
 
1 INTRODUCTION 

With water being the key to our existence, rivers 
have always attracted settlement and interest.  The 
dynamic nature and power of the river reminds us 
of humankind’s limitations, however, and provide 
us with the sorts of challenges and questions that 
have inspired our development through time. 

Lane (1955) identifies the particular impor-
tance of river morphodynamics and sediment 
transport to the engineer, with many of their 
greatest problems lying in this arena.  Half a cen-
tury later, we are reminded by Gyr and Hoyer 
(2006) of the gulf between the hopes for progress 
in understanding of this field and the state of the 
science.  They refer to the following insight of 
Kennedy (1971), also quoted by Müller (1996), 
that paints an entertaining picture of difficulties 
still faced today. 

“Engineering problems associated with sedi-
ment transport by alluvial streams can be lik-
ened in many respects to a chronic skin disease.  
Many treatments (theories) have been developed 
and tried, but few have produced immunity or 
lasting cures (confirmed theories or realizable 
solutions).  Meanwhile the itch (the river engi-
neer’s problems) goes on and on, while the 
pharmacist’s shelves (the literature on sediment 
transport) become ever more cluttered up with 

salves and ointments (papers and reports) that 
are of no particular value but still are not 
thrown away (rejected), perhaps because of the 
pharmacist’s (engineer’s) languor, perhaps be-
cause no better medications (formulations) are 
available, or perhaps because each doctor or 
pharmacist (engineer or researcher) has a 
vested interest in promoting his own compound 
(theory).  Each periodic inventory (survey pa-
per) must take account of the ineffective un-
guents (theories), with the accompanying danger 
that if a dermatological wonder drug (valid gen-
eralized sediment transport theory) were to be 
forthcoming, it might well be overlooked on the 
overfull shelves (journals) of ineffectual reme-
dies (theories). 

There are five principal aspects to the alluvial 
river sediment transport “itch”: initiation of mo-
tion, bed and channel stability (formation of rip-
ples, dunes, meanders, etc.), channel roughness, 
bed-load transport, and sediment suspension. … 
Only in the case of sediment suspension are the 
understanding of the mechanics and its formula-
tion on relatively secure ground.” 

As recognized by Gyr and Hoyer (2006), 
Müller (1996), and Kennedy (1971), a critic is 
obliged to suggest corrective measures to remedy 
the situation judged deficient.  Particular observa-
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tions posed by the last two of these authors in-
clude the following: 
• Researchers need to be more discerning in 

choosing avenues to explore; 
• Radical new types of experiments are needed 

to clarify the mechanics of entrainment and 
suspension, especially utilising revolutions in 
electronic instrumentation; 

• Theories need to relate directly the relevant 
quantities in the physical processes, e.g. con-
sidering instantaneous forces from particle con-
tacts and fluid accelerations and pressures 
when analysing particle movements, rather 
than necessarily simply linking the same proc-
ess to a temporally- and spatially-averaged 
bed-parallel shear stress; and 

• Understanding of processes at small scales 
needs to be improved, and also correctly up-
scaled to give the predictive tools the river en-
gineer is looking for. 

 
Our view today is from on top of the shoulders of 
others such as those quoted above.  At the risk of 
highlighting further salves to clutter our pharmacy 
shelves, this paper presents and discusses recent 
research on the hydraulician’s itch, particularly 
regarding some of the above comments concern-
ing possible avenues to explore and advances to 
utilise.  The material is presented in terms of suc-
cessive aspects of the ‘itch’: from measurements 
of the intricacies of turbulent and grain motions, 
and associated assessments across varying scales 
of hydraulic roughness and sediment transport; to 
entrainment at particle to reach scales; to sediment 
continuity over a range of scales; to bedform dy-
namics at sub-element to reach scales. 

2 CONTEMPORARY DATA AND SPATIAL 
AVERAGING 

As foreseen by Kennedy (1971), and others, ad-
vances in computing and equipment technologies 
have lead to measurements and simulations of 
flow, sediment flux and river morphology being 
made at increasingly finer temporal and spatial 
resolutions. 

