
 
1 INTRODUCTION 

Depth-averaged plane 2D (two-dimensional) shal-
low flow equations have been widely used for 
computations of various phenomena in rivers and 
shallow lakes. The numerical models based on the 
plane 2D shallow flow equations have a great ad-
vantage from the viewpoint of computational effi-
ciency compared with 3D (three-dimensional) 
models. Though the computer is developing rapid-
ly and also 3D numerical models are becoming 
common nowadays (e.g., Nagata et al. (2005)), the 
3D computations are still expensive and not prac-
tical for engineering purposes. Generally speak-
ing, a horizontal scale of rivers is much larger 
than a vertical scale. Therefore, the assumption of 
shallow flows is reasonable in many cases. How-
ever, the plane 2D models sometimes yield se-
rious errors if the three-dimensionality of flows 
becomes conspicuous. 

Secondary currents of the first kind at curved 
channels are typical cases of river flows with cru-
cial three-dimensionality. The 2D depth-averaged 
model incorporated the effects of secondary cur-
rents of the first kind were firstly proposed by 
Kalkwijk & de Vriend (1980). After then, such 

models have been refined and extended their ap-
plicability by many researchers, such as, Hosoda 
et al. (2001), Onda (2004) and Onda et al. (208). 
Applications of the 2D models with effects of 
secondary current have also done widely in real 
river phenomena with bed deformation, such as, 
meandering channel (Kimura et al. (2009)) and a 
side-cavity with recierculation  (Kimura et al. 
(2008)). 

Another typical three-dimensional flow struc-
ture can be seen around a bluff body, such as, 
bridge piers, spur-dikes, etc. Those 3D structures 
are characterized by formations of a horseshoe 
vortex at upstream region of the bluff body and an 
arch vortex at downstream region of it. A horse-
shoe vortex formation is particularly important for 
river engineering because a horseshoe vortex is 
closely related to local scour erosion around a riv-
er structure, which sometimes threatens the safety 
of river structures. However, so far, the 2D depth 
averaged model considering effects of horseshoe 
vortex was not been proposed except some ad hoc 
approach. 

In this paper, we developed a model of a horse-
shoe vortex for incorporating into depth-averaged 
2D shallow open channel equations. For model 
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building, velocity profiles in vertical directions 
are expressed as polynomials of vertical coordi-
nate. We chose polynomial type functions consi-
dering analytical simplicity. The assumed velocity 
profiles are substituted into both three-
dimensional and depth-averaged continuity and 
momentum equations. Then the relations of coef-
ficients for each term are derived. As the first step 
of model development, we assumed a hydrostatic 
condition as well as simplified flow domain. We 
also chose the lowest order of polynomial func-
tions to express a horseshoe vortex for simplicity. 

The present model was verified through the 
comparison with two kinds of simple flow phe-
nomena; one is a potential flow around a circular 
cylinder and the other is a three-dimensional nu-
merical result of a horseshoe vortex in front of a 
square cylinder studied by Kimura et al. (2006). 
The calculated results show the validity of the 
present model and the applicability to real river 
phenomena with a horseshow vortex. 

2 DERIVATION OF THE PRESENT MODEL 

2.1 Basic assumption 
We consider a flow field schematically shown in 
Figure 1. The flow domain is assumed as symme-
tric with respect to the center line (x-axis) and the 
lateral velocity v on the centerline is assumed to 
be 0. First, the three-dimensional velocity profiles 
in the streamwise direction (u) and the transverse 
direction (v) are expressed by polynomials of ζ as 
follows. 

