Anschriften der Verfasser dieses Heftes:

CHRISTIANSEN, Willi, Dr. phil. h. c., Kiel, Eckernförder Allee 18; DIETRICH, Günter, Dr., Hamburg 11, Seewartenstr. 9, Deutsches Hydrographisches Institut; DÜCKER, Alfred, Dr., Kiel, Gartenstr. 7, Amt für angewandte Geologie; GRIFF, Karl, Professor Dr., Kiel, Neue Universität, Olshausenstr. 40/60, Geologisches Institut; HANSEN, Walter, Oberregierungsrat Dr., Hamburg 11, Seewartenstr. 9, Deutsches Hydrographisches Institut; KANNENBERG, Ernst-Günter, Dr., Ratzeburg, Möllnerstr. 27; KÖSTER, Erhard, Lund (Schweden), Sölven, 18, Geografiska Institutionen; OTTO, Wolfgang, Dipl. geol., Kiel, Neue Universität, Olshausenstr. 40/60, Geologisches Institut; PETERSEN, Marcus, Regierungsbaurat Dr.-Ing., Kiel, Mühlenweg 166, Haus 13, Landesstelle für Gewässerkunde; PURPS, Hans, cand. phil., Kiel, Eckernförder Allee 18; RUCK, Klaus-Wolfgang, cand. geol., Kiel, Neue Universität, Olshausenstr. 40/60, Geologisches Institut; SCHMITZ, Heinz, Professor Dr., Kiel, Neue Universität, Olshausenstr. 40/60, Geologisches Institut; SEFFERT, Gerhard, Dipl. geol., Kiel-Friedrichsort, Poststr. 3; SPETHMANN, Hans, Dr., Lübeck, Kalandstr. 1; STARCK, Erich, Wetterdienst-Techniker, Lübeck, Hafenstr. 2, Wetterwarte; WEIDEMANN, Hartwig, Dr., Kiel, Hohenbergstr. 2, Institut für Meereskunde.

Inhaltsverzeichnis

KANNENBERG, Ernst-Günther, Dr.
Das Lübecker Lokal-Schrifttum über das Brodtener Ufer 1

GRIPP, Karl, Professor Dr.
Die Entstehung der Lübecker Bucht und des Brodtener Ufers 12

SEIFERT, Gerhard
Der Aufbau und die geologische Entwicklung des Brodtener Ufers und der angrenzenden Niederungen ... 15

DUCKER, Alfred, Dr.
Über die physikalischen Eigenschaften der das Brodtener Ufer aufbauenden Bodenarten und ihre Bedeutung für den Steiluferrückgang und Errichtung eines Uferschutzwerks ... 21

SCHMITZ, Heinz, Professor Dr.
Pollenanalytische Untersuchungen an der inneren Lübecker Bucht 34

OTTO, Wolfgang
Sedimentpetrographische Untersuchungen an der Küste der inneren Lübecker Bucht ... 45

RUCK, Klaus-Wolfgang
Seegrundkartierung der Lübecker Bucht .. 55

SPETHMANN, Hans, Dr.
Studien an den Flanken des Brodtener Ufers .. 58

STARK, Erich
Hohe Wasserstände in der Lübecker Bucht von 1885 bis 1949 67

DIETRICH, Günter, Dr. und
WEIDEMANN, Hartwig, Dr.
Strömungsverhältnisse in der Lübecker Bucht .. 69

HANSEN, Walter, Oberregierungsrat Dr.
Hydrographische Untersuchungen in der Lübecker Bucht .. 90

CHRISTIANSEN, Willi, Dr. h. c. und
PURPS, Hans
Die Pflanzenwelt des Brodtener Ufers ... 95

PETERSEN, Marcus, Regierungsbaurat Dr.-Ing.
Abbruch und Schutz der Steilufer an der Ostseeküste (Samland bis Schleswig-Holstein) ... 100

KÜSTER, Erhard
Die Veränderungen im Steilufer und in der Strandterrasse des Naturschutzgebiets Stoltera bei Warnemünde ... 153
Das Lübecker Lokal-Schrifttum über das Brodtener Ufer

Von E. G. Kannenberg

Einführung

Im Folgenden wird an Hand des im Literaturverzeichnis aufgeführten Lübecker Schrifttums sowie der Berichte an die Lübecker Baudeputation und von Bürgerschaftsverhandlungen in großen Zügen ein Überblick über den historischen Verlauf in der Entwicklung der Naturvorgänge, die darüber entstandenen Auffassungen und Erkenntnisse sowie der sich daraus ergebenden Planungen und Maßnahmen am Brodtener Steilufer und in der seitlich anschließenden Travemünder Bucht gegeben (Abb. 1).

Zeitabschnitt 1835 bis 1860

Nachdem diese Möglichkeit im Jahre 1835 durch die Herausgabe der „Neuen Lübeckischen Blätter“ geschaffen war, liegt bereits 1837 die erste und bisher älteste bekannte Veröffentlichung über „Das Brodtener Ufer“ (1) von einem ungenannten Verfasser vor, der schon damals Uferschutzmaßnahmen fordert, da der Verlust an fruchtbarem Ackerboden auch die hauptsächliche Ursache der beständig Versandungen der Hafeneinfahrt zu sein scheint. — Ein Zusammenhang zwischen dem Abbruch des Brodtener Ufers und der Versandung der Travemündung ist also schon sehr frühzeitig erkannt worden.

Im gleichen Jahre wird in drei weiteren Aufsätzen (2, 3, 4) zur obigen Meinungsäußerung über die Versandung der Hafeneinfahrt Stellung genommen, und es werden verschiedene Erklärungsversuche gegeben. Darunter stammt der letzte Aufsatz aus der Feder des Lübecker Stadtbaumeisters SPETZLER (4), der die Ansicht vertritt, daß die Plate vor der Mündung der Trave sich durch die Ablagerung der vom Fluß mitgeführten Sandmassen gebildet habe und weder durch den Sandtransport aus dem Abbruch des Brodtener Ufers, noch durch Sandwehen vom Leuchtenfelde oder vom Priwall. — SPETZLER war zu dieser Zeit mit dem Neuaufbau der Nordermole beschäftigt, die durch die Dezember-Hochwasser von 1835 und 1836 starke Beschädigungen erlitten hatte. Ebenfalls wurde damals unter der Leitung SPETZLERS mit der Herstellung einer Fahrrinne durch die vor der Travemündung liegende Plate, ein Sandfeld in einer natürlichen Tiefe von 2,7 m unter MW, durch neubeschaffte Dampfbagger begonnen, die nach Abschluß dieser Arbeiten im Jahre 1845 eine Tiefe von 16 Fuß (= 4,6 m) aufwies.

