
 
1 INTRODUCTION 

In morphodynamic numerical models model pa-
rameters, initial conditions and input data can be 
uncertain due to the natural variability, the defi-
cient description of the physical processes in the 
model and the imprecision of the model parame-
ters. The propagation of these uncertainties can 
have serious implications in the reliability of the 
simulation results. Therefore, it is necessary to 
identify the various sources of uncertainty and to 
quantify their contributions to the variance of the 
model result. Reliability analysis can help calcu-
lating the uncertainties in a very effective way. 

2 METHODS OF RELIABILITY ANALYSIS 

The influence of uncertain input parameters to the 
state variables were calculated with two different 
methods: a Monte Carlo method specialized to 
confidence limits (MC-CL) and the Scatter Analy-
sis (SA). Compared to the MC-CL the number of 
required simulation runs is less in the SA but also 
the ability to handle non-linearities. 

The first step for each method is assuming the 
statistical distribution of the uncertain parameters. 

In this paper only Gaussian or double Gaussian 
distributions are used. For a fully description the 
mean value and the standard deviation or – in case 
of double Gaussian distribution – two standard 
deviations are needed. 

The result of the reliability analysis is a confi-
dence interval of the state variable, e.g. the evolu-
tion of the river bed topography, connected to a 
given probability. The confidence interval incor-
porates only the uncertainties of the considered 
input parameters and takes not into account the 
various other sources of uncertainties like the im-
perfection of the numerical model. 

2.1 Scatter Analysis 
For the Scatter Analysis the results of different 
simulation runs are used to determine the uncer-
tainties. Thus, modifications of the program code 
are not needed. This method is adequate for linear 
or slightly non-linear problems. From the root 
mean square (rms) the deviations are assumed. 
This is done in first order methods like the First-
Order Reliability Method (FORM) as well. 

Demonstrating the method for the influence of 
the friction coefficient ks to the state variable evo-
lution, which describes the vertical changes in the 
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bed elevations, a Taylor expansion for the Evolu-
tion E can be written as 
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where )( 0ksksdks −= , ks: gaussian distributed. 
The root mean square rms(E) it the product of the 
first derivation of the evolution and the standard 
deviation plus a higher order term: 
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For the confidence limits only the first order is 
taken into account 
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so that the confidence interval of the evolution for 
a 68 % probability is two times the rms and for a 
95 % probability 4 times the rms. The distortion 
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should be much smaller than the rms, otherwise 
the function is not slightly non-linear and the 
method is not adequate for this special problem. 
However, the distortion can only be used as an in-
dicator for slightly non-linearity in case of sym-
metric distributions. 

For the reliability analysis shown here the 95 
% confidence limits and the related tolerance 
range were used. These can be calculated from the 
rms by applying a central difference scheme  
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where E(ks0+/-σ) are results from simulation runs 
with ks0+/-σ. The calculations of the deviations or 
the tolerance limits for n uncertain parameters 
need only n*2 + 1 simulation runs. (Nikitina, 
2008) 

2.2 Monte Carlo-CL method  
In the MC-CL method the confidence limits are 
determined approximatively. In case of strong 
non-linearities the confidence limits can not be 
deduced from the root mean square (rms) any 
longer. As well, it is not possible to calculate the 
rms from the deviations. A connection between 
the confidence limits and the root mean square 
only exists in case of non-distorted gaussian dis-
tribution, as in linear functions. For strong non-
linear functions the root mean square and the con-

fidence limits are not equivalent, not proportional 
and furthermore there is no functional connection 
between them. 

 
Figure 1. CDF (bold line) and its confidence limits 

Because of that the confidence limits (CL) 
have to be derived from an empirical distribution 
function (EDF). Figure 1 shows a cumulative dis-
tribution function (CDF) and its confidence limits 
(CL). The CDF has to be inverted in the two 
points (1+/-α)/2 (here α=68%) in order to get the 
values of the confidence limits. 

Instead of inverting the unknown CDF F(x) the 
EDF FN(x) is used (see figure 2), which is a step 
function with step length of 1/n. If n is big enough 
the EDF passes over to the CDF (law of large 
numbers). A design of experiment (DoE) genera-
tor chooses from all possible combinations of the 
input parameters a parameter set for a given num-
ber of simulation runs, which has a “reasonable” 
statistical distribution. 

 

 
Figure 2. CDF (bold line) and EDF (step function line) of a 
random variable  
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In case of infinity number of simulation runs 
the approximation error of the EDF is normally 
(gaussian) distributed and can be given as 
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This formulation is only valid if n is large 
enough (n(1-α)/2>>1) and the larger n, the smaller 
is the approximation error (central limit theorem). 