+++++

+++==
7

7
6

6
5

5
4

4

3
3

2
210

)()()()(

)()()()(),(

ζζζζ

ζζζζ

xuxuxuxu

xuxuxuxuxuu   (1) 

+++++

+++==
7

7
6

6
5

5
4

4

3
3

2
210

)()()()(

)()()()(),(

ζζζζ

ζζζζ

xvxvxvxv

xvxvxvxvxvv   (2) 

h
zz b−

=ζ
 (3) 

where z: water depth, zb: bed height and (u, v): ve-
locities in (x, y) directions. The velocity in the 
vertical direction, w(x, ζ) can be expressed using 
the three-dimensional continuity equation: 
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and equations (1) and (2) as: 
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The depth averaged velocity component in x 

and y directions, U and V are obtained through 
vertical integration of equations (1) and (2) as: 
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2.2 Coefficients of velocity profile functions 
Coefficients (u0, u1, etc.) for velocity profile func-
tions (equations (1) and (2)) are derived in the fol-
lowing way. For the sake of simplicity, we con-
sider up to second order terms for u and only the 
0-th order term for v, respectively. Therefore, ne-
cessary coefficient functions are u0(x), u1(x), u2(x) 
and v0(x). 
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Figure 1. Schematic diagram of the flow domain. 
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First, using the depth-averaged continuity equ-
ation under steady condition: 
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the following relation is derived. 
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The momentum equation in the x-direction along 
the centerline becomes: 
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where g: gravity acceleration and νt: eddy viscosi-
ty coefficient. The eddy viscosity coefficient is 
evaluated using the depth averaged velocity U 
(NOT friction velocity) as: 

2' Uht βν =  (11) 
where β’ is a model constant, which value should 
be chosen one order smaller than the case, in 
which a friction velocity is used for the velocity 
scale. On the other hand, the relation of a bed fric-
tion yields: 
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where u* is a signed friction velocity. In a similar 
way with the model proposed by Engelund 
(1974), the velocity near a bed (=u0) is assumed to 
be in proportion with a friction velocity and is ex-
pressed using model constant r* as: 

**0 uru =  (13) 
From equations (12) and (13), u1 can be given us-
ing u0 as: 

Ur
uu

U
uu

u 2
*

00**
1 ββ

==
 (14) 

On the other hand, equation (1) is substituted 
into u in equation (10) and the relation of 0-th or-
der of ζ becomes: 
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For simplicity, zb=0 is assumed. Then, u2 can 

be expressed using u0 as: 
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The 0-th order coefficient u0, which is expressing 
a streamwise velocity at the bottom (u|ζ=0), can be 
derived as follows. An equation considering up to 
the second order terms of equation (6) becomes: 
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When both sides of equation (7) are multiplied by 

hU /'6 2β , that becomes 
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Next, u1 and u2 in equation (18) can be eliminated 
using equations (14) and (18). Considering non-
negativity of depth averaged streamwise velocity 
U ( UU =2 ) at upstream region of a structure, the 
following equation for u0 is derived.  
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U and h in equation (19) are calculated using 
plane 2D (two-dimensional) computations. 

Since only 0-th order term is considered for the 
lateral velocity v, v0 is simply given as: 

Vv =0  (20) 

where V is calculated by a plane 2D computation. 
From equations (14), (15), (19) and (20), all 

coefficient functions for velocity profiles u and v 
are determined. The vertical velocity w can be ob-
tained by the following equation, which is derived 
using equation (5). 
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Equation (9) is not directly used for model build-
ing but will be used later for comparison of lateral 
velocity gradient dv/dy with results by a three-
dimensional computation. 

2.3 Computational procedure 

2.3.1 Coupling with a plane 2D model 
A plane 2D computation considering a horseshoe 
vortex can be carried out in the following proce-
dure: 
Step 1: u0 is calculated through equation (19) us-

ing U and h, which are computed by a plane 2D 
model. This process cannot be done analytical-
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ly. So, we introduced a quasi-unsteady term 
du0/dt and solved until well-developed steady 
state by a time marching method. An upwind 
scheme is applied for the third term at right 
hand side of equation (19) for stabilizing the 
time integration. 

Step 2: u1 and u2 are calculated using equations 
(14) and (16) with u0, which is obtained in Step 
1. 

Step 3: Using u0, u1, u2 and equation (20), the ver-
tical velocity w is calculated by equation (21). 

