
 
1 INTRODUCTION 

In many engineering disciplines fluid flows with 
more than one phase occur. The correct prediction 
of the phase interface is important for many appli-
cations, such as solidification, melt dynamics, 
reacting flows, breaking surface waves and air-
water dynamics. Several interface capturing ap-
proaches exist. One of the first was the Marker-
and-Cell (MAC) scheme [5]. Here massless mark-
er particles are used to represent the phases. The 
distribution of the particles determines the loca-
tion of the interface, which must be reconstructed 
explicitly. The computing effort is rather large be-
cause the grid needs to be refined along interface 
in order to avoid smeared solutions. In the Vo-
lume of Fluid method (VOF) [7] the marker par-

ticles are replaced by a scalar field, which de-
scribes the volume fraction of one fluid for each 
discretization cell. The main difficulty with this 
method is the accurate reconstruction of the inter-
face. Also an effect known as foaming, the smear-
ing of the interface can be a problem. In the cur-
rent paper the level set method is used [10]. The 
main idea behind this method is that the location 
of interface is represented implicitly by the zero 
level set of the smooth signed distance function. 
In contrast to the VOF method the level set func-
tion varies continuously across the interface. The 
location of the interface is readily available and 
does not require any reconstruction procedure. 
Since mass conservation is not enforced directly 
by the level set method, it is supplemented with a 
particle correction algorithm. 
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2 NUMERICAL MODEL 

2.1 Equations of Motion 
For the investigations in the present paper a three-
dimensional numerical model is used. The govern-
ing equations for the mass and momentum con-
servation are the continuity and the 
incompressible Reynolds-averaged Navier-Stokes 
(RANS) equations: 
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U is the velocity averaged over the time t, x is 
the spatial geometrical scale, ρ is the water densi-
ty, ν is the kinematic viscosity, P is the pressure, g 
is the gravity, u is the velocity fluctuation over 
time with i ju u  representing the Reynolds stresses. 
At solid boundaries the surface roughness is ac-
counted for by using Schlichting's rough wall law 
[12]. 

2.2 Turbulence Model 
Turbulence is modeled with the k-ω model by 
Wilcox[18]. The Reynolds stress term in the the 
RANS equations is then replaced with the Boussi-
nesq-approximation: 
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The turbulent kinetic energy k and the specific 
turbulent dissipation ω which are needed to de-
termine the eddy viscosity νt are obtained by solv-
ing the following transport equations: 
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A slight deviation between the above presented 
equations for the k-ω model and Wilox's model is 
that here ω is cµ times Wilcox's. That way the ed-
dy viscosity representation resembles that of the 
standard k-ε model. The model coefficients are 
then cµ = 0:09, cω1 = 5=9, cω2 = 5=6 and σω = σk = 
2. The term |S|² is constituted of the mean rate of 
strain tensor 
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Wall functions according to [18] are used to-
model the surface roughness of solid boundaries. 

2.3 Level Set Method 
The level set method was first presented by Osher 
and Sethian [10] in 1988. It was devised for com-
puting and analyzing the motion of an interface Γ 
between two phases in two or three dimensions. 
The location of interface is represented implicitly 
by the zero level set of the smooth signed distance 
function ( ),x tφ . In every point of the modeling 
domain the level set function gives the closest dis-
tance to the interface and the phases are distin-
guished by the change of the sign. This results in 
the following properties: 
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Also the Eikonal equation 1φ∇ =  is valid. 
When the interface Γ is moved under an external-
ly generated velocity fieeld v , a convection equa-
tion for the level set function is obtained: 
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When the interface evolves, the level set func-
tion looses its signed distance property. In order to 
maintain this property and to ensure mass conser-
vation the level set function is initialized after 
each time step. In the present paper a PDE based 
reinitialization equation is solved [14]: 
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S(φ) is the smoothed sign function by Peng et. 
[11]. 
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With the level set function in place, the materi-
al properties of the two phases can be defined for 
the whole domain. Without special treatment there 
is a jump in the density ρ and the viscosity ν 
across the interface which can lead to substantial 
numerical stability problems. The solution is to 
define the interface with the constant thickness 2ε. 
In that region smoothing is carried out with a re-
gularized Heavyside function H(φ). The thickness 
ε is proportional to the grid spacing, in the present 
paper it was chosen to be ε = 1:6Δx. The density 
and the viscosity can then be written as: 
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2.4 Lagrangian Particle Correction 
In order to improve the mass conservation proper-
ties of the original level set method, massless par-
ticles are used to correct the level set function in 
under-resolved regions. This approach was first 
presented in [4]. In the present paper an improved 
version of this algorithm is used [17]. Negative 
particles are seeded on the negative side of the 
level set function in a narrow band of 1:6Δx near 
the interface, the positive particles are respective-
ly placed on the positive side of the interface. 
Each cell in the narrow band contains 64 particles. 
The particles are advected with the third-order ac-
curate TVD Runge-Kutta scheme [13]. In contrast 
to the original method, the narrow band in which 
the particles are placed needs to be only have half 
the size in the improved version. Also the particle 
correction step needs to be performed only once, 
after the convection of the level set function. 
When a particle passes the interface by more then 
its radius it is used to correct the level set func-
tion. In the current implementation the particle 
correction scheme is fully parallelized. 