The method is independent of the number of 
uncertain parameters but only dependent on the 
chosen confidence level. The reason is that the 
DoE generator works with a probability distribu-
tion in the space of the input parameters. The 
simulations convert this probability distribution in 
the space of the output values. Each output value 
(e.g. the evolution in time and space) can be seen 
as a single random number while its CDF deter-
mines the CL. Such a CDF is independent of the 
number of parameters but should have enough 
simulation runs in order to be “filled” sufficiently. 
(Nikitina, 2009) 

3 APPLICATION OF RIVER DANUBE 
MODEL 

A 10 km long stretch of the river Danube includ-
ing a 270° bend (see figure 3) is modelled with the 
morphodynamic program Sisyphe (Villaret, 2006) 
coupled with the hydrodynamic program Tele-
mac2D (Hervouet, 2007). 
 

 
Figure 3. River Danube model area with a 270° bend of 
Mühlham 

Nearly 100 000 grid elements were used for the 
discretization with mean node distances of about 6 
m in the river channel and up to 30 m at the flood 

planes. A synthetic hydrograph of 9 days was 
simulated including two high flood events (see 
figure 4). During the reliability analysis more than 
1000 simulations were needed, therefore the simu-
lation time had to be comparably small. Using 32 
processors one simulation run needed about 45 
min. With a natural 9 days hydrograph the dis-
charge dynamic would be too small for extrapolat-
ing the results. 
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Figure 4. Synthetic hydrograph 

 
For the reliability analysis 13 parameters were 

assumed to be uncertain: The active layer thick-
ness, the coefficient for the slope effect β de-
scribed by Koch & Flokstra (Koch & Flokstra, 
1981), which changes the value and the direction 
of the solid transport rate: 
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where s / n are the co-ordinates in the current / 
orthogonal current direction and α / δ are the an-
gles between flow direction and solid transport / 
bottom stress, 

the coefficient for the bedload formulation of 
Meyer-Peter & Müller, the coefficient for the sec-
ondary current effect α according to Engelund  

flowmaincurrentondary Rh __sec /7 ττ =  (8) 

and using the following formulation of the 
slope of the free surface zs in bends  
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the friction coefficient of the Nikuradse rough-

ness law for 4 areas and the grain size of 5 classes. 
The mean values and the standard deviations, 

assuming a Gauss or double gaussian distribution 
are listed in the table 1. 
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Table 1. Mean values and standard deviations of the uncer-
tain parameters  
 Mean 

value 
 min σ max σ Probab.

distrib.
Active layer thick-
ness AL [m]  

0.1 0.0166667 0.3 Double 
gaussian

Coefficient for 
slope effect β 

1.3 0.43333 1.23333 Double 
gaussian

Coeff. for MPM 
formulation fMPM 

4 1 1.3333 Double 
gaussian

Coeff. of secondary 
current effect α 

10 3 3.3333 Double 
gaussian

friction coeff. river 
channel ksRC [m]  

0.05 0.011 0.0116667 Double 
gaussian

friction coefficient 
groynes ksG [m]  

0.15 0.033333 0.1 Double 
gaussian

friction coefficient 
nature experiment 
ksNE [m]  

0.5 0.06667 0.06667 Gaussian

friction coefficient 
sandbank with trees 
ksST [m] 

0.4 0.1 01 Gaussian

Grain size class 1 
[m] 

0.0005 0.00013333 0.00033333 Double 
gaussian

Grain size class 2 
[m] 

0.0025 0.0003333 0.00126667 Double 
gaussian

Grain size class 3 
[m] 

0.01 0.0013333 0.0023333 Double 
gaussian

Grain size class 4 
[m] 

0.024 0.0063333 0.004 Double 
gaussian

Grain size class 5 
[m] 

0.048 0.004 0.004 Gaussian

 
With the Scatter Analysis a sensitivity analysis 

is possible. Using only three simulations runs with 
mean value and mean value +/- sigma the partial 
effect of separate parameter changes can be esti-
mated for each uncertain parameter. The most 
sensitive parameters to the evolution with de-
scending weight are the slope effect parameter 
(beta), the secondary currents coefficient (alpha), 
the bedload transport coefficient (MPM), the ac-
tive layer thickness and the grain sizes of the first 
(dm1) and the forth class (dm4). The first three pa-
rameters are strongly influenced by curve effects 
(see figure 5). 

 
Figure 5. 95 % confidence limits of slope effect coefficient 
beta influenced by curve effects 

The friction coefficients create only local and 
not very strong effects (see figure 6). The toler-
ance ranges for 95 % probability exceed 20 cm 
only for the first three most sensitive parameters. 

