Falling aprons at circular piers under currents

Ben de Sonneville
Greta van Velzen
Henk Verheij
Kees Dorst

International Conference on Scour and Erosion
Paris, 30th of August 2012
Introduction

- Scour is a critical threat to infrastructure (bridge piers, monopiles)

- Well-designed scour protection can provide protection against all failure mechanisms (e.g. Chiew, 1999, 2004)
 > shear failure
 > winnowing failure
 > edge failure
 > bed-form induced failure
 > bed degradation failure

- No guidelines to account for bed lowering at pile
Research objectives

- Investigate behaviour of falling aprons at circular piers under currents

- Develop a guideline to quantify the stone volume required to account for a given bed level degradation
Set-up of physical model experiments

- Physical model tests in Atlantic Basin at Deltares
- Two transparent model piers with various scour protection layouts in sandy test section ($d_{50} = 0.16\text{mm}$)
- Bed degradation represented by eroding sill
- Monitoring by internal & external camera’s
- Stereo photography for 3D bathymetry
The test program consists of 7 tests with 2 models each, using the L03 reference layout.

<table>
<thead>
<tr>
<th>Test</th>
<th>Layout name</th>
<th>Extent $b_{f,0}$ [-]</th>
<th>Thickness $D_{f,0}$ [mm]</th>
<th>Sill height h_{bd} [mm]</th>
<th>Water depth h_w [m]</th>
<th>D.a. current velocity u_c [m/s]</th>
<th>Duration T [hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-01</td>
<td>L01</td>
<td>6D</td>
<td>100</td>
<td>0.25D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>L02</td>
<td>6D</td>
<td>100</td>
<td>0.25D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td>T-02</td>
<td>L03</td>
<td>4D</td>
<td>100</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>L04</td>
<td>4D</td>
<td>100</td>
<td>-</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td>T-03</td>
<td>L05</td>
<td>4D</td>
<td>100</td>
<td>1.00D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>L06</td>
<td>3D</td>
<td>100</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td>T-04</td>
<td>L05</td>
<td>4D</td>
<td>100</td>
<td>1.00D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>L07</td>
<td>2D</td>
<td>100</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td>T-05</td>
<td>L05</td>
<td>4D</td>
<td>100</td>
<td>1.00D</td>
<td>1.0</td>
<td>0.50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>L07</td>
<td>2D</td>
<td>100</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>6</td>
</tr>
<tr>
<td>T-06</td>
<td>L08</td>
<td>4D</td>
<td>50</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>L03</td>
<td>4D</td>
<td>100</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td>T-07</td>
<td>L08</td>
<td>4D</td>
<td>50</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>L03</td>
<td>4D</td>
<td>100</td>
<td>0.50D</td>
<td>1.0</td>
<td>0.50</td>
<td>6</td>
</tr>
</tbody>
</table>
Test results

- Filling the basin

- Reference case: extent of 4D with sill height of 0.5D
Test results

- Effects of sill height, extent and layer thickness

- Reference
- Reduced extent
- Larger sill height
- Lower thickness
Development in time

- Largest development within first 3h.
- Hereafter, gradual erosion at upstream and downstream side

after 3h after 6h after 12h
Analysis

- Consistent behaviour in tests:
 - layer thickness gradually decreases towards outside
 - similar slope angles (1:2 outer slope; 1:2.5 inner slope)
 - no scour occurred where an extent of 3D was maintained

- Behaviour can be schematized with volume balance
• Design formula for falling apron

\[
r_{f,0} = \frac{\pi}{6} \left(L_2 - r_{f,A} \right) - \frac{\pi}{3} \tan \gamma \left(L_2 - d_{t,50} \right)^3 - \left(L_2 - d_{t,50} - \frac{h_{bd}}{\tan \gamma} \right)^3 \pi D_{f,0}
\]

Or simplified: \(r_{f,0} - r_{f,A} = 1.4 \times h_{bd} \)

• Validation
Conclusions

- Falling apron process at pier
 > starts upon being undermined
 > initial stone redistribution by rolling, later sliding and sinking
 > protective mound formed (with external slopes of 1:2)

- Scour prevented for tests in which extent of 3D was maintained

- Bed degradation can be accounted for by designing a falling apron

- Design rule derived to estimate stone volume needed for falling apron at pile

For more information contact ben.desonneville@deltares.nl