In the laboratory, measurements of bed mor-
phology are now obtained at sub-millimetre reso-
lutions using lasers (e.g. Aberle and Nikora 2006; 
Tuijnder et al. 2009; Haynes and Ockleford 2010) 
and photogrammetry (e.g. Henning et al. 2009), 
with particle-image velocimetry (PIV) now com-
monly providing detailed measurements of instan-
taneous three-dimensional (3D) velocity fields 
and boundary dynamics in selected planes of in-
terest (e.g. Adrian 1991; Schlicke et al. 2007; 
Coleman and Nikora 2009a).  High-resolution im-

aging of particle motions is also providing valu-
able new insight into sediment-particle dynamics 
and links with turbulent flow (e.g. Ancey et al. 
2006; Radice et al. 2009, 2010).  In order to ob-
tain detailed laboratory measurements of bed and 
flow dynamics associated with developing bed-
forms, “flying-probe” methodologies (e.g. Bruun 
1995) have also been developed and utilized (e.g. 
Clunie et al. 2007; Coleman et al. 2008). 

In the field, GPS-linked sonar systems now 
provide high-resolution measurements of bed 
bathymetry, with acoustic Doppler current profil-
ers (ADCPs) commonly used to measure instanta-
neous 3D velocities along a vertical.  ADCPs are 
also used to provide detailed measurements of 
fluvial bedload dynamics (e.g. Rennie and Millar 
2004), and 3D PIV systems are being developed 
for field application. In a novel development, mul-
tibeam echo-sounding has been used to visualize 
sediment motions and dynamic turbulence struc-
tures (e.g. Best et al. 2008).  At larger measure-
ment scales, airborne LiDAR (Light Detection 
and Ranging) and integrated technologies show 
great potential for providing high density topog-
raphic and bathymetric data (e.g. Kinzel et al. 
2007). 

From such measurements, we are today gaining 
detailed pictures of turbulence and associated 
sediment-transport and bed dynamics (e.g. Best 
2005).  The challenge arises, however, as to how 
to interpret the collected fine-scale data in terms 
of bulk morphological, flow and transport charac-
teristics, e.g. hydraulic resistance, bed shear 
stress, and sediment transport rate, that can be 
used for design and management purposes.  In this 
regard, if morphology is described at the bed-
roughness (e.g. dune) scale, associated descrip-
tions of flow and sediment-transport properties 
need to be representative of this spatial domain, 
i.e. scale-consistent with the roughness descrip-
tion. Appropriate spatial averaging of finer-scale 
descriptions and measurements provides the req-
uisite tool for this upscaling. 

Recent application of spatial averaging of 
rough-bed flows (e.g. Nikora et al. 2001, 2004, 
2007a,b) has led to valuable outcomes that in-
clude: strengthened definitions of hydraulic terms 
such as flow uniformity, two-dimensionality, and 
bed shear stress; identification of specific flow 
layers and flow types; knowledge and understand-
ing of the vertical distribution of double-averaged 
velocity in the roughness layer between the 
roughness tops and troughs; and explicit account-
ing for form and surface drag and form-induced 
stresses and fluxes in flow conservation equations.  
In particular, Nikora and Nikora (2007) and 
Nikora (2008, 2009) highlight valuable insight 
into rough-bed hydraulic resistance that can be 
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gained from the spatial averaging technique, in-
cluding determination of the relative contributions 
of, and interplay between, different processes at 
biota to catchment scales.  The value of upscaling 
through spatial averaging for interpreting flow, 
sediment and morphological behaviour is further 
highlighted in the following discussions. 

3 SEDIMENT ENTRAINMENT 

With improvements in computing capacity and 
measuring instrumentation, research efforts have 
intensified in the past few years regarding the 
process of sediment entrainment (e.g. Niño and 
García 1996; McEwan and Heald 2001; Nelson et 
al. 2001; Papanicolaou et al. 2002; Hofland et al. 
2005; Hofland and Battjes 2006; Cameron et al. 
2006; Schmeeckle et al. 2007; Vollmer and 
Kleinhans 2007; Detert et al. 2008, 2010; Diplas 
et al. 2008; Dwivedi 2009).  A vast amount of 
data can now be collected, and the presence and 
passage of coherent turbulent structures at en-
trainment can be inferred, but the question re-
mains as to what actually acts to entrain sedi-
ments? 

