
 
1 INTRODUCTION 

Streambed morphology is an important control on 
stream hydraulics, particle motion and bed stabili-
ty. Streambeds are rough surfaces that disturb the 
free flow and offer resistance to it. The characteri-
zation of bed roughness is therefore a key to un-
derstand fluvial processes. Traditionally total 
roughness is divided into grain roughness and 
form roughness. Each distinguishes different 
scales of roughness, where grain roughness is due 
to resistance of sand and gravel grains, and form 
roughness is due to large boulders and bedforms 
(e.g. Chanson 2004). It is common to describe the 
grain roughness of the streambed by a single cha-
racteristic grain size (Ackers and White 1973, 
Clifford et al. 1992, Gomez 1993, Whiting and 
Dietrich 1990). Meaningful physical measures to 
analyze total streambed roughness, such as the 
standard deviation of surface elevation, have been 
explored in several studies (Aberle and Smart 

2003, Bathurst 1985, Hodge et al. 2009a, Nikora 
et al. 1998, Smart et al. 2004).  

In steep streams, however, the hydraulic 
roughness of the streambed cannot be sufficiently 
described by a single grain size (Aberle and Smart 
2003). The reason for this is the irregular nature of 
steep mountain streams, i.e. large and varying 
bedforms, steep slopes and wide grain size distri-
butions, which result in a significant contribution 
of form roughness to total roughness (Canovaro et 
al. 2007, Pagliara and Chiavaccini 2006, Ricken-
mann et al. 2006, Yager et al. 2007). Difficulties 
of measuring such complex morphologies have 
hindered advances in predicting mountain stream 
hydraulics and sediment transport. Particularly in 
torrential streams measurements are complicated 
by vegetation cover, uneven and steep terrain, and 
difficult access. Characterizing the streambed 
morphology in the field therefore remains cha-
llenging. 

Despite these problems, various techniques 
have been used to characterize fluvial structures. 
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These include for example physical profilers (e.g. 
De Jong 1995, Smart et al. 2004), photogramme-
try (Butler et al. 1998, Giménez et al. 2009) as 
well as terrestrial and airborne laser scanning 
(Cavalli et al. 2008, Heritage and Milan 2009, 
Hodge et al. 2009b, Lamarre and Roy 2008, Smart 
et al. 2004). Terrestrial laser scanning (TLS) has 
proved to be a rapid and precise survey technique 
feasible to characterize open gravel surfaces (Her-
itage and Milan 2009, Hodge et al. 2009a). How-
ever, TLS and other techniques come to their lim-
its if applied in rough terrain. Large boulders in 
steep mountain streams may obscure a significant 
portion of streambed surface, even when scanning 
from different vantage points. Such shadowing ef-
fects are smaller when scanning from a bird’s eye 
perspective, which requires lightweight and mo-
bile equipment.   

The aim of this study is to develop a mobile, 
versatile and – compared to TLS – inexpensive 
survey methodology of total roughness in steep 
fluvial environments. For this purpose we eva-
luate the feasibility of recently available Range 
Imaging (RIM) cameras, which were designed to 
acquire distance images of close range objects and 
scenes. We quantify measurement errors under 
controlled conditions in the field and laboratory. 
Furthermore, we provide an overview of operating 
the RIM camera in the field to generate detailed 
morphological data of a streambed surface. 

2 RANGE IMAGING (RIM) 

Common methods to measure 3D objects include 
stereo triangulation, sheet of light triangulation, 
structured light projection and interferometry. Re-
cently, RIM cameras that capture high resolution 
distance images at video rate, have been devel-
oped. Such cameras measure the distance to an 
object for each pixel independently, based upon 
the time-of-flight principle. Time-of-flight can be 
measured by detecting the time of arrival of a 
short light pulse which is reflected from an object 
and received by a sensor, or by measuring the 
phase shift between the light emitted from a light 
source and the light received at a sensor.  

In this study we used the camera models 
SR4000 by Mesa Imaging, Switzerland and Cam-
Cube by PMDTech, Germany (Table 1), both of 
which utilize the latter principle.   