Step 4: Depth averaged velocities U, V and a wa-
ter depth h are computed by shallow flow equa-
tions, in which the bed friction is evaluated 
with u*. u* is calculated from u0 by equation 
(13). 
Repeating step 1 – Step 4, we can compute ve-

locity field considering a horseshoe vortex. If the 
plane 2D model is coupled with sediment trans-
port model and bed continuity equation, a local 
scour due to the horseshoe vortex can be com-
puted. When the computation of 3D velocity field 
is not necessary, we can skip step 2 and step 3. 

2.3.2 Evaluating water elevation around a 
bluff body 

Another application of the present model is eva-
luating water elevation around a river structure us-
ing depth averaged velocities U and V. In this 
case, the following depth averaged momentum 
equation along x-axis is used. 
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When second orderly extended u is substituted in-
to equation (22), the following relation: 
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is obtained. Equations (24), (19), (14) and (16) are 
solved simultaneously and the depth can be esti-
mated. 

3 APPLICATION TO A POTENTIAL FLOW 
AROUND A CIRCULAR CYLINDER 

3.1 Flow characteristics 
In order to check the fundamental features of the 
present model for replicating a horseshoe vortex, 
an application to an open channel flow around a 
circular cylinder is firstly considered. The depth 
averaged velocities and water depth distribution 
around a cylinder are evaluated by a theoretical 
potential flow for simplicity. Figure 2 shows the 
plane and vertical views of the flow domain. The 
origin of the axes is located at the center of the cy-
linder on the bottom and R denotes the radius of 
the cylinder. U0 and h0 denote the velocity in x-
direction and the depth at infinitely far from the 
cylinder, respectively. Δh denotes the water eleva-
tion around the cylinder. The bed slope is set to be 
0. The theoretical solutions can be obtained ana-
lytically for U, h and Δh as follows. 
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Figure 2. Schematic diagram of an open channel flow 
around a circular cylinder. 

Figure 3. Relation between the diameter of the cylinder and 
scale of negative velocity region. 
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From those equations, the water surface slope in 
x-direction is calculated by 
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3.2 Results and discussions 

3.2.1 Location of the separation point 
The separation point x=x0 of the horseshoe vortex 
at the bottom is defined as the x location of u0=0, 
(u|ζ=0 = u0). This value is important for determin-
ing the horizontal scale of the horseshoe vortex. 

Substituting equations (25)-(28) into equation 
(19), the following equation is obtained. 
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When u0 is set 0 in equation above, the following 
relation for x0 is derived. 
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The x0 can be calculated by solving equation (30) 
with iteration. 

Figure 3 shows the relation of x0 and x0/R with 
different R. This figure shows that the horizontal 
scale of the horseshoe vortex becomes larger as R 
becomes larger. This feature is in compatible with 
real phenomena. 

 
Figure 4. Predicted velocity profile (=u0) at the bed at up-
stream region of the circular cylinder. 

Figure 5. Velocity vectors at a vertical section along the cen-
ter-line (x-axis) at the upstream regions of the cylinder. 
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Figure 6. Schematic diagram of plan and vertical views of 
open channel flow around a square cylinder (Kimura et al. 
(2006)). 

 
Table 1. Hydraulic parameters in 3D computation (Kimura 
et al. (2006). 

h(cm) U0(cm/s) D(cm) B/D h/D Re Fr
1.14 18.18 4.0 5 0.285 8400 0.54

h: depth, U 0: mean velocity, D: side -length of cylinder B: 
channel width, Re: Reynolds number (=U0D/ξ), Fr: Froude number

Figure 7. Computational grid used for 3D computation (Ki-
mura et al. (2006). 
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3.2.2 Analytical solution for velocity field by the 
present model 

u0(x) is extended as a polynomial of R/x as: 
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Equation (31) is substituted into equation (29) and 
relations for each order are obtained. The coeffi-
cients for equation (31) were solved up to 5th or-
der terms as follows. 
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u1 and u2 can be calculated using u0 with equa-
tions (31)-(36), equations (14) and (16). 