 
Figure 6. 95 % confidence limits of friction coefficient na-
ture experiment ksNE 

For the evaluation of the model result the influ-
ence of all uncertain parameters are important. 
Figure 7 shows the 95 % probability tolerance 
range calculated with MC-CL and SA taken into 
account all 13 as uncertain declared parameters 
after the simulated 9 days. For the MC-CL method 
1000 simulation runs were used, which provided a 
small estimation error of 0.005. Theoretically, 41 
simulation runs would be enough to calculate the 
95 % probabilities but the estimation error of 
0.024 seemed too high. The SA needs only 27 
simulation runs. 

As expected the tolerance ranges are larger 
than for one uncertain parameter (see figure 5). 
The most uncertain areas are located at the inner 
and the outer boundaries of the bends. This is due 
to the dominance of the curve influenced uncer-
tain parameters. For a classical numerical mor-
phodynamic simulation the calculated values for 
the evolution were believed in a range of +/- 10 
cm. With a reliability analysis this very global 
range can be stated more precisely. At the straight 
sections the tolerance range is often only 10 cm 
but in the bends it increases up to 0.5 m. This re-
sult shows that the simulation of the bedload 
transport perpendicular to the direction of the 
main current has to be enhanced in the models.  

In the considered section of the river Danube 
bed level changes of some decimeters up to 1 m 
can be observed after high flood events. Thus, 
confidence intervals of +/- 10 cm in a morphody-
namic simulation are significant and are in the 
same range than the inaccuracy of river bed 
soundings. 
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Figure 7. 95 % tolerance range calculated with MC-CL 
(above) and SA (below) after 9 days simulation. 

The MC-CL method allows to compare the 
minimum with the maximum confidence limit. It 
can be seen in figure 8 that the output distribution 
is not symmetric. Two effects act in the opposite 
direction: the central limit theorem combines 
asymmetric input distributions into symmetric 
ones whereas non-linear effects deform symmet-
ric input distributions to asymmetric ones. This is 
a sign for the presence of non-linearities and can 
only be detected with methods like MC-CL, 
which consider non-linearities. 

The uncertainties increase in time. As expected 
the deviations grow stronger during high dis-
charges. The peaks of increase occur during the 
floods after 2.5 d and 6.5 d, while the first peak is 
bigger than the last one (see figure 9). So probably 
the uncertainties will not increase to infinity over 
time if the river system is not changed basically, 
e.g. as a result of the construction of a new bar-
rage. 

 

 
Figure 8. Minimum (above) and maximum (below) 95 % 
confidence limits at Mühlham bend. 

 

 
Figure 9. Time series of deviation (solid line) at one point 
(fairway of Mühlham bend) and the gradient of deviation 
(dashed line). 
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Figure 10 shows the comparison for the 95 % 
probability tolerance range for the evolution cal-
culated with MC-CL and Scatter Analysis. The re-
sults pattern are quite similar (see figure 7) but the 
tolerance ranges calculated with MC-CL are at the 
most locations bigger. The effects of non-
linearities seem to be too important to be ne-
glected. For a significant analysis only the MC-
CL method is precise enough to calculate the tol-
erance ranges. 

 

 
Figure 10. Comparison of MC-CL and SA for the 95 % tol-
erance range after 9 days simulation.  

4 CONCLUSIONS 

The Scatter Analysis is a very simple and efficient 
tool for calculating the sensitivities and should 
always be used before other more sophisticated 
methods are applied. For the shown example the 
simulation time is 37 times higher for the MC-CL 
method than for the SA. For the interpretation of 
the results a special post-processing program is 
needed for both methods. The run time for the SA 
post-processor is also much less time consuming 
(SA: 4 min, MC-CL: 4 h). With these post-
processors the user-friendliness and the error-
proneness are the same for both methods. The 
only but strong argument for the MC-CL method 
is that it allows for non-linearities, which is im-
portant for calculating the tolerance ranges pre-
cisely. 

Instead of presenting just one value in time and 
space with a general uncertainty range the reliabil-
ity analysis allows to specify a tolerance range 
with a given probability, which varies in time and 
space. Therefore, there can be areas of high and 
low result uncertainty, which may give reason to a 
deeper investigation or to choose another site be-
ing appropriate for a monitoring station. The re-

sults of the reliability analysis are quite satisfying 
but the authors see a big need for further devel-
opment mainly on two topics. Firstly, the reliabil-
ity analysis comes from the mathematic/statistic 
field and has to be adapted to an engineering field. 
This means to choose a suitable reliability method 
as well as modifying it to the needs of the mor-
phodynamic numerical models. Secondly, present-
ing the results becomes not easier if they are dis-
tributions instead of single values in time and 
space. Thus, helpful diagrams of the results are 
needed in order to explain them because for most 
users these kind of results from numerical models 
are new and unusual. Still a lot of work has to be 
done to achieve that reliability analysis is an es-
tablished part in morphodynamic numerical mod-
elling.  
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