Consistent with the recommendation of Müller 
(1996) to consider relevant forces when analyzing 
particle motions, Coleman and Nikora (2008) ex-
press Newton’s second law of motion separately 
for sediment particles and fluid flow in their deri-
vation of a rigorous framework for describing par-
ticle threshold.  Using spatial averaging to provide 
a scale-consistent coupling of fluid and particles, 
they then combine the respective expressions of 
motion to explicitly show that for an individual 
particle at threshold, particle weight and buoyancy 
and inter-particle contact forces are balanced by 
forces arising from instantaneous fluid accelera-
tions, pressure gradients and stress gradients.  The 
derived framework of Eq. (1) given in the Appen-
dix to this paper appropriately reveals bed shear 
stresses, across-particle differences in pressures 
and fluxes of momentum, and sediment-bed char-
acteristics to be typical key factors in particle en-
trainment (Coleman and Nikora 2008).  This 
framework can potentially be used to aid under-
standing of entrainment mechanics, the design and 
analysis of further studies of entrainment, the de-
sign of parameterizations that lead to the solution 
of entrainment problems, and numerical model-
ling of combined fluid and sediment dynamics.  
As envisaged by Müller (1996), for example, the 
framework can be used to associate detailed in-
stantaneous three-dimensional flow structures 
with the concomitant effects on sediment particles 
that lead to entrainment.  The framework is fur-
thermore of more direct use to the practicing en-

gineer who is interested in larger-scale descrip-
tions of erosion.  As promoted by Müller (1996), 
the upscaled expression of Eq. (2) is utilized by 
Coleman and Nikora (2008) to interpret the form, 
variability and applicability of relations originat-
ing from the work of Shields (1936) that are 
widely used by river engineers to define threshold 
conditions in an averaged (at the reach-scale) 
sense. 

4 SEDIMENT CONTINUITY 

The Exner (1925) equation of sediment-mass con-
servation is the foundation of morphodynamic 
analyses (e.g. Paola and Voller 2005, Parker 
2008).  In contrast to conventional ‘mixture-scale’ 
control-volume approaches to deriving this equa-
tion, spatial averaging of the subparticle-scale dif-
ferential equation of mass conservation gives a 
general statement of sediment-mass balance that 
provides insight into considerations of sediment 
continuity at patch, bedform and larger scales 
(Coleman and Nikora 2009b).  The spatially-
averaged form of the Exner equation addresses the 
need, e.g. identified in Paola and Voller (2005) 
and Parker (2008), for a general expression that 
both provides a universal description of the sedi-
ment-mass balance and also enables interpretation 
of the assumptions and limitations implicit in 
various ad hoc formulations of reduced, combined 
or improvised terms. 

Importantly, the spatial-averaging approach 
highlights the effects of the scale of consideration 
on defining and interpreting macroscopic (mix-
ture-scale) sediment and layer properties such as 
averaged densities, volume concentrations or frac-
tions, velocities, transport modes and rates, inter-
faces and bed layers (e.g. Figure 1).  Double-
averaged sediment-mass transport rate (per unit 
area), for example, is explicitly shown to be given 
by the product of volume concentration, solid 
density, and sediment velocity. 

 

 
Figure 1. Schematic variations of sediment concentration 

stφ  for patch- and dune-scale averaging volumes Vo applied 
to the same riverbed.  Also shown are potential definitions 
of the bed surface bsz η=  based on these distributions. 

The spatially-averaged form of the Exner equa-
tion enables analyses in terms of individual or 
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successive layers, including bed and suspended 
loads, where layer interfaces (e.g. the bed surface) 
are clearly shown to be defined based on isosur-
faces of sediment concentration, or other sediment 
properties (e.g. densities or transport rates) within 
regions of constant concentration.  This general 
equation also novelly includes the effects of fluc-
tuations in sediment properties (e.g. density, ve-
locity, and concentration or volume fraction) 
within analysis volumes, and readily enables cal-
culations in terms of size fractions. 

5 BEDFORM INITIATION AND 
DEVELOPMENT 

It is intriguing to consider how trains of highly-
ordered sediment waves can arise from the chaos 
of the underlying turbulence and grain-motion dy-
namics, and what mechanisms act to limit the 
growth of these forms.  For the river engineer, un-
derstanding of these bedforms is pragmatically re-
quired in regard to design of structures in the flu-
vial environment (e.g. Amsler and García 1997; 
Coleman and Melville 2001), as well as analysis 
and management of the transport of sediments and 
attached micro-organisms and chemicals (e.g. nu-
trients, contaminants).  Nevertheless, in spite of 
strenuous efforts over the previous half century, 
the ASCE Task Committee on Flow and Transport 
over Dunes (2002) laments that “… the engineer-
ing prediction of flow and sediment transport over 
bedforms, in general, and dunes, in particular, 
still presents a major obstacle in the solution of 
sedimentation problems in alluvial channels. … 
Even for the simplest case of a well-sorted sedi-
ment in a straight prismatic channel with rigid 
banks, a general answer [to defining the expected 
flow depth and the amount of sediment being 
transported] can only be given with an uncom-
fortably high degree of uncertainty.” 