Zeitabschnitt 1860 bis 1900

Im ersten dieser Aufsätze über „Die Meeresabspülungen und Erdstürze am Brodtener Ufer“ (5) werden erstmals zahlenmäßige Mitteilungen über das Ausmaß des Uferrückgangs gemacht, die jedoch mit der Angabe von 750 Lübecker Quadratmeilen, d. h. etwa 16000 qm
jährlichen Landverlustes nach den Ergebnissen der späteren Vermessungen als mehrfach über- schätzt oder übertrieben angesehen werden müssen. Vor allem wird angeführt, daß es Aufgabe des Staates sein muß, Gegenmaßnahmen zum Schutze des Ufers zu treffen, wobei sich die entstehenden Kosten dadurch rechtfertigen lassen, daß die Versandung der Platte vor der Trave- mündung größtenteils vom Abbruch des Brodtenener Ufers herrührt und die dadurch erforder- liche Ausbaggerung erspart werden kann.

Im übrigen (6, 7 und 8) wurde zu den in dieser Zeit laufenden Verhandlungen in der Bürgerschaft über die Herstellung einer Uferbefestigung, deren Planung vom Baudirektor Müller bearbeitet worden war, positiv oder negativ Stellung genommen. Dabei wurde 1865 der erste konkrete Vorschlag zur Beschaffung genauer Unterlagen über den Uferschutz gemacht.

Noch im gleichen Jahre wurde von einem ungenannten Verfasser (9) erstmalig ein näher umrissern Vorschlag für Maßnahmen am Brodtenener Ufer unter Hinweis auf ein bei Niendorf befindliches Schutzsystem veröffentlicht, während bisher nur Maßnahmen ohne Angabe der Möglichkeiten gefordert wurden.

Zeitabschnitt 1900 bis 1918

Die rasch forschreibung die Entwicklung der Schifffahrt machte um die Jahrhundertwende erneute Verbesserungen des Travefahrwassers notwendig. Die Pläne hierzu wurden 1898 in
einem umfangreichen Bericht des damaligen Lübecker Wasserbaudirektors REHDER (63) niedergelegt, wobei die Zustände in der Travemündung eine besonders betonte Berücksichtigung fanden.

In diesem „Bericht über die Vertiefung der Trave auf 7,50 m Wassertiefe“ (63) werden die „Einfahrt in den Travemünder Hafen und Schutzvorkehrungen gegen die Versandung des Seegats (Plate)“ ausführlich behandelt, da die Versandung der Travemünder Bucht langsam aber stetig fortschreite und sich eines Tages eine sehr kostspielige Molvenflüchtlung nicht mehr vermeiden ließe. Den Grundgedanken der Planung zur Gewährleistung einer unbehinderten Schifffahrt von See in die Trave formuliert REHDER hier anschließend folgendermaßen: „Diesen Zeitpunkt möglichst lange hinauszuschieben, oder bis dahin die Uferbildung von beiden Seiten her allmählich so vorzubereiten, daß die neue vorgeschobene, durch Molendämme geschlossene Hafeneinfahrt entweder ganz entbehrlich wird oder, wenn sie wider Erwarten infolge zunehmender Versandung doch erbaut werden muß, alsdann der neue Dammabschluß billig herzustellen und ohne besondere Schwierigkeiten den für die Einfahrt dann unentbehrlichen weiten Bassinhafen liefert, das muß die Aufgabe der Gegenwart sein.“ Den Hauptanteil an diesem Plan hat ein bis über Sturmschwellhöhe aufragender, rechtwinklig zur Küste liegender Seedamm, der das starke Zutreiben beweglichen Materials vom Brodtener Ufer verhindern soll. Als weitere dringende Maßnahme wird ferner eine Erhöhung des Priwall zur Verhinderung jeglicher Durchbruchsgefahr bei Hochwasser empfohlen, wobei eine sehr ausführliche Darstellung der Geschichte der Travemündung und des Priwall zur Erläuterung der Notwendigkeit dieser Maßnahme gebracht wird.

Die wesentlichen Gesichtspunkte seiner Arbeit hat FRIEDRICH in folgenden acht Leitsätzen zusammengefaßt:

1. In dem Zeitabschnitt 1810 bis 1900 ist der mittlere Teil des Brodtener Ufers um 110 bis 120 m zurückgegangen. Das entspricht einem jährlichen Landverlust von 1,2 m.
2. Der Rückgang ist beschleunigt worden durch die Wegnahme der Steine vom Ufer und der davorliegenden Flachsee in den letzten Jahrhunderten.
3. Es ist wünschenswert, daß in bestimmten Pausen die Vermessungen des ganzen Brodtener Ufers fortgesetzt werden.
4. Der Lübeckische Staat ist der einzige deutsche Küstenstaat, der zur Erhaltung seiner abbrechenden Seeufer bisher keine Maßnahmen getroffen hat.
5. Die Erhaltung des Brodtener Ufers kann nur erreicht werden durch den Bau von Buhnen. Der Zweck der Buhnenbauten ist die Schaffung eines möglichst über 40 m breiten Strandes mit einer mehr als 2 m hohen Vordüne.
7. Das Fortschreiten in der Sicherung des Brodtener Ufers wird eine beträchtliche Verminderung der Versandung in der Fahrrinne der Trave zur Folge haben.
8. Daher ist es zweckmäßig, die beiden Fragen:
 Wie schützen wir die Mündung der Trave vor Versandung und wie schützen wir das Brodtener Ufer vor weiterem Abbruch als eine einzige Frage zu betrachten und ihre Lösung gleichzeitig praktisch in Angriff zu nehmen.
Der Kieler Ozeanograph Krümmel (1901) urteilte über diese Arbeit: „Daß der Verfasser für seine Untersuchung die vorhandene Literatur für die übrigen Ostseeküsten sehr vollständig herangezogen hat, gibt seiner Arbeit eine mehr als lokalpolitische Bedeutung."

