
 
1 INTRODUCTION  

The 2-D Shallow-Water Equations (SWEs) are a 
widely used description of flows over shallow 
domains for a great range of rapidly (and slowly) 
varying free surface flows, as for example, dam 
break flood waves, flood waves in rivers, tides in 
estuaries, etc.. Recently SPH methods have been 
applied to the SWEs (Rodriguez-Paz & Bonet 
2005 and De Leffe et al. 2008) obtaining promis-
ing results; these Lagrangian models have some 
distinct advantages: no mesh is needed, the 
wet/dry interfaces require no special treatment and 
the mass is automatically conserved.  

In this work a 2D shallow water code based on 
the SPH interpolation is derived with two major 
improvements in order to simulate real flooding 
test cases: following the idea of adaptive refine-
ment usually adopted in Eulerian models a par-
ticle splitting procedure is introduced in our SPH-
SWEs code with the aim of varying the resolution 
over the domain. Moreover a set of bottom par-
ticles is used to describe the slope source term and 
this allows the method to be applied to arbitrarily 
irregular bathymetries. 

2 NUMERICAL MODEL 

The SWEs are formally identical to the Euler equ-
ations if we re-define the density ρ as the amount 
of fluid per unit of area in a 2-D domain; given 
this new definition of ρ we can connect it to the 
depth of water d with: wdρ ρ= , where  ρw denotes 
the constant 3D (conventional) density. The densi-
ty ρi of a particle i can vary enormously during a 
simulation; therefore an SPH scheme with varia-
ble smoothing length h in time and space is used 
in order to keep the number of neighbor particles 
roughly constant during the processes of water in-
undation and retreat. 

Using these definitions and the Lagrangian de-
rivatives the SWEs can be written as follow: 
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where v is the horizontal velocity vector, b is 
the bottom elevation, g is the acceleration due to 
gravity and Sf is the bed friction source term. The 
particles’ position and the velocities are integrated 
in time by means of a leap-frog scheme and a 
Lax-Friedrichs term is used in order to keep the 
solution stable even in presence of shock waves 
(Vacondio et al. 2009a). The closed boundaries 
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are described using the Modified Virtual Boun-
dary Particle method that is able to keep an ap-
proximate zero consistency in presence of compli-
cated boundaries (Vacondio et al. 2009b). 

2.1 Density evaluation 
The SPH approximation for the density of the i-th 
particle ρi (Monaghan 1992) is: 

( , )i j i j i
j

m W hρ = ∑ x  (2) 

where W is the cubic kernel function, xj and mj are 
the position vector and the mass of the j-th par-
ticle and hi is the smoothing length. In general, h 
is connected to the density (Benz 1990) with: 
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where dm is the number of dimension (1 in 1D and 
2 in 2D), ρ0 and h0 are the density and the smooth-
ing length at the beginning of the simulation.  

The above equation is implicit because the 
density is itself a function of hi as reported in Eq-
uation (3). In this paper a simple Newton - Raph-
son iteration is adopted in order to solve this sys-
tem of Equations (2) and (3) (see Rodriguez-Paz 
& Bonet 2005 for details). 

2.2 Momentum equation 
Herein we follow the derivation of Rodriguez-Paz 
& Bonet 2005 by considering the continuum as an 
Hamiltonian system of particles. The Euler – La-
grange equation for each particle is:  

0
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where the Lagrangian functional L is defined in 
term of kinetic energy K and potential energy π 
as: L = K - π. π is a function of particles position 
but not of velocity, so substituting this expression 
into Equation (4) leads to: 
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In the SPH formalism of SWE each particle i 
represents a column of water with a total mass mi 
and carries its mass unchanged during the motion, 
so the total mass is exactly conserved. Moreover 
Bonet and Lok (1999) showed that the variational 
formulation here adopted conserves the momen-
tum of the system in absence of external forces. 

The kinetic energy for a system of particles can 
be approximated as the sum of energy of each par-
ticle: 
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where vi is the vector of the horizontal veloci-
ties and vz is the vertical component of the veloci-
ty, the last term is usually neglected in the classic-
al SWEs, but due to the Hamiltonian approach it 
is possible to include it in our analysis.  

The potential energy of each column of water 
can be defined at the baricenter (this is because of 
the hydrostatic pressure distribution) and it can be 
expressed as a sum of the external and internal 
energy of each particle: 
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where g is the gravity acceleration and bi is the 
bottom elevation of particle i, πext is the external 
potential energy and πint is the internal potential 
energy. 

