  (10) 

where the D vector is non-null only for the mo-
mentum component. It represents the integral of 
the pressure exerted by the bed on the control vo-
lume. It is clear that the pressure distribution must 
depend on the actual flow behavior in the neigh-
borhood and inside the bed discontinuity. Lacking 
experimental evidence some hypotheses must be 
introduced.  
In this paper we will use the following relation, 
proposed in Rosatti and Fraccarollo (2006) (used 
also in Rosatti et al, 2008, Rosatti and Begnudelli, 
2010) on the basis of physical considerations: 
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It must be noticed that this relation derives from a 
“fixed-bed” approach, where the bed thrust is ex-
actly equal to the fluid thrust. In case of mobile-
bed, the pressure distribution may not be the 
same. For example the concentration should be 
equal to cb and not ck.  

In any case, what is presented in the following 
sections is substantially independent on the as-
sumed thrust relation. 

2.3 The necessity of a “diffusion” term 
Several effects, with diffusive behavior and that 
can play an important role in particular situations, 
are implicitly neglected in deriving system (1). 
For example if the bed is discontinuous or even if 
the slope is large, local sliding is likely to occur; 
moreover, sediments can diffuse from zone of 
higher concentration to zone of lower concentra-
tion; finally, the depth-averaged velocity vector of 
the solid phase may deviate from the depth-
averaged vector of the liquid phase.  

The necessity of a diffusion term capable, in 
some way, of overcoming the uncertainty of eq. 
(11) is suggested by a particular permanent solu-
tion of (1) that is rather unphysical. Let us consid-
er a channel with initial cross section as in Fig. 2 
with constant longitudinal slope S0, null velocity 
in the y direction, depth and velocity equal to hL 
and uL in the left part of the channel (i.e., to the 
left of the bed discontinuity) and equal to hR and 
uR in the right part. In the y-direction, the steady 
solution satisfy the momentum balance, i.e. the 
shock condition (10) with SS = 0, while in the x-
direction uniform flows occur.  

This particular solution is clearly unphysical 
because a steady discontinuity in the bed cannot 
exist in presence of a granular bed without cohe-
sive features. This result suggests that relation 
(11) is not completely reliable. Moreover, in these 
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conditions the physical mechanism above men-
tioned may become important. 
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Figure 2. Sketch of the channel described in Section 2.3 

In order to obtain more realistic results, we 
have faced the problem introducing a suitable 
term in the sediment continuity equation that 
summarizes, in some way, the combined effect of 
several processes as discussed before. In particu-
lar we consider the effect of the bed slope on the 
sediment velocity direction and we introduce in 
the model a term which is a function of ∇2zb.  

 

 
Figure 3. Fluid velocity, grain trajectories and generation of 
lateral bed load. 

There are several theories that describe the ef-
fect of local bed slope (i.e., of gravity) on regular 
bed load transport (see e.g. Kovacs and Parker, 
1994, Parker et al., 2003, Seminara et al., 2002). 
There is no theory available explicitly developed 
for the case of debris flow. However, it has been 
observed (Fraccarollo and Rosatti, 2009) that in 
the case of ordinary bed load, the concentration 

inside the transport layer reaches values typical of 
debris flow, and that, in absence of bed forms, 
there is clear analogy between the physics of bed 
load transport and of debris flows.  Therefore, we 
simply considered the most widely accepted theo-
ries for the bed load and apply it to the case of de-
bris flow introducing a calibration parameter that 
becomes a characteristic parameter of the simula-
tion, to be defined through a calibration process 
considering a series of experimental tests on the 
material of each simulated site, just like Y .  

In particular, we start from the lateral bed load 
formulation of Talmon et al. (1995). Considering 
a bed channel as in Figure 3, in which the near-
bed fluid velocity is η and whose transverse direc-
tion is ξ, the deviation γ between the sediment 
transport direction and the flow direction can be 
written in the following form: 
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Indicating the component of the sediment 
transport due to the bed slope with  zq∇  , under 
the assumption that γ is small and thus  

γγ sintan ≈ , we can write: 
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More in general, indicating with  ( )yx qq ,=q   
the sediment transport discharge vector, the addi-
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By adding this sediment fluxes, Eq. (differen-
tial formulation) becomes: 
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3 THE NUMERICAL MODEL 

The numerical method employed in the TRENT-
2D model is described in Armanini et al. (2009). 
Here, we briefly recall the most important features 
and focus specifically on the flux evaluation, for 
which a new approach is proposed in this paper. 