In terms of the initiation of bedforms on a 
sediment bed, Coleman and Nikora (2009a) con-
jecture that the nascent seed waves from which 
fluvial bedforms develop are generated on planar 
mobile sediment beds in a two-stage process.  The 
first stage comprises the motion of random sedi-
ment patches that reflect the passage of attached-
eddy-generated sediment-transport events. In the 
second stage, interactions of the moving patches 
result in a bed disturbance that exceeds a critical 
height and interrupts the bed-load layer. Quasi-
regular seed waves are then generated succes-
sively downstream via a scour-deposition wave 
that arises from the requirement of sediment mass 
conservation and the sediment-transport and bed-
stress distributions downstream of a bed perturba-
tion (e.g. Raudkivi 1966; Jones 1968; Smith 1970; 

Bradshaw and Wong 1972; Fredsøe 1986; 
McLean and Smith 1986).  Seed waves are 
thereby of preferred lengths that scale with the 
grain size, i.e. length = O(130) grain diameters, 
agreeing with compiled measurements (Coleman 
and Melville 1996; Coleman et al. 2003; Coleman 
and Nikora 2009a). 

Once seed waves have been generated, their 
heights and lengths increase through sediment 
continuity and the sediment-trapping nature of the 
bedform lee region.  The growing sand waves also 
coalesce as smaller faster waves approach and 
merge with larger slower waves (e.g. Exner 1931; 
Simons and Richardson 1960; Führböter 1967; 
Jain and Kennedy 1974; McLean 1990; Raudkivi 
and Witte 1990; Coleman 1991; Ditchfield and 
Best 1992; Coleman and Melville 1994).  Instabil-
ity of the fluid-sediment flow system (e.g. Cole-
man and Fenton 2000) furthermore gives periods 
of accelerated growth for the developing bed-
forms, where these periods are typically accompa-
nied by multiple successive instances of bed-form 
coalescence (Coleman and Melville 1994). 

The growth of sediment waves from plane-bed 
conditions can be described by the power law 
(P/Pss) = (t/tss)γ, where tss is the time t to achieve 
steady-state magnitude Pss, P is the average value 
of a sediment-wave parameter (length λ or height 
h), and the growth exponent γ = 0.28-0.37 (e.g. 
Grinvald and Nikora 1988; Nikora and Hicks 
1997; Coleman et al. 2005). 

Due to an approximate invariance in bedform 
steepness during development (e.g. Coleman et al. 
2005), the rapidly-adjusting bedform-associated 
boundary layer is found to essentially pose an 
equilibrium property for developing bedforms, i.e. 
to be self-similar in time (Coleman et al. 2006).  
For this boundary layer, the double-averaged lon-
gitudinal-velocity distribution is found to be linear 
below the crests of developing dunes, which is 
useful to know for field measurements of dis-
charge over dune beds (e.g. Nikora et al. 2004; 
Coleman et al. 2006; McLean and Nikora 2006; 
McLean et al. 2008). In addition, increases in 
double-averaged Reynolds stresses in the vicinity 
of the dune crest are found to be balanced by 
equivalent negative form-induced stresses at these 
levels. 

An interesting variation on the studies that 
have lead to this understanding of bedform initia-
tion and growth has been consideration of the role 
of turbulence in morphology generation and con-
trol through studies of bed morphology processes 
in laminar flows (e.g. Coleman and Eling 2000, 
Cameron et al. 2006, Lajeunesse et al. 2010). 
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6 BEDFORM CHARACTERISATION 

As reflected in recent research (e.g. McElroy et al. 
2008; van der Mark et al. 2006, 2008; Tuijnder et 
al. 2009, Bartholdy et al. 2010), there remains a 
real need to determine agreed reliable methodolo-
gies for estimating bedform characteristics.  This 
present situation is over two decades since a 1987 
symposium was held with the purpose of classify-
ing large-scale subaqueous bedforms (Ashley 
1990), and furthermore four decades since focused 
efforts to define bedform characteristics were tak-
ing place around the world (e.g. Simons and 
Richardson 1960; Yalin 1964 1972; Bogardi 
1965; ASCE 1966; Nordin and Algert 1966; 
Vanoni and Hwang 1967; Hino 1968; Crickmore 
1970; Nordin 1971; Jain and Kennedy 1971, 
1974). 