Appling the chain rule to Equations (6) and (7) 
after some algebra, it is possible to obtain the fol-
lowing expression of acceleration ai: 
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where ( )i ib= ∇ ∇k is the curvature tensor of b(x), 
and ti is the acceleration due to the internal force. 
ti is calculated using the continuity equation and 
the internal energy expressed in terms of energy 
per unit mass (Bonet and Lok 1999): 

( , ) ( )
 

,
2

j i j i j i
i j

j w j i

W h W hgm
ρ α α

⎛ ⎞∇ ∇
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x x
t  (9) 

where α is a correction factor due to the variable 
smoothing length: 
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where rij is the distance between particle i and j. 

2.3 Slope source term 
In order to deal with arbitrarily complex bathyme-
tries we introduce a general method for discretiz-
ing the bed gradient source term based on an SPH 
interpolation technique. We thus discretize the 
two terms ib∇ and ki by an SPH interpolation. 
This interpolation is performed using not the fluid 
particles but a new set of interpolation points 
called bottom particles. These points are intro-
duced at the beginning of the simulation, they are 
distributed on a Cartesian uniform grid over the 
domain and they do not move during the simula-
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tion. The only physical quantity associated with 
bottom particles is the bottom height b and an as-
sociated volume Vj (Vacondio et al. 2009b). 
The bottom elevation of the i-th fluid particle bi is 
calculated using an SPH summation formula using 
the bottom particles: 

( , )b b b
i j i i j j

j
b b W h V= −∑ x x  (11) 

where b
jb indicates the bottom elevation of the j-th 

bottom particle located at b
jx , hb is the constant 

smoothing length of bottom particles and iW  is the 
kernel for i-th particle corrected using a Shepard 
filter. The gradient of the bottom ib∇  is evaluated 
using an SPH interpolation together with the gra-
dient kernel correction proposed by Bonet & Lok 
(1999): 
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where iW∇  is the corrected gradient of the kernel. 
Finally the curvature tensor ki is derived using the 
following integral approximation (Monaghan 
2005):  
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where α and β are two generic coordinates and 
η=0.01hb, b

ij i j= −r x x . 

2.4 Particle splitting  
The main problem in the SPH-SWE scheme the 
lack of resolution when the fluid moves into very 
shallow water or over an initially dry bottom be-
cause the variable smoothing length is inversely 
proportional to water depth (Equation 3) and it 
causes poor resolution at small depths. To over-
come this problem a refinement procedure has 
been developed: if a particle i has an area 

i i iA m ρ=  greater than a threshold value it is split 
into 7 daughter particles. 

Feldman & Bonet (2007) defined a dynamic 
splitting procedure for particles in SPH models for 
Navier-Stokes equations which is conservative, 
and is suitable also for multidimensional domains 
but without considering the variable smoothing 
length. In this work we adapt their procedure to 
our SWE model with a new extension taking into 
account also the effects of the variable smoothing 
length; the details of this procedure are not re-
ported here for lack of space but they are available 
in Vacondio et al. (2009a). The key idea is to de-
fine a refinement algorithm able to conserve both 
the mass and the momentum and to minimize the 

error in the density and velocities fields: once the 
number of daughter particles and their relative po-
sition are defined, then their masses are calculated 
solving a model problem that guarantee the mini-
mization of the error in the density field. 

3 TEST CASES 

3.1 Circular dam break on a non-flat bottom 
The SPH discretization of the bed gradient source 
term presented in section 2 is tested against the 
reference solution of a frictionless circular dam 
break with non-flat bottom (Aureli et al. 2008a). 
A cylindrical water volume of radius R0 = 10 m is 
initially placed in a circular domain of radius R = 
25 m centered in (x = 0, y = 0); the water is in-
itially at rest. The bottom profile is described by 
the following equation: 

( ) 20.5 1 cos
5

z r rπ⎡ ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (14) 

where 2 2r x y= + is the radius. 
The reference solution for this test case is cal-

culated solving a 1D inhomogeneous problem 
along the radial direction by means of a Finite Vo-
lume code using a very fine mesh with a cell size 
of 0.005 m. 

The SPH numerical solution has been obtained 
using 126,688 fluid particles and 1,040,400 bot-
tom particles in describing the bed slope source 
term, this corresponds to an initial particle dis-
tance of 0.05 m. Figure 1 shows the numerical 
profiles of water level at x=0 and x=y at some se-
lected times compared with the reference solution; 
even if some difference can be noticed at time 2s 
in the region close to the boundary, the SPH code 
is able to reproduce the reference solution in a sa-
tisfactory way. Moreover there is no difference 
between the two profiles at x=0 and x=y, this 
means that the numerical solution is able to keep 
the radial symmetry of the test case. 