Der Seedamm, der sich bereits im Anfangsstadium der Bauvorbereitung befand, forderte noch im selben Jahre (1901) eine weitere, nun verschärfte Stellungnahme von Friedrich (13) heraus, in welcher er sagt, daß durch den Seedamm eine Versandung der Fahrinne, zumindest vorerst, verhindert würde, doch die Ursache der Versandung keinesfalls beseitigt wäre.

Gegen das Seedamm-Projekt von Rehder (63) wurde 1901 noch in vier weiteren Aufsätzen mit ähnlichen Argumenten polemisiert (13-17).

Im Jahre 1902 war „der erste lübeckische Uferschutzversuch bei Travemünde“ in Form eines uferparallelen Flechtwerkzaunes unternommen worden. Da diese Anlage von einem Hochwasser bei Nordoststurm restlos vernichtet wurde, wird in zwei Aufsätzen (20, 21) die Forderung nach sofortigen energischen Maßnahmen im Uferschutz erhoben, zumal der Staat selbst inzwischen (1902) Anlieger durch Erwerb von drei Uferparzellen unmittelbar nördlich des Seetempels geworden war und seinen Besitz dazu noch auf Unterwendung weiterer Kosten aufforsten ließ (19).

Auf Grund der Veröffentlichungen von Friedrich aus dem Jahre 1901 (12, 13) beauftragte der Senat die Baudeputation, einen Bericht über die Möglichkeit einer Sicherung des Brodtener Ufers einzureichen.

Im Jahre 1903 liegt der von Rehder aufgestellte „Bericht über das Ergebnis der Untersuchungen betr. Abbruch und Befestigung des Brodtener Ufers“ vor (64). Die wichtigsten Ergebnisse und Erkenntnisse sind folgende:

1. Der Abbruch des Steilufers beträgt im Zeitraum 1877 bis 1901 auf der Uferlänge von 4 km 46 937 qm, was einem jährlichen Landverlust von 1950 qm, einem jährlichen Abbruch von 0,49 m und einem jährlichen Bodenabbruch von 27 736 cbm entspricht.
2. Die Mittelwasser-Strandlinie rückt in demselben Maße vor wie das Steilufer zurück.
3. Der Abbruch des Unterwasserstrandes geht in demselben Maße vor sich wie der Abbruch des Steilufers über Wasser und vollzieht sich bis zu 4 bis 5 m Wassertiefe. Dieser Vorgang wird durch tiefe Einrisse im Tongrund unter Wasser bestätigt.
4. Der stärkste Uferabbruch besteht im mittleren Uferabschnitt an der Stirnseite des Steilufers.
5. Der Unterwasserstrand besteht nur aus Tongrund und weist nur ganz minimale Sandablagerungen auf, die zur Gewinnung eines Sandstranges nicht die geringste Bedeutung haben.

Auf Grund dieser Untersuchungsergebnisse vertritt Rehder daher in der Uferschutzfrage die Ansicht, daß das Brodtener Ufer infolge der Sandarmut des Unterwasserstrandes nicht durch Buhnen, sondern nur durch ein kostspieliges Deckwerk ausreichend geschützt werden könne, während er in der Frage der Versandungsgefahr der durch die Plate gebaggerten Fahrinne die Auffassung aus dem Jahre 1873 von Dalmann (62) teilt, daß ein vollständiger Schutz des Brodtener Ufers gegen Abbruch die Versandung der Fahrinne vorerst nicht einmal mässigen würde. „Es liegt daher ein technischer Grund für die Deckung des Brodtener Ufers nicht vor.“ Rehder schließt daher seinen Bericht mit folgender Feststellung: „Die Versandungsgefahr der ausgebaggerten Fahrwarnrinne auf der Plate liegt ganz allein in dem durch viele Jahrtausende angetriebenen massigen Sandfeld zwischen dem Möwenstein und der mecklenburgischen Küste. Dieses Sandfeld tunlichst unschädlich zu machen, sollte der geplante Seedamm mithelfen.“

Die Bedeutung dieses Berichtes liegt in den Ergebnissen einer erstmaligen Untersuchung des submarinen Grundes vor dem Steilufer, während bei allen bisherigen Untersuchungen am Brodtener Ufer die Verhältnisse unter Wasser wenig berücksichtigt wurden.

Das Problem Seedamm oder Uferschutz am Brodtener Ufer erörtern noch zwei kleinere Veröffentlichungen von unbekannten Verfassern (22, 24), wobei sich der erstere für Buhnenbauten, der letztere für die Errichtung eines Seedammes einsetzt.

Ufers dennoch für die Erbauung von Buhnen an den Flanken des Steilufers ein. Andererseits mußte er einssehen, daß die Gewinnung eines dauerhaften Strandes vor dem mittleren Teil des Brodtener Ufers ausgeschlossen ist.

Inzwischen trat am Silvestertag 1904 ein Hochwasser auf, wie es seit 1872 nicht mehr geschehen war. Mit diesem Hochwasser und dessen Folgen befaßten sich sechs Veröffentlichtungen, von denen diejenigen von Friedrich (27) und Spethmann (26) hervorzuheben sind. Bemerkenswert ist ferner, daß sich diesmal fast alle Berichte auch mit der Wirkung auf das Brodtener Ufer, die Travemündung und sogar andere Küstenstriche der inneren Lübecker Bucht beschäftigten.

Von der endgültigen Aufgabe des Seedamm-Projektes gab 1909 eine Mitteilung in den Verhandlungen der Bürgerschaft Kenntnis, in welcher der Senatsantrag ohne Debatte angeommen wurde (69).

1. Die Seetiefe würde in kurzer Zeit heranrücken und das Deckwerk zum Einsturz bringen;
2. das Deckwerk sei nicht haltbar, man müsse zunächst Buhnen bauen und könne auch mit diesen auskommen;
3. das Deckwerk brauche nicht mit Klinkern verblendet zu werden, es könne überhaupt billiger gebaut werden;
4. kein Techniker könne die Garantie übernehmen, daß das Deckwerk sich bewähren würde.