The RIM cameras use infrared light to illumi-
nate the scene and measure the reflections with a 
sensor using Complementary Metal Oxide Semi-
conductor technology (CMOS/CCD) (Lange and 
Seitz 2001). The emitted light is pulsed at the 
modulation frequency fmod. The sensor samples the 
reflected light regularly and calculates the phase 

shift φ of the modulation with an autocorrelation 
function (Möller et al. 2005).  

Since φ is proportional to the target range, it is 
possible to calculate an absolute target distance by  

4 mod

c
fD ϕ

π= , (1) 

where c is the speed of light. 
In addition to the signal phase shift, the ampli-

tude and the offset can be measured. Here the am-
plitude indicates the strength of the modulated 
signal, which is an indication for the measurement 
accuracy. While the offset represents the local 
brightness of the scene, i.e. a gray scale value sim-
ilar to gray scale images.  

The maximal non-ambiguity distance range 
Dmax is limited to the half of the modulation wave-
length λmod. At a modulation frequency of 20 MHz 
for the CamCube camera, the modulated wave-
length is 15 m. Thus Dmax is 7.5 m (5.0 m for the 
SR4000). Distances larger than Dmax are folded 
back to the non-ambiguity range. Camera specifi-
cations for both devices are listed in Table 1.  

 
Table 1: RIM camera specifications 

Model SR4000 CamCube
Modulation frequency (MHz) 29-31 18-21
Measurement range (m) 0.8-5 0.3-7.5
Sensor pixels 176x148 204x204
Field of view (degree) 43.6x34.6 40x40
Mean resolution at 3 meter (mm) 13.6 10.7 
Footprint area at 3 meter (m2) 4.48 4.77 
Camera weight (g) 470 1370
Camera dimensions (mm) 65x65x68 180x194x180 
Frame rate (f s-1) 54 25
Illumination wavelength (nm) 850 870
Price (€) ~5500 ~7500

3 EXPERIMENTS TO ESTIMATE ERRORS IN 
THE DISTANCE DATA 

3.1 Error sources 
So far, there is little experience using RIM to 
measure complex surfaces in the field. Errors oc-
curring in outdoor use in particular have not been 
quantified systematically. In this chapter the gen-
eral constraints of the RIM method and the main 
sources of errors are investigated to evaluate its 
scope of application. As with other surveying 
techniques, random and systematic errors and 
those originating from maloperation can occur. 
The error estimation in this section generally re-
fers to raw data, i.e. data have not been processed 
to enhance quality of the images. The effect of av-
eraging repeated measurements on the data quality 
is demonstrated below. However, a full treatment 
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of image processing is not within the scope of this 
study.  

Camera design: Cameras based on phase shift 
measurements are susceptible to several parame-
ters which produce systematic errors. Some of 
these parameters are intrinsic to the optical system 
and to the semiconductor technology. The dis-
tance measurement system is affected by the angle 
of incidence of light, the internal temperature due 
to self-induced heating, the external temperature, 
the intensity of reflected beam and the time inte-
gration of the light signal (Kahlmann and Ingen-
sand 2005, Kahlmann et al. 2006).  

Reflectivity, sunlight and water: Since RIM 
cameras are active optical systems, the accuracy 
of a distance measurement is directly influenced 
by the amount of active light which reaches the 
sensor. Hence, the amplitude of the reflected sig-
nal gives a good measure of the accuracy of a dis-
tance measurement. Dark and wet surfaces typi-
cally have low reflectivity and thus yield poor 
results. In outdoor application sunlight is much 
brighter than the active illumination of the cam-
era. This may lead to sensor saturation and in-
creased noise in the distance images and finally to 
false distance values. Measuring on or through 
water may be a source for a range of additional er-
rors. The lower velocity of light in water results in 
an overestimation of distances. Turbulent water 
may grossly distort the distance image, due to its 
rapidly changing reflectivity, reflection angle and 
a possible superposition of solid and fluid surface 
reflections. 