Figure 4 shows the profile of bed velocity u0 
along x-axis when U0 = 0.3m/s, h0 = 0.1m/s, β’= 
0.01, R = 0.05 m and r* = 15. The region with 
negative u0 shows the range of the horseshoe vor-
tex. Figure 5 shows velocity vectors at the vertical 
section along x-axis. We can see a clear horseshoe 
vortex formation behind the cylinder. However, 
the present result shows unreasonable large veloc-
ity near the water surface. This feature does not 
agree with the real phenomena. The reason seems 
to be that velocity function (equation (1)) current-
ly include only up to the second order term. 
Therefore, it is shown that a higher order model is 
necessary for improvement of the accuracy. 
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Full-3DFull-3D

–5 0 5 10 x/D–5 0 5 10 x/D

U0U0U0

Full-3DFull-3D

Figure 8. Snap shot of the plan flow pattern by the 3D com-
putation (3D-DP) (Kimura et al. (2006)). 
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Figure 9. Time mean plane flow pattern by the 3D computa-
tion (3D-DP). 
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(b) 3D-SP (hydrostatic assumption) 

Figure 10. Time-mean flow patterns by 3D computations at 
a vertical section along x-axis (Kimura et al. (2006)). 
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4 COMPARISON WITH 3D URANS 
COMPUTATIONAL RESULTS AROUND A 
SQUARE CYLINDER 

4.1 Flow characteristics 
Kimura et al (2006) performed three-dimensional 
(3D) computations around a square cylinder 
mounted on a flat bed in an open channel flow us-
ing URANS (a second order non-linear k-ε model) 
approach. Although this study mainly focused on 
the backwater elevation, a horseshoe vortex was 
also clearly captured by the computation. There-
fore, the comparison with the data is useful to 

check the more detailed performance of the 
present model.  

Figure 6 shows the plane and vertical views of 
the tested flow domain. The hydraulic parameters 
used in the 3D computation are listed in Table 1. 
The plan view of the computational grid around 
the square cylinder is shown in Figure 7. Number 
of grid layers in the vertical direction is 8. As a 
turbulence model, the second order non-linear k-e 
model developed by Kimura & Hosoda (2003) 
was adopted. Two kinds of computations, i.e., a 
computation under hydrostatic assumption (case 
3D-SP) and a computation considering dynamic 
pressure (case 3D-DP) were carried out. They also 
performed a plane 2D computation with depth-
averaged shallow flow equations. 

Figure 8 shows the instantaneous horizontal 
velocity vectors at the water surface by the 3D 
computation (case 3D-DP). We can see that Kar-
man vortex shedding is captured numerically. It is 
likely that the horseshoe vortex is affected by the 
Karman vortex shedding and fluctuates periodi-
cally. However, the numerical result showed that 
the temporal velocity variation caused by the pe-
riodic Karman vortex shedding is much smaller 
than the mean velocity. Therefore, we use time-
averaged velocities and depth of the 3D computa-
tion for validation of the present model. Figure 9 
shows the time mean plane flow pattern by the 3D 
computation with 3D-DP. The flow field is com-
pletely symmetric to the x-axis. 

Figure 10 shows the flow pattern in a vertical 
section along x-axis. Both computational results 
could capture the generation of the horseshoe vor-
tex though the scale of the computed vortex by 
3D-SP is smaller than the result by 3D-DP. As for 
the backwater elevation at the upstream region of 
the cylinder, the computation with 3D-DP could 
reproduced the elevation precisely though the 
computation with 3D-SP a little bit under-
predicted it. 

4.2 Results by the present model 

4.2.1 Outline of the model validation 
Since the present model adopts hydrostatic as-
sumption, the model is applied to both 3D-DP and 
3D-SP and results are compared. First, the depth 
averaged velocity U and V are calculated from the 
3D numerical results through vertical integration. 
Using the U, V and h by the 3D computation, the 
vertical velocity profile along x-axis is recon-
structed by the present model. Then, the vertical 
velocity profile along x-axis by the 3D computa-
tion and the present model is compared. 