Bedform heights are typically calculated based 
on differences in bed-elevation extremes, between 
positions of zero-bed-level crossing (e.g. Crick-
more 1970) or detected signatures such as lee 
slopes (e.g. Coleman 1991; Coleman et al. 2005) 
for example.  Bedform heights have also been re-
lated to bed-level variance (e.g. Nikora et al. 
1997).  Characteristic streamwise bedform lengths 
have been calculated using a range of approaches, 
e.g. using the distance between zero crossings 
(e.g. Crickmore 1970; Nordin 1971), bed-level 
correlation and structure functions (e.g. Nordin 
and Algert 1966; Nordin 1971; Nikora 1982; 
Coleman and Melville 1996; Nikora et al. 1997; 
Butler et al. 2001; Coleman et al. 2003; James et 
al. 2007), bed-level spectra (e.g. Nordin and Al-
gert 1966; Hino 1968; Jain and Kennedy 1974; 
Nakagawa and Tsujimoto 1984; Nikora et al. 
1997), and roughness functions (Nikora and Hicks 
1997; Jerolmack and Mohrig 2005; McElroy et al. 
2008).  A number of authors have furthermore 
considered distributions of bedform lengths in ad-
vance of a single characteristic value (e.g. Ashida 
and Tanaka 1967; Wang and Shen 1980; Raudkivi 
and Witte 1990; Coleman and Melville 1994; van 
der Mark et al. 2008).  Each of these approaches 
outputs characteristics of the bed, although impor-
tantly, these may not appropriately describe the 
intended bed aspect.  Predictions of the various 
methodologies can consequently vary widely ow-
ing to the different approaches reflecting different 
physical aspects of the bed. 

Owing to the density of data utilised, bed-level 
variance (or standard deviation σ) provides an ad-
vantageous means of estimating bed-form height 
for the digital elevation models (DEMs) measured 
today, where height h = 2.83σ for a single-
frequency sine wave, h = 3.43σ for a train of iden-
tical triangles, and h = 1.7-2σ for natural sand 
waves (Nikora et al. 1997). 

 
Figure 2. (a) Ten bed profiles (offset vertically by 50mm), 
and (b) the corresponding autospectrum (with shown fitted 
lines of 3( )S k k −∝  and 0( )S k k∝ ) 

The spectral representation of a bedform-
covered riverbed is typically similar to the form of 
Figure 2b.  The characteristic bed-surface scaling 
at higher wavenumbers of S(k) ∝ k-3 has been re-
lated to various physical aspects of bedforms, in-
cluding the angle of repose nature of lee slopes 
(Hino 1968), discontinuities in bed slopes associ-
ated with the dune lee-side (e.g. Plate 1967, 1971; 
Engelund and Fredsøe 1971, 1982; Kennedy 
1980), bedform coalescence through bedform 
speeds decreasing with increasing size (Jain and 
Kennedy 1974), geometric self-similarity of bed-
forms (Nikora and Hicks 1997; Nikora et al. 
1997), and energy dissipation considerations 
(Nikora and Goring 2000). Although the physical 
nature of this scaling can be debated, the scaling 
remains a characteristic signature of bedforms 
(e.g. Aberle et al. 2010).  As suggested by Tui-
jnder (2009), the wavenumber defining the lower 
limit of the bedform-related scaling region can be 
taken to provide a good estimate of the principal 
bedform length for a bed.  This is because the lim-
iting plateau region at low wavenumbers (Figure 
2b) simply arises from a redistribution of spectral 
energy across adjacent wavelengths due to ran-
dom spacing of the bedforms (Figure 2a).  The in-
dicated bedform length of Figure 2b is then 0.74m 
(wavenumber k = 2π/λ = 8.5), where the underly-
ing bed configuration of Figure 2a consists of 10 
profiles of random-length plane-bed sections 
combined with triangular dunes of a cosine stoss 
slope, 40mm height, 0.75m length, and 1mm sur-
face roughness.  This spectral approach to deter-
mining characteristic bedform length takes advan-
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tage of the data density that can be recorded to-
day, with rigorous guidance furthermore available 
to determine associated statistical uncertainties. 