Integration time of the camera: The amount 
of light that reaches the camera sensor is critical 
for good data quality. Signal strength depends on 
the integration time setting of the camera, the ref-
lectivity of the observed object, the strength of the 
camera’s light sources and the amount of back-
ground light. Practically, the signal-to-noise-ratio 
can only be enhanced by adjusting the integration 
time. If the integration time is too short, the am-
plitudes, i.e. the signal strength, may be low and 
the distance values will be noisy. Too long inte-
gration times lead to saturation of the sensor and 
thus to false values.  

Pixel footprint: The footprint of each pixel 
and therefore the image resolution is defined by 
the distance from the camera to the surface. The 
side length of each RIM pixel footprint can vary 
between 4 and 26 mm for the CamCube camera at 
1 and 7.5 m distance (divergence angle: 0.1°). For 
comparison, the beam diameter of typical medium 
range laser scanners grows little with distance, 
e.g. from 3 mm at 1 m to 3.3 mm at 7.5 m (diver-
gence angle: 0.013°) for the “Imager 5006i” by 
Zoller + Fröhlich). This implies that in a single 

distance image each pixel may represent a differ-
ent footprint area.  

Kahlmann and Ingensand (2005) and Kahl-
mann et al. (2006) give further insights to specific 
errors of a RIM camera. The authors specify the 
overall accuracy of distance measurements to be 
in the range of 1 cm for good conditions, i.e. high 
target reflectivity and little external light. 

3.2 Laboratory Experiments 
In the experiments described below major types of 
measurement errors and their magnitudes were in-
vestigated under controlled conditions. Tests were 
conducted in the geodetic calibration laboratory of 
ETH Zurich with the camera CamCube (Table 1). 
The camera was fixed facing an even wooden 
board, which could be moved on a rail to adjust 
the measuring distance. An interferometer verified 
the adjusted distance. The board’s surface was 
painted either black or white to achieve two very 
different levels of reflectivity. External light was 
reduced to a minimum.  

Distance precision at one point of an image: 
We investigated the precision of distance mea-
surements at the central point of the image for 
ranges from 1 to 7 meters on both the white and 
the black board. For each setting the measurement 
was repeated 250 times. The median of these mea-
surements has shown to equate the independently 
adjusted camera-target distance and was used as 
the reference distance. Generally, the variability 
of measured distances increased with the distance 
between object and camera. While 90 % of the 
measurements on the white board deviated less 
than 0.6 % from the median distance, the mea-
surements on the black board deviated up to 6 % 
from the median (Fig. 1). For the white board this 
gives a mean deviation of 3 ± 2 mm (variability 
gives one standard deviation σ) at 1 m range and 
32 ± 25 mm for the 7 m range. Errors for the black 
board range from 11 ± 8 mm for the 1 m range to 
167 ± 124 mm at 5 m.  

Variability of distance precision within an 
image: In another experiment we set up a white 
and a black board, respectively, at 1 meter range 
to the camera. Comparing 250 single measure-
ments, the standard deviation of the distance mea-
surements improved towards the center of the im-
age (Fig. 2). For the black board, standard 
deviation varies from 4 mm at the image center to 
142 mm at the outermost edge pixels (image mean 
27 mm). Whereas the values for the white board 
range from 2 to 8 mm (4 mm). These effects can 
be explained with light scattering within the lens 
and on the target; this scattering increases with the 
angle of incidence (Kahlmann and Ingensand 
2005). By turning a target in defined angles, a 

1717



similar effect has been demonstrated by Kahl-
mann et al. (2006), who showed that the measured 
distance precision decreases with an increasing 
angle of incidence. 
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Fig. 1: Measurement precision as a function of distance. 
Deviation of 250 single measurements from median meas-
ured distance per range is shown. The median equates the 
independently adjusted camera-target distance. Top: High 
reflectivity target (white board). Bottom: Low reflectivity 
target (black board). Box defines 25- and 75-percentile and 
median. Whiskers are 5- and 95-percentile of the data. Mea-
surements were carried out with the camera model Cam-
Cube at an integration time of 2500 μs. 