Die Nutzlosigkeit des Buhnenbaues wird nochmals mit den gleichen Argumenten wie in den Berichten von 1903 und 1905 betont. In der Frage der Klinkerverblendung wird festgestellt, daß diese für die Haltbarkeit des Bauwerks gegen die Brandung unerläßlich sei. Schließlich wird das Näherrücken der Tiefenlinie an das Steilufer sehr ausführlich erläutert und eine solide Bauweise versichert, „daß man wegen einer Unterspülung des Deckwerkes keine Besorgnisse zu haben braucht“.

Mit der negativen Entscheidung der Bürgerschaftsversammlung ist vorerst das allgemeine Interesse am Brodtener Ufer erloschen und damit die durch den Bericht REHDERs (63) von 1898 eingeleitete Phase beendet.

Im Jahre 1910 folgte noch eine Veröffentlichung mit einem Vorschlag zum Schutz des Steilufers durch Bepflanzung (38). Dies war der erste eingehende Vorschlag für biologische Maßnahmen.

Auch während des ersten Weltkrieges hat die Frage des Uferzuges nicht völlig geübert, wie die Mitteilung über eine Bürgerschaftssitzung vom 15. Januar 1917 (72) mit dem Antrag auf „Herstellung dreier Strandbuhnen am Brodtener Ufer“ beweist. Der Antrag wurde nach kurzer Debatte angenommen, der Bau kam jedoch nicht mehr zur Ausführung.

Zeitabschnitt 1918 bis 1933

Nach dem ersten Weltkrieg trat ein wesentlicher Wandel in der Art der Veröffentlichungen ein. Während zuvor neben wenigen Vertretern der Wissenschaft, wie FRIEDRICH und SPETHMANN, auch zahlreiche Laien unter dem Mantel der Anonymität das Wort ergriffen — letztere allerdings fast ausschließlich in der Kritik an geplanten Schutzmaßnahmen —, so konzentrierte sich in der nachfolgenden Zeit der Kreis derjenigen, die sich mit dem Brodtener Ufer befaßten, fast nur auf HAASE-LAMPE, OHNESORGE und BENICK, die das Steilufer und die Abbruchvorgänge in heimatkundlichem und wissenschaftlichem Interesse betrachten.

Für die Erkenntnis der Ursachen des Uferzuges des Uferüberganges ist eine Veröffentlichung von L. BENICK über „Das Brodtener Ufer im Winter 1925/26“ (45) von grundsätzlicher Bedeutung, zumal gleichzeitig auch neue erweiterte zahlenmäßige Angaben über den Uferrückgang gemacht werden. BENICK versucht hier erstmals die Behauptung, die sich in den Ursachen der Zerstörung des Steilufers befaßten, fast nur auf HAASE-LAMPE, OHNESORGE und BENICK, die das Steilufer und die Abbruchvorgänge in heimatkundlichem und wissenschaftlichem Interesse betrachten. Das Einzelstudium der Uferzuge von BENICK gibt einen wesentlichen Beitrag zur Uferschutzfrage, die von OHNESORGE veröffentlichte...
"Neue Vorschläge zum Schutz des Brodtener Steilufers" (50) dar, die über den bisherigen Rahmen hinausgingen. Es tritt hier erstmalig der Gedanke ausgeprägt in Erscheinung, von der Natur selbst Hinweise für Schutzmaßnahmen zu erhalten. — OHNESORGE macht in drei Punkten Vorschläge für einen Steiluferschutz, der mit geringen Mitteln erstellt werden kann:

1. Es wird eine sorgfältig durchdachte Drainage der Randstrecke des Steilufers gegen die zahlreich austretenden Grundwasser empfohlen.
2. Der günstige Verlauf des Söhrrmann-Damm-Versuches vor dem Seetempel soll Veranlassung zu weiteren Schutzbauten nach gleicher Methode an anderen gefährdeten Stellen werden.

Die Absturzbewegungen am Brodtener Ufer im Winter 1931/32 wurden von HAASE-LAMPE (55) beschrieben, wobei folgende Beobachtungen hervorzuheben sind:

1. eine Änderung in der Teilung des nord-südlichen Wasserabströmens bei Nordoststurm,
2. das Umkippen des Friedrichsteins,
3. die Zerstörung der Borchert-Buhnen und
4. weitere Landverluste vor der Aufforstung beim Seetempel.

Zeitabschnitt 1933 bis 1945

Es wird hier erstmalig der Gedanke ausgesprochen, daß nach einer Sicherung des Steiluferfußes gegen den Angriff der See alle übrigen Wirkungen von selbst in ein natürliches Gleichgewicht kommen. Die neue Planung schließt sich nicht an die früheren Entwürfe an, die zuvor einer eingehenden Würdigung unterzogen wurden, sondern beruht auf Beobachtungen, die im Laufe der vorangegangenen Jahre an den kleinen Uferschutzbauten gemacht wurden.

Das Projekt wurde wegen der Vordringlichkeit anderer Arbeitsvorhaben vorerst zurück-
Abb. 1. Brodtener Ufer und Priwall bei Travemünde
(Ausschnitt aus dem Meßtischblatt)
gestellt. Lediglich kleinere Maßnahmen zur Vorbereitung des späteren Bauvorhabens sowie Verbesserungen und Änderungen an den vorhandenen Schutzwerken kamen zur Ausführung.

Zu diesen Arbeiten nahm der Travemünder Bauunternehmer SÖHRMANN, auf dessen Initiative der Findlingsdamm vor dem Seetempel errichtet wurde, in zwei Aufsätzen unter dem Titel „Zu den Brodtener Uferschutzbauten“ (58, 59) Stellung. — SÖHRMANN fordert beidemal eine Verlängerung und Erhöhung der Nordermole, da sie in ihrer jetzigen Ausdehnung die Versandung des Fahrwassers nicht mehr verhindern kann, und empfiehlt weiterhin Verbesserungen an seinem Steinwall. Vor allem aber setzt er sich wiederholt für die Beseitigung der Buhnen am Travemünder Strand ein, weil sie diesen völlig ruinieren. — Beide Veröffentlichungen SÖHRMANNs sind durch ihre darin enthaltenen zahlreichen Einzelbeobachtungen, unter anderem über die Grundwasserverhältnisse am Seetempelwldchen, über die Beschaffenheit des submarinen Grundes vor dem Steilufer und über den Strand nördlich vom Möwenstein wertvoll.