2.5 Surface Tension 
Cohesive forces act between the molecules of a 
liquid. At the interface liquid-gas the molecules of 
the liquid phase do not have neighbors of their 
own phase. Since the cohesive forces of the liquid 
molecules are larger than that of the gas, they are 
attached stronger to each other on the interface 
than inside the uid. In order to consider the sur-
face forces in the momentum equations, they need 
to be transformed into volume forces. This is done 
with the continuum surface force (CSF) model by 
Brackbill et al. [8]. The following source term 
SCSF;i needs to be added to the momentum equa-
tions: 
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The surface tension coefficient σ is a material 
property. For the water-air interface at 20 °C it is 
0.07275 N/m. The calculation of the interface cur-
vature is straightforward with the level set me-
thod, no reconstruction is of the free surface is ne-
cessary: 
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In order to activate the surface tension near the 
interface only, the source term is multiplied with a 
regularized Dirac delta function. 
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2.6 Discretization of the Convective Terms 
For complex ow situations such as free surface 
ows, it is essential to employ a high order discreti-
zation method while at the same time maintain a 
high level of numerical stability. With that in 
mind the fifth-order WENO (weighted essentially 
non-oscillatory) scheme by Jiang and Shu [9] in 
the finite-difference framework is chosen. The 
great advantage of the WENO scheme is that it 
can handle large gradients right up to the shock 
very accurately by taking local smoothness into 
account. The overall WENO discretization stencil 
consists of three local ENO-stencils. These sten-
cils are weighted depending on their smoothness, 
with the smoothest stencil contributing the most 
significantly. In comparison to popular high reso-
lution schemes such as MUSCL [16] or TVD [6] 
schemes, the WENO scheme does not smear out 
the solution. Instead it maintains the sharpness of 
the extrema. The WENO scheme is used to treat 
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the convective terms for the velocities Ui, the tur-
bulent kinetic energy k, the specific turbulent dis-
sipation rate ω and the level set function φ. [3]. 

2.7 Projection Method for the Pressure 
The pressure is included in the modeling proce-
dure by employing Chorin's projection method [2] 
for incompressible ow. Here the actual pressure 
gradient is neglected in the momentum equations. 
Instead for each time step an intermediate velocity 

*
iU  is computed using the transient RANSequa-

tion: 
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The Poisson equation for pressures is formed 
by calcluating the divergence of the intermediate 
velocity field. 
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The Poisson equation is solved using the Jaco-
bi-preconditioned BiCGStab algorithm [15]. The 
pressure is then used to correct the velocity field, 
making it divergence free. 

2.8 Time Advancement Scheme 
For the time discretization a second-order accurate 
Adams-Bashforth scheme is used. The time step 
size is determined through adaptive time stepping. 
This ensures a stable and efficient choice of the 
time step. The spacial discretization is represented 
by the operator L. The formulation is given for the 
level set equation and a non-equidistant time 
steps. 
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2.9 The Numerical Grid 
All model equations are discretized on a Cartesian 
grid with a staggered arrangement of the va-
riables. The velocity variables are defined on the 
center of the cell faces, while all others such as 
the level set function, the pressure or the variables 
of the turbulence model on the cell centers. This 
way oscillations due to velocity-pressure decoupl-