 

 

 
Figure 11. Predicted velocity profiles at the bed around a 
square cylinder by the present model (upper: 3D-DP, lower: 
3D-SP). 

 

3D-DP

3D-SP

Figure 12. Predicted velocity vectors at a vertical section 
along x-axis by the present model (upper: 3D-DP, lower: 3D-
SP). 
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4.2.2 Comparison of velocity near bed (u0) 
Figure 11 shows the comparison of the streamwise 
velocity at the bed (u0) along x-axis obtained by 
the 3D computation and the present model. The 
both results show the region where the streamsie 
velocity at the bed becomes negative at the up-
stream region of the cylinder. The profile by the 
present model is however not smooth contrary to 
the 3D computational result. This may be because 
of the low order approximation for u and v. Cur-
rently, the orders of velocity function is 2 for the 
streamwise velocity and 0 for the lateral velocity. 
So, we should develop a refined model with high-
er order approximation. As for the result by 3D-
DP, the scale of the horseshoe vortex and the pro-
file of negative velocity are in good agreement 
with the 3D computational result though the ve-
locity at upstream region of the horseshoe vortex 
is under-predicted by the present model. On the 
other hand, the computation with 3D-SP could 
capture the scale of the horseshoe vortex though 
the minimum velocity is under-predicted.  

In general, the present model could replicate 
the fundamental features of the horseshoe vortex 
around a square cylinder in an open channel flow. 
Since the present model adopted the hydrostatic 
assumption, it is expected that the result agrees 
better with 3D-SP than 3D-DP. However, such 
tendency was not found. The reason is also likely 
to be very low order approximation of velocity 
functions.  

4.2.3 Shape of the horseshoe vortex 
Figure 12 shows the flow pattern at the vertical 
section along x-axis by the present model. A 
horseshoe vortex is generated in both cases. The 
comparison with the 3D computational results re-
veals the difference of the shape of the horseshoe 
vortex clearly. In the 3D computational result, the 
horseshoe vortex occurs near the bottom and the 
shape is ellipsoidal with a longer horizontal axis. 
On the other hand, the range of the horseshoe vor-
tex reaches near the surface in the result by the 
present model. The necessity to consider higher 
order terms were again shown here. 

4.2.4 Lateral velocity gradient 
The present model assumes symmetry of the flow 
domain. Therefore, the lateral velocity v at the 
centerline is always zero though the velocity gra-
dient dv/dy is generally not zero. Figure 13 shows 
the value of dv/dy computed from equation (9). 
The result by the 3D computation is shown to-
gether. This figure shows that the results by the 
present model are again in good agreement with 

the 3D computational results in both 3D-DP and 
3D-SP. 

5 CONCLUDING REMARKS 

This study presents a novel modeling approach for 
a horseshoe vortex in an open channel flow for 
depth-averaged shallow flow equations. The 
present model is a first step for practical model 
and is imposed some restrictive assumptions, such 
as, symmetric flow field and flat non-sloped bed, 
etc. The order of approximation for velocity pro-
files is currently very low (second order for 
streamwise velocity and 0-th order for lateral ve-
locity). The present model was applied to the po-
tential flow around a circular cylinder and a open 
channel flow around a square cylinder with exist-
ing 3D URANS computational data.  

The computational results indicate that the 
present model can replicate the horseshoe vortex 
formation. The range of negative velocity at the 
bottom and the lateral velocity gradient along the 
center line were also simulated adequately. How-
ever, the shape of the horseshoe vortex does not 
agree with the 3D computational result. 

In the next step, we should modify the model in 
the following way. 
− Considering vertical acceleration 
− Increasing the order of velocity profile func-

tions 
− Extending to generalized curvilinear coordinate 

 

 
Figure 13. Predicted lateral velocity gradient dv/dy along x-
axis by the present model (upper: 3D-DP, lower: 3D-SP). 
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