Geometric representation of a plane: To in-
vestigate the representation of an even plane by 
the distance images, the white board was set up at 
3 m distance from the camera. For a single unpro-
cessed distance image, the standard deviation of 
the distance data is 14 mm (Fig. 3, dashed lines 
and grey points). A plane was fitted to the meas-
ured points using the least-squares method, giving 
an absolute mean distance deviation from the 
plane of 11 ± 9 mm (variability gives one standard 
deviation σ). By taking the median of 250 repea-
ted measurements for each pixel, the standard 
deviation of the distance data can be reduced to 7 
mm (Fig. 3, straight lines and dark points), lead-
ing to a mean distance deviation from the plane of 
5 ± 4 mm. Data towards the edges of the image 
scattered more and appeared to be further away 
from the camera. Reasons for this overestimation 
of distances at the edges might be: (i) vignetting,  
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Fig. 2: Distribution of measurement precision across the 
camera sensor. Shown are standard deviations of 250 re-
peated distance measurements against a plane board, posi-
tioned normal to the camera at 1 m range. Columns and 
rows represent values for each pixel of the camera sensor. 
Captured area is ~0.7 m x 0.7 m. Top: High reflectivity tar-
get (white board). Bottom: low reflectivity target (black 
board). Note the difference in scale in top and bottom of the 
figure. Measurements were carried out with the CamCube 
camera using an integration time of 2500 μs. 
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Fig. 3: Distance measurements of a planar surface. The 
measured plane was an even white board, positioned normal 
to the camera at 3 m range. A measurement of perfect accu-
racy would give a value of zero for all points. Grey points 
show the vertical distance of the measured point from the 
plane. Black points show the median vertical distance of 
250 repeated measurements. Lines give variability as one 
standard deviation σ. Measurements were carried out with 
the CamCube camera using an integration time of 2500 μs. 
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which is the reduction of the image’s brightness or 
saturation at the periphery compared to the image 
center, and (ii) spherical aberration, which is the 
increased refraction of light near the lens edge. 

3.3 Field experiments with varying light 
conditions 
We also tested RIM cameras under natural condi-
tions outdoors in a mountain river streambed. The 
aim was to qualitatively evaluate the camera per-
formance under different natural lighting condi-
tions and to investigate the effects of water and 
wet rock surfaces on the measurements. The cam-
era was mounted on a crane looking vertically 
down to the ground (Fig. 4). The same footprint 
area was repeatedly measured, with light condi-
tions ranging from direct sunlight exposure at mid 
day to almost no natural light at night. 

The quality of single distance measurements 
clearly varied with lighting conditions. Measure-
ments at night revealed the greatest details of the 
surface, whereas the image became obscured by 
noise under direct sunlight exposure (Fig. 5). The 
increase in noise with increased light exposure 
can be illustrated by comparing the standard devi-
ations of measured distances from the mean sur-
face height. While the standard deviation eva-
luates to 36.63 cm for direct sunlight conditions 
(Fig. 5, d), it reduces to 17.13 cm for shady condi-
tions and to 10.7 cm at night (Fig. 5, c, b). The 
noise within a single measurement under direct 
sunlight is thus of a similar magnitude as the total 
surface relief (92 cm), precluding the distinction 
of single cobbles or rocks. 

 On one hand, turbulent water scattered the 
light, which led to large variations in the distance 
image (Fig. 5, a-d, left part, respectively.). Flat 
water surfaces on the other hand allowed the 
modulated light to penetrate and measure approx-
imately the sub water surface of the riverbed (Fig. 
5, a-d, mid bottom). However, the influence of 
water on image quality cannot currently be quanti-
fied. Water surfaces should thus be omitted from 
further surface analysis. 
 

 
Fig. 4: Crane with mounted camera over streambed. The 
footprint is the area in the cameras field of view; r is the 
measured spherical distance of one pixel of the camera sen-
sor; z is the calculated orthogonal distance to the camera; θ 
is the aperture angle of the camera, which is 40° for the 
shown camera. Crane arm length is 5.2 m. Coordinates of 
the control points (steel targets) are measured with a total 
station, enabling a camera data transformation to the global 
coordinate system. Inset: CamCube camera (Table 1). 