Anderweitige Forschungen über die Ursachen der Zerstörung von Steilküsten an der Ostsee durch WASMUND und GROSCHOPF ließen „Neue Erkenntnisse über die Ursachen der Zerstörungen am Brodtener Ufer“ zu, die BENICK (60) als letzten Beitrag vor dem zweiten Weltkrieg zu Problemen veröffentlichte, welche das Brodtener Ufer nun schon seit mehr als hundert Jahren aufwarf — wenn der Blick sich noch einmal auf die am Beginn dieses Berichtes erwähnte Veröffentlichung aus dem Jahre 1837 zurückwendet.

Während des letzten Weltkrieges kamen alle eingeleiteten Maßnahmen und Planungen zum Stillstand.

Schriftenverzeichnis*)

A. Chronologische Zusammenstellung der Veröffentlichungen
2. — Das Leuchtenfeld und Brothener Ufer bei Travemünde als die Urheber der Plate im Fahrwasser. NLB 1837, Nr. 43, S. 339—340.

*) Erläuterung der Abkürzungen:
HB = Heimatblätter, Mitteilungen des Vereins für Heimatschutz Lübeck
LB = Lübeckische Blätter, Lübeck
VB = Vaterstädtische Blätter, Lübeck
LGA = Lübecker General-Anzeiger, Lübeck
NLB = Neue Lübeckische Blätter, Lübeck
VLT = Von Lübecks Türmen, Lübeck
LBV = Lübeckische Blätter, Berichte der Bürgerschaftsverhandlungen
3. Erwiderung auf den Aufsatz über die Entstehung der Plate bei Travemünde in Nr. 43. NLB 1837, Nr. 46, S. 371—372.
9. Der Schutz des Brodtener Ufers. LB 1872, Nr. 95, S. 517.
12. Friedrich, P.: Das Brodtener Ufer bei Travemünde. Sein Rückgang und seine Erhaltung. LB 1901, Nr. 4, S. 38—41; Nr. 5, S. 55—58; Nr. 6, S. 66—71; Nr. 7, S. 82—84; Nr. 8, S. 98—104.
14. Der Seedamm am Travemünder Strand. LB 1901, Nr. 34, S. 420—421.
23. Die Sicherung des Brodtener Ufers. LB 1903, Nr. 52, S. 713—717.
32. Deckwerk des Brodtener Ufers. LB 1909, Nr. 34, S. 486—487.
34. Das Brodtener Ufer und das Deckwerk. LB 1909, Nr. 36, S. 514—515.
44. Haase-Lampe, W.: Schutz der Baumgruppen am Seetempel des Brodtener Ufers. HB 1926, Nr. 21, S. 84.
47. Die Schutzbauten am Brodtener Ufer. VLT 1927, Nr. 28, S. 115—116.
52. HAASE-LAMPE, W.: Der Landniederbruch am Brodtener Ufer. HB 1931, Nr. 81, S. 329—330.
60. BENICK, L.: Neue Erkenntnisse über die Ursachen der Zerstörungen am Brodtener Ufer. HB 1938, Nr. 155, S. 639—641.

B. Chronologische Zusammenstellung der Berichte und Gutachten

63. REHDER, P.: Bericht über die Vertiefung der Trave auf 7,5 m Wassertiefe an die Baudeputation Lübeck, 28. Dez. 1898.

C. Chronologische Zusammenstellung der Bürgerschaftsverhandlungen

Die Entstehung der Lübecker Bucht
und des Brodtener Ufers

Von Karl Gripp

Schon vor 130 000 Jahren gab es eine Ostsee, die der letzten Zwischeneiszeit, auch Eem-Zeit genannt. Deren Drift-Ströme und Wellen suchten schon ebenso eine Ausgleichsküste zu erreichen, wie sie die gleichen Kräfte in der heutigen Ostsee erstreben. Aber der heutige Kampf um jene Gleichgewichtsfläche ist nicht die Fortsetzung desjenigen vor 130 000 Jahren.

Zwischen beiden liegen zwei wichtige Ereignisse:
1. die letzte Vereisung Nord-Europas und damit des Ostsee-Gebietes,
2. das Absinken des Meeresspiegels tiefer als der Boden von Ostsee und Nordsee.

Beide Ereignisse stehen im Zusammenhang. Je größer die Eiskappen an den Polen während der Eiszeit anwuchsen, um so mehr Wasser wurde dem Kreislauf des Wassers entzogen, um so weniger Wasser war im Weitmeer. Nach heutigem Wissen lag der Meeresspiegel während der Vereisung um 70 bis 80 m tiefer als heute. Das Becken der eemzeitlichen Ostsee lag also trocken, als das Inlandeis darin und darüber vordrang.

Diese beiden Eiszungen, die Hemmelsdorfer und die Pötenitzer, waren Teile jener großen Eiszone, die den Trog der Lübecker Bucht in gleicher Weise formte, wie es etwas früher durch eine ältere Eiszone mit dem Lübecker Becken geschah.

Anfangs lagen die vom Eise frisch hinterlassenen Schuttmassen nackt da. Zunehmend kehrte Pflanzenwuchs wieder. Um 7500 bis 6500 v. Chr., als Kiefernwälder unser Gebiet bedeckten, war der Meeresspiegel inzwischen allmählich bis auf —25 m NN angestiegen.

Damit begann die erste schmale Überflutung der tiefsten Teile der westlichen Ostsee. Als der Wasserspiegel um weitere 7 m angestiegen war, drang Seewasser über die Darsser Schwelle in den östlich davon gelegenen großen baltischen Süßwasser-See (Ancylus-See) ein. Dadurch wurde die gesamte heutige Ostsee wieder Meer, das sogenannte Litorina-Meer.

Ein Meer im Flachland ist als Folge seines Grundwasserstaus von Mooren umgeben. In ihnen bleiben die Pollenkörner gut erhalten, sie dienen daher zur Rekonstruktion der jeweiligen Pflanzenwelt, und aus dieser kann man relatives und teilweise absolutes Alter bestimmen.

Die Altersbestimmung über die verschiedenen Ereignisse bei der Wiederkehr der Ostsee sind für unser Gebiet nur einmal durch Tapper untersucht worden. Dänische Forscher wiesen auf gewisse Unsicherheiten einiger Datierungen dieser Arbeit hin*).

*) Siehe den Beitrag von H. Schmitz, S. 42.