ing are avoided. At the solid boundaries of the uid 
domain a ghost cell immersed boundary method is 
employed. In this method the solution is analyti-
cally continued through the solid boundary by up-
dating the fictitious ghost cell in the solid region 
by extrapolation. That way the numericaldiscreti-
zation does not need to account for the boundary 
conditions explicitly, instead they are enforced 
implicitly. The algorithm is based upon the local 
directional approach by Berthelsen and Faltinsen 
[1] which was implemented in 2D. In the present 
study the extrapolation scheme is decomposed in-
to the components of the threedimensional coor-
dinate system. The current approach has several 
advantages: Grid generation becomes trivial, the 
numerical stability and order of the overall 
scheme is not affected. In addition the method in-
tegrates well into the domain decomposition strat-
egy for the parallelization of the model. Here 
ghost cells are used to update the values from the 
neighboring processors via MPI. 

3 EXPERIMENT 

The physical experiments of the contraction case 
were conducted at the laboratories of the BAW 
(FederalWaterways Engineering and Research In-
stitute) in Karlsruhe, Germany. The flume is 16.50 
m long and 1 m wide. The contraction is 0.5 m 
wide. The bed of the flume is filled with sediment 
particles with d50 = 5.5 mm. The experiments are 
performed with several different discharges. In the 
present study measurements of the runs with 150 
l/s are chosen for comparison with the numerical 
model. With this discharge erosion occurred, but 
is not modeled numerically. The hydraulic situa-
tion in the flume is characterized by complex 
three-dimensional features of the flow. The shape 
of the free water surface could be described as 
highly turbulent and unsteady. The flume is 
equipped with a stationary pressure based system 
for the measurement of the water level elevation. 

4 RESULTS 

For the simulations a numerical grid with an uni-
form mesh width of Δh = 0:05m and 80.000 cells 
is used. The calculations were performed on a 8-
core Intel Xeon-processor workstation. For the in-
flow boundary condition the discharge is fixed, 
but the water level is not. At the outflow the water 
level is specifled to be 0.315 m, with zerogradient 
boundary conditions for the velocities. The nu-
merical model calculates unsteady flow and the 
results shown are sampled from t = 25 sec. Figure 
1 shows the free surface calculated with the nu-
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merical model. The black lines represent the geo-
metric enclosure of the numerical grid. The con-
traction is separated into 8 pieces due to the do-
main decomposition strategy for the 
parallelization. The contour of the figure 
represents the water level elevation. In the con-
traction area a significant drop in the water level 
can be observed. It decreases slightly until the ex-
pansion, where it reaches its minimum. Down-
stream of the expansion the water level raises 
again. Figure 2 shows a comparison of the meas-
ured and computed water elevation along the cen-
ter line of the flume. While both lines follow the 
same characteristics it is quite obvious that the 
numerical model over predicts the water level up-
stream of the contraction by about 2 cm. Since the 
outflow water level is fixed and the inflow water 
level is allowed to move, it means that in the nu-
merical model the energy loss in the contraction is 
somewhat to high. This is probably due to the fact 
that the roughness was not further calibrated in the 
numerical model. 

Figure 3 shows the free surface with the vertic-
al axis scaled up with the factor 4. The purpose is 
to show how detailed the level set method re-
solves also local free surface structures even 
though the grid is rather coarse with Δh = 0:05m. 
This is partly owed to the positive effect of the 
particle correction algorithm on the resolution of 
local effects. The positive and negative particles 
on each side of the zero level set can be seen in 
Figure 4. The geometry and the coarse mesh with 
its high interface cells to total cells ratio is some-
what unfavorably towards the performance of the 
method. It costs roughly 20 % of the total compu-
tational time. A finer grid would lower that num-
ber significantly. 

5 CONCLUSION 

In the present paper computations of free surface 
flow in a long contraction are presented. The 
combination of particle corrected level set method 
and immersed boundary showed stable numerical 
properties. The algorithm proved to be capable to 
capture the free surface topology with some detail. 
Deviations between the numerical results and the 
measurements for the water level elevation on the 
upstream side of the contraction occured. In a fur-
ther study the e_ect of the bed roughness on the 
water level should be examined. Comparison with 
experimental velocity data is underway. 
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Figure 1 Computed free surface with water elevation contour 

Figure 2 Water level elevation along the channel centerline 

 

Figure 3 Computed free surface, vertical axis scaled with factor 4 

 

Figure 4 Negative (blue) and positive (red) particles around the interface 
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