The scheme is based on a finite volume ap-
proach (on Cartesian meshes of rectangular cells)) 
and the update algorithm for the conserved va-
riables is obtained by time integration on a inter-
val Δt and spatial averaging on a cell area Ai,j of 
system (15). A classical operator-splitting ap-
proach is adopted: firstly, the homogeneous part 
of eq. (15) is solved obtaining 
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then the final solution is obtained by solving the 
ordinary differential equation (19) relative to 
source terms with the initial value 1

,
~ +n

jiU : 

ΣU
=

dt
d  (19) 

Following a MUSCL-Hancock explicit ap-
proach (Harten et al., 1983), quantities evaluated 
at time n+1/2 in eq. (18) are obtained with a fully 
non conservative half-step after a linear recon-
struction of the primitive variables. Side-cell flux-
es GF ˆ,ˆ  are evaluated from the solution of a local 
Riemann Problem (RP) generated by linear recon-
struction of the primitive variable obtained in the 
previous half-step. The RP solution involves both 
conservative fluxes and the contribution of the 
pressure over the bed discontinuity (non conserva-
tive term). Details of the Riemann solver are giv-
en in the following section.  

The resolution of equation (19) is made by Eu-
ler's implicit method in order to have no restric-
tions on the temporal step of integration: 
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Finally, since the updating algorithm of the 
conserved variables copes simultaneously with 
both directions (unsplit approach), the following 
stability condition must be satisfied: 

max2
1
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where  maxλ   is the maximum eigenvalue asso-
ciated to the homogeneous part of system (15), i.e. 
without Σ. 

3.1  The Generalized Roe Solver 
The numerical fluxes GF ˆ,ˆ  are obtained by using 
a Roe-type approach for the solution of the Rie-
mann problem on each side of the cell. We report 
here the details for a RP in the x-direction; the 
values for the y-direction can be easily worked out 
with little effort. 

The x-split RP is defined by the following non-
conserative initial value problem: 
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The Generalized Roe Solver (Rosatti et. al., 2008) 
approximate (22) with the following linear RP: 
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where ),( RLx UUJ is a suitable matrix whose val-
ues depend on the left and right conditions. This 
matrix can be obtained by imposing the following 
conditions: 
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where: 
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Matrices '
xA  and B  can be determined as Jaco-

bian matrices respect to the primitive variables  
),,,( zvuh=W  evaluated for the following aver-

aged values: 
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Detailed expression of the components of these 
matrixes is not reported for lack of space while, 
all the coefficients of the matrix ''

xA  are null ex-
cept 34a ′′  whose value is 
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Finally, the expression of the Generalized Roe 
numerical flux FGR is: 
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mλ~  is the m-th eigenvalue of ),( RLx UUJ  and 
mR is the corresponding right eigenvector. 

4 GENERALIZED ROE (GR) VS LHLL 
SCHEME 

In this section we present the capabilities of the 
proposed GR method. Moreover, since we want to 
show the superiority of the proposed approach 
over the LHLL scheme used in the previous ver-
sion of the TRENT2D model, we briefly present 
the features of the old one.  

4.1 The LHLL solver 
The momentum flux terms due to the bed discon-
tinuities are modeled with the LHLL solver (first 
proposed by Fraccarollo et al., 2003) by consider-
ing two different values of the numerical flux on 
the left and right side of the face. For the x-
direction 
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where  L, R are respectively the left and the right 
initial values of Riemann's problem, hgc ~~~ δ=Γ  
(where 2/)(~ δδδ

RL ccc += ), HLLF   refers to an 
HLL (Harten et al., 1983) evaluation of the fluxes 
and 
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being  k
Lλ  ,  k

Rλ   with  3,...,1=k   the 3 eigenva-
lues associated to the 1D version of system and 
evaluated with the values of the variables at the 
left  )(L   and right side  )(R   of the discontinuity.  

This solver adds a corrective term to the ex-
pression given by the classical HLL approach that 
can be considered like a centered discretization of 
the term  ghc )1( +Δ xzb ∂∂ /  on the two sides of 
the face with weights  )/(, RLRL SSS − . Rosatti 
and Fraccarollo (2006) have demonstrated that 
such flux expression comes from approximating 
the solution of Riemann's problem with two 
shock-waves, as in the HLL scheme, supple-
mented by a central standing shock. In addition, 
this solution is based on the arbitrary assumption 
that there is no variation in the primitive variables  
U   through the central shock. 

4.2 Accuracy and well-balanceness of the GR 
solver 

The accuracy of the GR solver has been already 
presented in the 1D case by Rosatti et al. (2008) 
where a comparison between computed and exact 
solutions have been shown. In the 2D case, exact 
solutions are available only in case of steady state 
conditions when the diffusive terms are neglected. 
In these cases, accuracy is connected with the 
well-balanceness of the scheme (i.e. the capability 
of reproduce steady solutions). Considering the 
solution presented in section 2.3, a possible solu-
tion is (with reference to Fig. 2): hL = 1.711m, hR = 
0.711m ; uR = 7.277m/s, uL  = 4.691m/s ; cL  = cR = 
0.107. 