Abb. 1. Schema der Entwicklung der Küste in der Travemündung und Neustädter Bucht

1. Trave-Mündung und Hemmelsdorfer See noch offene Buchten; dazwischen Brodtener Nase weit vorspringend.

2. Brodtener Nase und Scharbeutzer Vorsprung vom Meere teilweise abgetragen; vor Travemünde und dem Hemmelsdorfer See Nehrungen im Aufbau.

In Anlehnung an D. W. Johnson: Shore processes and shoreline development, New York, 1919; gezeichnet von V. Wiatkin.
Um die Geschwindigkeit des Wasseranstiegs, vor allem aber den Zeitpunkt des Erreichens des heutigen Meeresspiegels und damit die Dauer der Zerstörung des Brodten Ufers in heutiger Höhenlage und die der Aufhöhung des Priwalls kennenzulernen, war eine erneute sorgfältige Bestimmung der Zeiten auf pollenanalytischer Grundlage erforderlich.

Den Geologen beschäftigt die Frage: Wie verändert sich die neue Ostsee zu den Geländeformen, die das Inlandeis hinterlassen hatte?

Es ist als sicher anzunehmen, daß ein langer Geländesporn vor Brodten, ein kürzerer vor Scharbeutz und ein weiterer vor dem heutigen Sierkendorfer Kliff in die See hinausgereicht haben. Außerdem dürften noch manche Kuppen vorhanden gewesen sein, die früher oder später der Abtragung durch das Meer anheimgefallen sind (Abb. 1).

Die drei genannten Sporne sind von der See weitgehend abgetragen und in Kliffs verwandelt worden. Das mittlere, das Scharbeuter Kliff, liegt nicht mehr im Abbruch; es ist tot, und zwar anscheinend auf natürlichem Wege, ohne menschliche Hilfe, stillgelegt. Das Material, das vom Meere den Kliffs entnommen wurde, liegt in seinen größeren Kornanteilen als Nehrung vor den Niederungen zwischen den Spornen, und zwar:

- der Priwall vor der Pötenitzer Niederung,
- der Niendorf—Timmendorfer Strandwall vor dem Hemmelsdorfer Becken,
- der Haffkruger Strandwall vor dem Becken mit den Haffwiesen.

 Aus diesen eindeutigen Hinweisen auf einen beträchtlichen Umfang des Küstenausgleichs ergeben sich als für die wasserbaulichen Aufgaben wichtige Fragen:

1. In welcher Richtung erfolgt der Abtransport des in den Kliffs losgerissenen Gesteinsmaterials?
2. Kommt das in den Strandwällen zusammengetragene Material nur aus den Kliffs oder auch vom Meeresboden selber?
3. Lassen sich Angaben über den Lieferungsbereich der einzelnen Kliffs machen?

Zur Antwort auf diese Fragen sind besondere Untersuchungen mit teilweise neuen Methoden durchgeführt worden, wie aus den betreffenden Beiträgen dieses Heftes zu sehen ist.
Der Aufbau und die geologische Entwicklung des Brodtener Ufers und der angrenzenden Niederungen

Von Gerhard Seifert

Die diluviale Entwicklung. Der Geschiebemergel des engeren Untersuchungsgebietes schließt auffällig viele Absätze diluvialer Becken (Feinsande, Schluffe, Tone) ein. Diese Sedimente wurden häufig in Bohrungen (vom Stülper Huk bis Travemünde, unter dem Priwall und auf dem Steinriff) angetroffen, treten aber auch am Dummersdorfer Ufer, auf der Insel Buchhorst im Dassower See, bei Pöttenitz und am Brodtener Ufer selbst zutage. Der Hauptteil dieser Absätze dürfte zu einer Zeit in die Grundmoräne geraten sein, als das Eis nach einem größeren Rückzug wieder in den Lübecker Stausee vorstieß.

Als Hauptentwässerungskanal für die glacialen Schmelzwasser diente das Tal der Trave; ein weiterer Abfluß mag durch den Hemmelsdorfer See erfolgt sein.
Abb. 1. Übersicht zur Geologie des Brodtener Ufers

Der Verlauf jener Tiefenlinien ist von Wichtigkeit:
1. für die Beurteilung der Entwicklungsgeschichte des Gebietes. Die pollenanalytischen Untersuchungen (vgl. Bericht H. Schmitz) haben ergeben, daß die Tiefenlage eines Transgressionskontaktes nicht mit dem Stand des Meeresspiegels in der betreffenden Zeit gleichbedeutend zu
sein braucht. Es ist daher von größter Wichtigkeit, die näheren geologischen Verhältnisse, insbesondere die Morphologie in der Umgebung des jeweiligen Kontaktes, zu kennen,
2. für eine Beurteilung der Ausdehnung ehemaliger Landrücken, heutiger Abrasionsflächen vor den Kliffs,
3. für die Abschätzung des Umfangs der jungen Meeresanschwemmungen.

Für einen Zusammenhang sprechen folgende Tatsachen:
1. Die Richtung des sich aus dieser Konstruktion ergebenden Höhenrücken entspricht derjenigen der beiden Toteisstauchmorinen.

Im Gebiet der Hemmelsdorfer Niederung liegen nur wenige Bohrungen vor. Die Verhältnisse sind hier also noch nicht sicher zu beurteilen. Dort, wo der See heute Tiefen von 20 und mehr Metern aufweist, wird auch damals schon ein See vorhanden gewesen sein. Eine Verbindung zu der unter Niendorf nachgewiesenen, über 20 m tiefen Rinne ist jedoch noch nicht belegt.

Zwischen den Niederungen der Pötenitzer Wiek und des Hemmelsdorfer Sees schob sich ein Höhenrücken weit bis in die Lübecker Bucht vor. Um die Ausdehnung und Höhe dieses Rückens zu ermitteln, war vorgeschlagen worden, die Abrasionsfläche vor dem Brodtener Ufer auf die Beschaffenheit des Geschiebemergels hin zu untersuchen.

Ein längere Zeit der Verwitterung ausgesetzter Geschiebemergel zeigt von oben nach unten folgendes Profil:

| Geschiebelehm (entkalkter Geschiebemergel),
| gelber Geschiebemergel,
| grauer Geschiebemergel. |

Der Geschiebelehm reicht durchschnittlich bis zu 1,5, gelber Geschiebemergel bis zu 5 bis 6 m Tiefe.
Durch ein enges Netz von Greiferproben sollte auf der Abrasionsfläche die Grenze gelber/grauer Geschiebemergel kartiert werden. Leider konnten diese Untersuchungen nicht in vollem Umfang durchgeführt werden; die ausgeführten Greiferproben und Bohrungen gestatten jedoch, einige Vermutungen auszusprechen.