Modern means of recording bed surfaces mean 
that methodologies for quantifying the three-
dimensional nature of bedforms can now be tri-
alled and refined, e.g. for interpreting the hydrau-
lic resistance of bedforms (e.g. Sirovich and 
Karlsson 1997; Maddux et al. 2003a, b; Venditti 
2007), for classification of bedforms (e.g. ASCE 
1966; Southard and Boguchwal 1990; Ashley 
1990; Venditti et al. 2005), and for understanding 
and interpreting local flow dynamics (e.g. Best 
2005).  The need to quantify dune three-
dimensionality is clearly apparent for considera-
tions of deformable mobile beds of waves that 
vary markedly in space and time (e.g. Inglis 1949; 
ASCE 1966; Allen 1968, 1969).  Following on 
from the earlier work of Nordin (1971), the ge-
ometry of the 2D autocorrelation function (or the 
related second-order structure function) when ap-
plied to sand-bed elevation fields is found to pro-
vide an effective means of assessing the three-
dimensionality of sand waves (e.g. Goring et al. 
1999, Butler et al. 2001, Coleman et al. 2008, 
Aberle et al. 2010).  Assessment of the 3D struc-
ture of gravel-bed surfaces has similarly recently 
been advanced by viewing the measured topogra-
phy as a three-dimensional random field as an al-
ternative to the characteristic-particle-size ap-
proach (e.g. Nikora et al. 1998, Goring et al. 1999, 
Butler et al. 2001, Nikora and Walsh 2004, Aberle 
and Nikora 2006). 

Uncertainty in bedform quantification also im-
pacts effective determination of types of bedforms 
and their associated governing mechanisms, e.g. 
ripples, dunes, and larger low-angle dunes (e.g. 
Holmes 2003, Best 2005).  Ripples and dunes are 
identified as separate bedforms in most classifica-
tion schemes, where ripples are recognised to be 
limited to forming in sands of up to about 0.6mm 
in diameter, and ripple and dune lengths scale 
principally with grain size and flow depth respec-
tively (e.g. Inglis 1949; Bagnold 1956; Bogardi 
1965; ASCE 1966; Engelund and Hansen 1967; 
Kennedy 1969; Yalin 1972, 1977, 1992; Davies 
1982; van Rijn 1984; Ashley 1990; Southard and 
Boguchwal 1990; Baas 1993; Julien and Klaassen 
1995; Raudkivi 1997; Watanabe et al. 1997; 
Schindler and Robert 2004).  A separate school of 
thought, however, contends that there may be no 
statistical or fundamental differences between rip-
ples and dunes, especially for natural river flows 
(e.g. Kennedy 1969, Nordin 1971, Flemming 
2000, Jerolmack and Mohrig 2005, and Jerolmack 
et al. 2006).  In order to definitively identify any 
differences between ripples and dunes, it is neces-

sary to correctly define the characteristics of the 
bedforms. 

In addition to the characterisation of lengths 
and shapes, relations for bedform speeds (e.g. 
Simons et al. 1965; Coleman 1996; Nikora et al. 
1997; Raudkivi 1997, 1998) are central to link-
ages between bedform movements, sediment-
transport rate and predictions of bed development 
(e.g. Hubbell 1964; Simons et al. 1965; Crickmore 
1967, 1970; Nordin 1971; Führböter 1979; Willis 
and Kennedy 1980; Engel and Lau 1980, 1981; 
van den Berg 1987; Gomez et al. 1989; Mohrig 
and Smith 1996; García 2008b; McElroy and 
Mohrig 2009).  With the improved ability to track 
individual bedforms that is available today, the ef-
fectiveness of determining transport rate from 
bedform dimensions and propagation speeds can 
now be reliably investigated. 