3.2 CADAM test case with a 45° bend 
The European Concerted Action on DAm break 
Modelling (CADAM) conducted an experiment 
where a dam break flow occurs along an initially 
dry channel (Soares Frazão et al 1998). The chan-
nel has a rectangular cross section of 0.495 m, is 
connected upstream with a square reservoir and is 
8.4 m long. A 45° bend is located at 4.25 m, the 
bottom is 0.33 m higher than the one of the reser-
voir, as plotted in Figure 2. The water levels are 
registered during the experiment in the reservoir 
and along the channel using 9 gauges. This case 
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has been used extensively by other SWE re-
searchers (Liang and Borthwick 2009, Zhou et al. 
2004) for benchmarking since it has a variety of 
difficult aspects. 
 

 

 

 
Figure 1. Circular dam break over a non-flat bottom: com-
parison of water depth between SPH results at x=0 and x=y 
and 1D radial reference solution at times: 0.4 0.6 and 2s 

A first simulation is performed using no refine-
ment and 9,603 particles are initially positioned in 
the reservoir, the Manning coefficient of the fric-
tion source term is taken as n = 0.01s m-1/3. In or-
der to reduce the computational time a second si-
mulation is performed using bigger particles 
inside the reservoir and splitting them when they 
approach the channel: 2,450 particles are initially 
placed in the reservoir. 

The step located between the bottom of the re-
servoir and the channel has been discretized using 
the SPH interpolation method of bottom particles 
(Vacondio et al. 2009b), the only expedient intro-
duced here is a smoothing length for the bottom 
particles which is two times the smoothing length 
initially assigned to the fluid particles. Figure 3 
shows the comparison between the experimental 
and numerical water levels obtained with and 
without the splitting procedure: gauge 1 is placed 
inside the reservoir near the channel inlet; the 
good agreement of registered data with the numer-

ical results means that the discharge that is enter-
ing in the channel is correct. Gauges 2 and 4 are 
placed along the channel upstream the bend, 
therefore they registered the abrupt water level 
elevation due to the reflected wave that is travel-
ling upstream to the reservoir. The numerical 
model is able to reproduce the water level at 
gauges 4 and at gauge 2 after 20 s whereas there is 
a difference with the experimental data of gauge 2 
in the first half of the experiment. This difference 
is presents also in the results obtained using Eule-
rian numerical schemes (Soares Frazão et al 1998) 
and therefore can not be ascribed to the SPH-
SWEs scheme presented in this paper. 

Gauges 5 and 7 are placed in the bend and the 
numerical model is able to reproduce these regis-
tered water levels, in particular the surface incli-
nation in the bend is correctly simulated. Gauge 9 
is placed downstream of the bend and the overall 
comparison of the water level is satisfactory al-
though the numerical model slightly underpredicts 
the water level.  

Despite of the reduced resolution the results of 
the simulation with splitting procedure activated 
are analogous to the results obtained without it, 
where more particles are used. This is due to the 
splitting procedure adopted that increases the res-
olution just in the part of the domain where the 
strong changes in the water depth and in the ve-
locity field occur. The computational time of the 
simulation with no refinement is 147 minutes, 
whereas it is equal to 86 minutes in the simulation 
with bigger particles and refinement procedure: 
therefore with the refinement procedure the com-
putational time is reduced of 40%. 

 
Figure 2. CADAM test case: plane and profile view of the 
experimental setup 

3.3 2D dam break tests with image technique 
acquisition  

Aureli et al (2008b) made a set of experimental 
test cases where a 2D dam break is reproduced in 
the experimental facility showed in Figure 4.  
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Figure 3. CADAM test case: experimental and numerical 
water depth time series at different gauges. 

A rectangular tank is divided into two parts: 
the smaller functioning as a reservoir and the larg-
er designed to receive the flood wave after the 
sudden removal of a gate placed in the middle of 
the dividing wall. 
The data are collected by means of an imaging 
technique procedure and the maps of the regis-
tered water depth in the larger right-hand part of 
the tank are available at different time steps; in 
this section a comparison between the experimen-
tal and the numerical maps is shown in order to 
validate the SPH-SWEs numerical code. 