Der Bereich der Hauptabrasionszone oberhalb der 5-m-Tiefenlinie ist durch ältere Bohrungen gut bekannt. Unverwittertes Diluvium bildet hier den Hauptanteil der Abrasionsfläche. Restsedimente treten zurück. In 5 bis 10 m Tiefe werden Restsedimente am Meeresboden verbreitet angetroffen. Auch hier fehlt noch im allgemeinen der gelbe Geschiebemergel. Lediglich an der Travelflange tritt er häufig auf. Der Bereich von 10 bis 20 m Tiefe ist nur sehr lückenhaft untersucht, doch treten bloßliegender Geschiebemergel und Beckenabsätze bis zu Wassertiefen von 20 m auf. Der Anteil des gelben Geschiebemergels scheint hier größer zu sein. Wiederum an der Travelflange treten deutliche Zeichen der ehemaligen Landoberfläche, wie Wurzelreste und Torfe, in Erscheinung. Zusammenfassend kann gesagt werden, daß überhalb der heutigen 5-m-Tiefenlinie wahrscheinlich 10 bis 15 m, überhalb der heutigen 10-m-Tiefenlinie mehr als 6 m und in der heutigen Tiefe von 10 bis 20 m bis maximal 6 m Sediment vom Meere abgetragen wurden. Lediglich an der Travelflange war die Abtragung geringer.

Im Gebiet unter Niendorf entstand zu gleicher Zeit wie der Priwallsee durch den Grundwasseranstieg ein Seebecken, welches schnell verlandete. Der Bruchwaltorff zeigte Anzeichen schnell zunehmender Vernassungserscheinungen, so daß sich auch hier ein weiterer Grundwasseranstieg bemerkbar macht.

Der weitere Anstieg des Meessiegels offenbart sich in vielfältiger Weise. In der Püttenitzer Wiek darf vom ersten Salzwassereinbruch an mit einer verstärkten Abtragung der Landvorsprünge gerechnet werden. Die Absätze des ehemaligen Priwallsees wurden durch eine sandige Tongyttja eingedeckt, die wahrscheinlich zum größten Teil aus dem Material der Landvorsprünge in der Wiek selbst entstanden.

In Fortsetzung des alten Strandwalls vor der Villa Possch schoß sich demnach offenbar im Gebiet der 10-m-Tiefenlinie ein Haken in Richtung auf die heutige Nordermole vor, in dessen Schutz eine Verlandung im Gebiet des Leuchtenfeldes einsetzte.

Die Bildung dieses ältesten nachweisbaren Hakens wäre nicht möglich gewesen, wenn die Trave damals schon ihre heutige Mündung besessen hätte. Die Abdrängung der Travenmündung nach Westen konnte erst erfolgen, als der Abdrängung bewirkende Priwall an Größe zunahm. Wie die Verhältnisse am Eingang des Dassower Sees vermuten lassen, ist die eigentliche Priwallnehrung jedoch relativ jung. Für die Bildung der den Sockel des Priwall bildenden Tongyttjen und Sande steht dagegen der gesamte Zeitraum seit Beginn der Transgression in diesem Gebiet zur Verfügung.

Im Gegensatz zur Pötenitzer Wiek sind die Verhältnisse im Gebiet der Hemmelsdorfer Niederung und der Hasswiesen offenbar recht einfach. Seebrüts liegen vor dem Gebiet ausgedehnte Abrasionsflächen, über deren Abtragungsbeträge sich jedoch nichts näheres aussagen läßt. Die Bildung der Torfe setzte sowohl im Kühlbroktaal bei Timmendorfer Strand als auch in den Hasswiesen erst nach Abschluß dieser Buchten durch die Strandwälle ein. Die Mäch-
tigkeit der Strandwälle von teilweise über 10 m spricht jedoch für eine ständige Erhöhung bei steigendem Wasserstand. Auch in der Hemmelsdorfer Niederung setzte eine erneute Vermoorung nach den heutigen Kenntnissen erst nach vollständigem Abschluß durch den Niendorfer Strandwall ein.

Schlußbemerkung

Abschließend läßt sich sagen, daß im Untersuchungsgebiet, namentlich in den Randgebieten der Pötenitzer Wiek durch Bohrungen vielfältige Zeugen des postglacialen Meeresanstiegs erschlossen sind, deren möglichst vollständige pollenanalytische Auswertung ein recht genaues Bild des Transgressionsablaufs in diesem Gebiet ergeben wird, wenn einige dieser Bohrungen unter Entnahme ungestörter Proben wiederholt werden können. Schon jetzt treten aber folgende Tatsachen klar hervor:

1. Im gesamten Gebiet der inneren Lübecker Bucht ist ein ständiger Anstieg des Meeresspiegels vom Beginn der ersten Meerestüberflutung an zu beobachten. Zahlreiche, in den verschiedensten Tiefen zwischen —20 und 0 m NN angetroffene Torfablageungen und alte Strandwälle beweisen dies.

3. Der Abschluß der Traveförde durch den Priwall begann erst zu einer Zeit, als der Meeresspiegel auf —5 bis —4 m NN gestiegen war. Die eigentliche Priwallnehrung und damit die heutige Lage der Travemündung sind also erst relativ spät entstanden.

Absolute Zeitangaben lassen sich jedoch erst nach weiteren pollenanalytischen Untersuchungen in diesem Gebiet machen.