7 CONCLUSIONS 

In reviewing the observations and questions of 
Leonardo da Vinci regarding water and its mo-
tions, Levi (1995) writes “Let whoever said that 
hydraulics, as a science, is old and has no longer 
anything to discover, try to interpret all this and 
see how great our ignorance still is.” Falvey 
(1999) echoes this comment, concluding “… that 
the field of hydraulics has not stagnated and that 
we are still in an age where ideas and fundamen-
tal concepts are being developed.”  In particular, 
this can be said of fluvial hydraulics today, with a 
mass of understanding having been accumulated 
(e.g. García 2008a), and yet so many interesting 
questions still to answer, and itches requiring ade-
quate treatment.  With today’s means of generat-
ing and collecting data, we are now in the privi-
leged position of being able to test and build on 
the visions of those who have preceded us.  In 
presenting the research thoughts of previous dec-
ades along with recent efforts to test or address 
these thoughts, this paper has sought to encourage 
the efforts of researchers that contemporary ad-
vances in instrumentation and understanding re-
veal great potential for progress to be made in the 
coming years, especially where we learn from the 
views of those upstream. 
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APPENDIX 

Coleman and Nikora (2008) show that for an 
individual particle at threshold (Figure 3) 

( )0

ˆ ˆ

k
p fp i ci

k

ji s i
f i

s j

s i
o o s i j

i j j

m m g F

uu u
V g

t x

p uV V u u
x x x

∂ φ
ρ

∂ φ

∂φ ∂∂ φ μ ρ
∂ ∂ ∂

= − +

⎡ ⎤⎛ ⎞∂
⎢ ⎥⎜ ⎟+ − +

⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥− + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

(1) 

 

 
Figure 3. Forces on a sediment particle at threshold 

where mp = ρbVb is the particle mass; mfp = ρVb is 
the mass of fluid displaced by the particle; ρVf is 
the mass of fluid within the spatial averaging do-
main Vo; ρb and ρ are particle and fluid densities, 
respectively; Vb and Vf are the respective particle 
and fluid volumes within Vo; gi is the ith compo-
nent of gravitational acceleration in direction xi = 
(x,y,z); k interparticle forces of components ciF  
act on the particle surface in addition to the fluid 
forces; ui is the ith component of the fluid velocity 
vector (u, v, w); t is time; p is pressure; μ is the 
dynamic fluid viscosity; ˆi i iu u u= −  denotes the 
deviation of the instantaneous variable iu  at a 
given spatial point from its instantaneous spatially- 
averaged value iu ; ( )1/

f
i f iV

u V u dV= ∫∫∫ ;  

ˆiu  = 0; /s f oV Vφ =  is the roughness geometry 
(or porosity) function; Fg and Fb are particle 
weight and buoyancy forces; Fp and Fν are form 

and skin-friction hydrodynamic forces; and the 
angles γ (bed slope) and ϕ (to the line of action of 
the summed interparticle forces) are positive anti-
clockwise from the downstream-pointing axis. 

Through enlargement of the averaging volume 
Vo of Figure 3 to include a broad area of the bed 
surface, the framework of Eq. (1) reveals that av-
eraged en masse movement of particles by steady 
uniform 2D flow is described by (Coleman and 
Nikora 2008) 
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cF

(2) 

where ( ) ( )0 */ 1 / 1a
c o o s c sA Vθ τ γ φ θ φ= − = −⎡ ⎤⎣ ⎦  is a  

physically-consistent (threshold boundary force 
relative to the submerged particle weight) alterna-
tive to the traditional Shields parameter cθ ; the 
second and final terms of (2) represent normalized 
interparticle forces and across-particle gradients in 
momentum flux and pressure; s = ρb/ρ is sediment 
specific gravity; γ* = (s-1)ρg is submerged weight 
per unit volume; g is the gravitational acceleration 
constant; Ao = Vo/d is the area in plan of the spa-
tial averaging volume; d = zc - zb is the particle 
height (from the averaging domain base level of zb 
to the crest level  of  zc,  Figure 3);  the summed  
interparticle forces are expressed in vector form as  

k
∑ k

cF ; the bed shear stress is clearly shown to be  

int

0
1 c ws

b b

z z

x z x s
o z S z

upn n dSdz g dz
V z

∂τ μ ρ φ
∂

⎡ ⎤⎛ ⎞≡ − − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫∫ ∫ ;  

2
0 *0uτ ρ≡ ; *0u  is bed shear velocity; ni is the ith  

component of the unit vector normal to the surface 
element dS and directed outward from the bed and 
into the fluid; intS  = extent of water-bed interface 
within the thin (in the bed-normal direction) aver-
aging volume; zws defines the water surface; and 
spatially-averaged quantities are effectively aver-
aged in space and time for averaging domains of 
lateral extent encompassing all turbulent scales, 
with i iu u= , and steady uniform 2D flow 
characterised by / 0v v w w y= = = = ∂ ∂ = . 
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