 

 
Fig. 5: Top view image and point clouds of a gravel bed sur-
face. The mapped area is ~1.6 m x 1.2 m with a point densi-
ty of 1 point cm-2 near the image center. a) Image showing 
one large boulder sitting on gravel and rocks. White poly-
gons display water surfaces. b-d) point clouds measured at 
different light conditions: b) no light at night, c) shaded day-
light, d) direct sunlight. The designated heights refer to a lo-
cal reference (the minimum local height of b). Measure-
ments were carried out with the SR4000 camera using an 
integration time of 2000 μs. 

To identify errors under natural lighting, we 
repeated the measurement of an even plane in the 
outdoors. Instead of a white board, as used to gen-
erate the data shown in Fig. 3, a cardboard box 
was used. Since the geometry was known inde-
pendently, spatial variations of measurement pre-
cision could be calculated. Here we present the 

1719



distance data of one planar side of the cardboard 
box (Fig. 6).  

For a single unprocessed distance image, the 
standard deviation of the distances equals 20 mm 
(Fig. 6, dashed lines, grey points). A plane was 
fitted to the measured points using the least-
squares method. The absolute mean distance devi-
ation from this plane is 16 ± 12 mm (variability 
gives one standard deviation σ). As shown in Fig. 
3, the data precision can be considerably im-
proved by taking the median of a number of re-
peated measurements pixel by pixel. In this exam-
ple, 134 replicate measurements resulted in a 
reduced standard deviation of 7 mm (Fig. 6, 
straight lines, black points). The processed dis-
tances have then a mean deviation from the plane 
of 5 ± 5 mm. The precision of the processed data 
is hence in the same range as results from a simi-
lar experiment in the laboratory (Fig. 3). 
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Fig. 6: Distance measurements of a planar surface in day-
light conditions. The measured plane was one side of a grey 
cardboard box facing the camera at 2 m distance with an an-
gle of 40°. Sunlight was bright but the scene was shaded. A 
measurement of perfect accuracy would give the result “0” 
for all points. Grey points show the vertical distance of the 
measured point from the plane. Black points show the me-
dian vertical distance of 134 repeated measurements. Lines 
give variability as one standard deviation σ. Measurements 
were carried out with the CamCube camera using an inte-
gration time of 2500 μs. 

4 OUTLOOK TO FIELD APPLICATION 

In this section an example is given of how to ap-
ply RIM in the field to generate a high resolution 
Digital Terrain Model (DTM) of a small stream-
bed section, which in future can be developed and 
applied to an entire stream reach. 

 

 
Fig. 7: Greyscale image of the CamCube camera footprint, 
simultaneously taken with the distance image. Displayed are 
boulders, flowing water (dark shading), and control points 
with labels (white rectangles). The captured area is 2.7 m x 
2.7 m. Largest boulders are 50 cm in diameter (b-axis). See 
also Fig. 8. 

To realize a top view of the surface, the camera 
was mounted on a commercial lightweight camera 
crane (Fig. 4). Turning and moving the crane al-
lowed capturing larger areas, such as a streambed 
reach of interest. In this case, overlapping the 
camera footprints by 30-50 % simplified data as-
sembly during post-processing. 

 
Fig. 8: DTM derived from CamCube camera footprint. The 
area is same as shown in Fig. 7. Height is relative to the 
lowest point of the footprint. The point density near the cen-
ter of the image is 0.6 point cm-2. The integration time of the 
CamCube camera was 2500 μs.  
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Fig. 7 and Fig. 8 show an example greyscale 
image and the calculated DTM of a footprint. The 
quality of the distance data was enhanced by aver-
aging 30 repeated distance measurements and fil-
tering the resulting distance image with a 3x3 ma-
trix median filter to remove outliers and implau-
sible values.  

To merge multiple footprints to a single point 
cloud of the scanned section, four control points 
were placed in each footprint and their global 
coordinates were measured with a total station. 
This allowed the transformation of the local cam-
era coordinates to global coordinates. Instead of 
using control points, it is also possible to merge 
the footprints via a best fit iterative closest point 
algorithm (e.g. Besl and McKay 1992). The 
merged point cloud can then be used to derive a 
DTM with standard interpolation techniques. 