The result obtained by the code is equal to the 
exact solution and it is maintained in time indefi-
nitely. This result is due to the fact (it can easily 
demonstrated) that the GR solver uses the exact 
generalized Rankine-Hugoniot relations in case of 
steady conditions. This result cannot be achieved 
with the LHLL scheme: starting from the same in-
itial conditions, the solution smooth out in the y-
direction because of its numerical diffusion. This 
behavior is due to the fact that LHLL uses only an 
approximation of the differential expression of the 
bed pressure and does not account in an accurate 
way the effect of the non conservative term in the 
solution of the RP. 

4.3 Estimate of the diffusion coefficient for the 
LHLL scheme 

Figure 4 shows the evolution of a cross section at 
time  s100=t   using LHLL (thin solid line) and 
GR (bold solid line) solvers. As shown, the cross 
section undergoes important modifications using 
LHLL solver, while it does not vary at all using 
the Generalized Roe solver. This is actually the 
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correct solution, since the cross section should not 
vary in absence of lateral velocity and therefore 
lateral transport.  

In fact, at s0=t  we have 0=yv , and so it 
should be also for  s0>t , since we have an exact 
momentum equilibrium across the bed discontinu-
ity, and the governing equations do not contain 
diffusion terms in the sediment balance equation. 
Therefore, the evolution of the cross section given 
by the LHLL solver is entirely due to artificial 
numerical diffusion. 

 
Figure 4. Evolution of a the cross section relative to the test 
case described in Sections 2.3 and 4.3 at time t = 100s.     

Although the cross section obtained using the 
LHLL solver seems more realistic, the presence of 
such numerical diffusion is actually highly unde-
sirable, because it is something we have no con-
trol upon. Thus, in order to model the diffusion 
processes that actually occur, it is more appropri-

ate to use the GR solver and add a specific diffu-
sion term rather that letting the numerical diffu-
sion to mimic such process. In order to compare 
model predictions using the LHLL solver and GR 
solver plus the diffusion term, using the diffusion 
coefficient K (Eq. 16) as a calibration parameter. 
The best fitting (relative to the solutions at t = 
100s) was achieved for K = -4107.6× . In Figure 4, 
the dashed lines represent the solution relative to 
the GR solver plus the diffusion term. In a prac-
tical case, the estimation should be based on la-
boratory experiment specifically tailored for type 
of process we want to simulate and for the type of 
terrain that constitute the bed. In fact, what we 
call "diffusion" also accounts for a variety of 
processes, like bed sliding, bank failure and so on. 
Actually, in this specific case, the real phenome-
non involves geotechnical instability rather than 
diffusion, at least at an early stage, but there are 
cases where different mechanisms act together 
and it is extremely difficult to discern the effects 
of each process. 

4.4 Application to a realistic case 
Finally, we present the application of the numeri-
cal model to a realistic case, showing the differ-
ences between the results obtained by using the 
two solvers. The case we consider here regards a 
debris flow in a conoid situated in the Eastern 
Alps, near Trento.  
Fig. 5 shows the predicted flow depths at a time 
just before the hydrograph peak that has been cho-
sen as representative of the differences between 

 
Figure 5. Application of the numerical model using LHLL solver (left) and GR solver without diffusion (right) to the simu-
lation of a debris flow in a conoid situated in the Eastern Alps, near Trento. 
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the results obtained using the two solvers. The 
Generalized Roe solver has been used here with-
out the diffusion term. There is of course no refer-
ence solution, so it is only possible to compare the 
two solutions and analyze the differences. As it 
can be seen, the two predictions are overall simi-
lar. There are though a few interesting differences, 
that can be easily connected with the numerical 
diffusion of the LHLL solver. The LHLL solution 
appears in fact everywhere smoother, and the dis-
charge is more uniformly distributed. On the other 
hand, using the Generalized Roe solver, the flow 
is more concentrated in a few bigger streams, and 
the contour plot is overall more scattered. The 
same difference can be seen in the river (lower 
part of the pictures) that collects the water. 

5 CONCLUSIONS 

In this paper we have presented an improved ver-
sion of the TRENT2D model for the simulation of 
debris flows over mobile bed. From the analysis 
of a possible steady solution of the conservation 
system we have realized that a diffusive term must 
added in the original system of conservation laws 
in order to obtain physically acceptable solutions. 
From a numerical point of view we have pre-
sented a new generalized Roe-type solver able to 
deal with non conservative fluxes present in the 
governing equations. This scheme is much less 
diffusive respect the original LHLL method be-
cause of the enhanced treatment of the non con-
servative term in the solution of the Riemann 
problem. This features allows to introduce proper 
discretization of diffusive terms (as well as possi-
ble other phenomena) without shadowing their ef-
fect because of the numerical diffusion of the 
scheme. 
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