 
Figure 4. 2D dam break main dimension (in cm) of the ex-
perimental facility. 

Two different tests are presented: in the first one, 
the water at rest is placed just in the small reser-
voir and the initial water depth is 6.3 cm whereas 
the floodable area is initially dry. In the second 
test case the initial water depth is 15 cm in the 
small reservoir and 1 cm in the big one. The pres-
ence of an initially wet bottom causes the forma-
tion of a shock that moved downstream and, after 
a few seconds, was reflected by the walls of the 
experimental facility. 

The numerical simulation of the first test was 
done using 38,560 particle initially placed in the 
small reservoir; the Manning coefficient is taken 
as n = 0.007 s m-1/3 and a splitting procedure has 
been applied just before the particles enter in the 
floodable area: this assures an higher resolution in 
the floodable area without increasing the number 
of particles in the reservoir. Figures 5 – 8 show 
the comparison between numerical and experi-
mental maps of water elevation in the floodable 
area at times 0.38, 1.22, 2.21 and 2.88 s. The nu-
merical model is able to correctly reproduce the 
flow expansion, also the shock wave generated by 
the impact against the lateral and the downstream 
walls are correctly reproduced by the numerical 
model. Figure 9 shows the water depth map at 
time 0.38 s without refinement; comparing it with 
Figure 5, it can be observed that the results ob-
tained using the splitting procedure are more simi-
lar to the experimental map therefore the particle 
splitting procedure is effective in increasing the 
accuracy of the results. 
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In the second test the wet dam break has been 
reproduced and 44,419 particles have been used in 
the simulation. No splitting procedure has been 
adopted because the floodable area is already 
filled with particles at the begin of the simulation 
and this automatically reduce the lack of resolu-
tion during the flooding. 

 

 

 
Figure 5. 2D dam break 1: numerical (above) and experi-
mental (under) water depth maps  at time 0.38 s. 

 

 
Figure 6. 2D dam break 1: numerical (above) and experi-
mental (under) water depth maps  at time 1.22 s. 

 

 
Figure 7. 2D dam break 1: numerical (above) and experi-
mental (under) water depth maps  at time 2.21 s. 

 

 
Figure 8. 2D dam break 1: numerical (above) and experi-
mental (under) water depth maps  at time 2.88 s. 

Figures 10 – 13 show the comparison between 
numerical and experimental maps of water eleva-
tion in the floodable area at times 0.59, 1.29 and 
2.00 and 2.70 s. Some discrepancies are due to the 
presence of breaking waves in the experimental 
data in Figure 10 and 13, clearly these cannot be 
directly reproduced by SWE model. Moreover the 
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position of the shock wave travelling upstream in 
Figure 12 is slightly different in the numerical and 
the experimental maps. Despite these minor dis-
crepancies, the numerical model is able to repro-
duce the main features of the phenomena: the wa-
ter elevation at different time steps and the 
position of the shock waves before and after the 
impact against the walls. 

 

 
Figure 9. 2D dam break 1: numerical water depth maps 
without refinement at time 0.38 s. 

 

 
Figure 10. 2D dam break 2: numerical (above) and experi-
mental (under) water depth maps  at time 0.59 s. 

 

 
Figure 11. 2D dam break 2: numerical (above) and experi-
mental (under) water depth maps  at time 1.29 s. 

 

 
Figure 12. 2D dam break 2: numerical (above) and experi-
mental (under) water depth maps  at time 2.00 s. 
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Figure 13. 2D dam break 2: numerical (above) and experi-
mental (under) water depth maps  at time 2.70 s. 

4 CONCLUSION 

In this paper an SPH method for numerical discre-
tization of shallow water equations has been pre-
sented. Previously the main limitation of this nu-
merical scheme was the lack of resolution in 
zones with a reduced water depth; this has been 
overcome in this paper by introducing a particle 
splitting procedure: if one particle has an area 
which is more than a fixed value it is divided into 
seven daughter particles. The masses, velocities 
and water depth of daughter particles are assigned 
by conserving both the mass and momentum. In 
order to extend the method to real case problems 
another improvement has been made: the slope 
source term is calculated by means of a SPH in-
terpolation method which can be applied for any 
bathymetry. 

In order to show the capability of the SPH-
SWEs numerical model to reproduce rapidly vary-
ing flow, It has been tested against a reference so-
lution and two experimental test cases and its ca-
pability obtaining good agreement with the 
reference solutions. 

In future works the open boundaries will be in-
troduced in the code and real flooding events will 
be reproduced. 
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