5 DISCUSSION 

The experiments carried out in the laboratory and 
in the field aimed to investigate the potential of 
RIM to acquire surface data of steep riverbeds and 
to quantify the main measurement errors. The 
dominant error sources appear to be random errors 
due to the sensitivity of the camera to early and 
multiple reflections of the emitted light. This leads 
to a large variability in repeated distance mea-
surements. The reflectivity of the surveyed sur-
face also has an impact on data precision. The lat-
ter problem can be mitigated by adjusting the 
integration time of the sensor, which also allows 
to get a strong signal from dark low reflective sur-
faces. 

Errors can generally be reduced by an order of 
magnitude by measuring the same scene repeated-
ly and averaging the distance data (cf. sections 
 3.2,  3.3; Fig. 3; Fig. 6). The median of repeated 
distance measurements has shown to be closest to 
the actual independently measured distance. This 
enables the use of the median for final coordinate 
calculation. 

Compared to ~2 mm distance precision ob-
served for TLS (Hodge et al. 2009b) and 2-10 mm 
for photogrammetry methods (Butler et al. 1998, 
Carbonneau et al. 2003, Chandler et al. 2001), the 
distance data of the tested RIM cameras gave a 
precision of 7 mm for averaged data generated in 
the laboratory, with mean absolute distance devia-
tions of 5 ± 4 mm. The precision of the tested 
RIM cameras has thus shown to be similar to oth-
er instruments for high resolution surface mea-
surements.  

RIM measurements showed generally larger 
variability in the field (20 mm) than in the labora-
tory (7 mm). However, the standard deviation 

could also be reduced to 7 mm by taking the me-
dian values of multiple images (here we used 134 
images). The mean absolute distance deviation 
from the reference object was 5 ± 5 mm. Since 
RIM cameras can operate in a video mode at 25 
frames per second, a large number of images can 
be obtained easily and quickly. It took a mere 5 s 
to capture the data used for averaging in this 
study, and a larger number of pictures would lead 
to further improved precision. In addition, data 
quality might be further optimized by more so-
phisticated data processing algorithms. This po-
tential has to be evaluated in further studies. 

The spatial resolution of RIM distance data de-
pends solely on the camera-to-target distance. In 
our examples of field measurements (sections 3.3 
and 4) point densities of 1 point cm-2 and 
0.6 point cm-2 could be realized. At this resolu-
tion, grains with sizes larger than 5 cm can be 
clearly and unambiguously identified. At smaller 
grain sizes the signal-to-noise ratio is too small to 
reliably differentiate structures. This limit, how-
ever, appears to be appropriate for developing 
roughness measures in steep streams, which are 
dominated by gravel, large boulders, and bed-
forms. 

To avoid shadowing effects of large grains, 
which may hide portions of the streambed, a ver-
tical view of the streambed is highly desirable. 
Due to the small size and weight of RIM cameras 
it is easy to mount the camera on a crane or an 
overhead gantry system (Fig. 4). This is a major 
advantage compared to TLS. Moreover, the 
weight and dimension of the camera also allows to 
measure in remote and steep terrain without road 
access. 

For some applications it might be interesting to 
repeat capturing a scene to assess detailed surface 
changes or to study measurement accuracy. While 
with TLS repeated measurements never hit the 
same point, fixed RIM cameras always produce 
distance data for exactly the same footprint, be-
cause ray angles do not change due to a static opt-
ical lens.  

In addition, the video mode of RIM cameras al-
lows the measurement of rapidly moving surfaces, 
a task TLS cannot currently achieve. 

6 CONCLUSION 

In this study a new method to acquire 3D coordi-
nates of rough streambed surfaces is presented. 
While for plane gravel surfaces (and referred 
grain roughness) TLS appears to be a feasible 
technique (Heritage and Milan 2009, Hodge et al. 
2009a, Hodge et al. 2009b), RIM provides an al-
ternative method that can be applied also on 
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rough, bouldery surfaces. RIM cameras are 
lightweight, relatively inexpensive and can pro-
duce high resolution distance and greyscale im-
ages. It is important to post-process the distance 
data to reduce a variety of measurement errors. 
Finally, DTMs of stationary and moving surfaces 
can be derived from the RIM data, which are use-
ful to investigate streambed roughness in steep 
mountain channels.  
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