Schriftenverzeichnis

Über die physikalischen Eigenschaften
der das Brodtener Ufer aufbauenden Bodenarten und
ihre Bedeutung für den Steiluferrückgang und für
die Errichtung eines Uferschutzwerks

Von Alfred Ducker

1. Einleitung
2. Kennziffernmäßige Beschreibung der am Aufbau des Kliffs beteiligten Bodenarten:
 a) Kornverteilung
 b) Zustandsform
 c) Wasseraufnahmevermögen
 d) Scherfestigkeit
3. Der geologische Aufbau des Kliffs und die Lagerungsrhältnisse der Bodenarten
4. Die Stabilitätsverhältnisse des Kliffs
5. Die Veränderlichkeit der Festigkeitswerte
 a) der Einfluß des Oberflächenwassers
 b) der Einfluß des Grund- und Sickerwassers
 c) die Mitwirkung des Klimas
 d) die Einwirkung des Meereswassers
 e) der biologische Einfluß
6. Zusammenfassung und Stellungnahme zu den geplanten Schutzmaßnahmen

1. Einleitung

Durch die Planung einer massiven Uferwand, bzw. eines aus flachgeböschtem Deckwerk
bestehenden Uferwerks zum Schutz des Brodtener Ufers, sah sich die Untersuchungsstelle
beim Wasser- und Schiffahrtsamt in Lübeck veranlaßt, im Rahmen einer planmäßigen
Durchforschung des Gesamtfragenkomplexes über die Ursachen des Steiluferrückgangs auch
den Einfluß der physikalischen Eigenschaften der das Kliff aufbauenden Bodenarten quan-
titativ zu ermitteln. Mit der Durchführung dieser Aufgabe wurde die Bundesanstalt für

Für die Untersuchung standen 43 Bodenproben zur Verfügung, die an verschiedenen Stellen
aus neu angelegten Schurfgruben in der Steiluferwand in ungestörtcm Zustand entnommen
wurden. Ihre Größe betrug 10 × 10 × 15 cm bzw. 15 × 15 × 25 cm; sie wurden mit einem
Spatel sorgfältig aus der Schurfwand herausgearbeitet, mit einem passenden Holzbehälter um-
geben und mit Paraffin luftdicht abgeschlossen. Lediglich dreizehn nichtbindige Bodenproben
wurden mit Hilfe eines Stahlzylinders von 12 cm Durchmesser gewonnen, der in den zumeist
lockerem Untergrund leicht eingedrückt werden konnte. Von der Untersuchung der gelegentlich
im Hangenden des Kliffs auftretenden holozänen Ablagerungen, wie Flachmoortorf, Faul-
schlam, Wiesenkalk u. a., wurde Abstand genommen.

Unter Ermittlung insbesondere der Kornverteilung, der Plastizität, des Wasseraufnahmever-
mögens, der Scherfestigkeit und der Frostbeständigkeit (*), sollte im wesentlichen das Ver-
halten des Geschiebemergels
 a) oberhalb des Wasserspiegels,

(*) Die Versuche wurden im wesentlichen nach den in der Bodenmechanik üblichen Vorschriften
durchgeführt. Methodische Einzelheiten mögen aus: Casagrande-Fadum (1) oder Schultze-Muhs (4)
entnommen werden.
b) in ruhigem und bewegtem Wasser mit und ohne Steinabdeckung und
c) nach Errichtung eines Uferschutzwerks
geklärt werden.

2. Kennziffernmäßige Beschreibung der am Aufbau des Kliffs beteiligten Bodenarten

a) Kornverteilung. An dem Aufbau des Brodtener Ufers sind im wesentlichen Bodenarten glazigenen bzw. fluvioglazigenen Ursprungs beteiligt. Wie aus den in dem Konzentrationsdreieck zusammengefaßten Ergebnissen der Sieb- und Schlämmanalysen hervorgeht (Abb. 1), bestehen sie entweder aus 40 v. H. bis 60 v. H. Siebkorn (> 0,06 mm) und 60 v. H. bzw. 40 v. H. Schlämmkorn (< 0,06 mm) oder aus 5 v. H. Siebkorn und 95 v. H. Schlämmkorn. Dabei handelt es sich einmal um glazigene, ungleichförmige Ablagerungen der Grundmoräne (U = 30 bis 60) („Lehme“ in Abb. 1) und zum anderen um gleichförmige (U = 5), als

![Kornzusammensetzung der Bodenproben Nr. 1 bis 30 aus verschiedenen Teilen des Brodtener Ufers und ihre Einordnung in das Dreieck-Koordinatensystem. Die meisten Böden sind Lehme, wie aus der Häufung der Punkte in dem kleinen Dreieck für „Lehm“ (ohne nähere Bezeichnung) hervorgeht.](image_url)

Staubebenenabsätze zu deutende Sedimente („Schluff“ und „schluffiger Lehm“ in Abb. 1). Der durchschnittliche Gesamt-Sandkornanteil aller Bodenarten ist mit etwa 30 bis 35 v. H. zu veranschlagen, wovon etwa 60 v. H. der Feinsand-Kornfraktion 0,2 bis 0,06 mm angehören. Innerhalb eines Profils läßt sich beobachten, daß die Sandkornkomponente im großen und ganzen vom Liegenden zum Hangenden zugunsten des Schluffkornanteils abnimmt (Abb. 2), wobei auch der Feinstkornanteil unter 2 µ eine leichte Zunahme erfährt. Diese Erscheinung hängt offensichtlich mit der Entstehung des hangenden Geschiebemergels zusammen, auf die weiter unten eingegangen wird.
b) Zustandsform. Der Plastizitätsindex (I_w), der sich aus der Differenz des Wasser-
gehaltes bei der Fließgrenze (F_w) und der Plastizitätsgrenze (P_w)

$$I_w = F_w - P_w$$

ergibt, vermittelt einen Anhaltspunkt über die Zustandsform der Bodenarten. Er schwankt
im allgemeinen zwischen 10 und 17. Lediglich der im Bereich der heutigen Verwitterungsvor-
gänge liegende hangende Geschiebelehm (siehe Abb. 3, Probe Nr. 22) mit einem Plastizitäts-
index von 30 und der gelegentlich als Scholle in der Moräne einverleibte Kreidemergel mit

![Diagramm](https://example.com/diagram.png)

Abb. 2. Der Anteil an Sand, Schluff und Feinsteinkorn (Ton) innerhalb der
Bodenproben aus Station 25,0—50 in profilgerechter Aufeinanderfolge

einer Plastizitätsziffer von 3,7 fallen aus dem allgemeinen Rahmen heraus. Innerhalb des
Querprofils läßt sich feststellen, daß die Werte der Fließ- und Plastizitätsgrenze entsprechend
der Sandkornabnahme vom Liegenden zum Hangenden hin zunehmen. Dabei ist zu erkennen,
dafs fast alle Proben eine sehr feste Konsistenz aufweisen, da ihr natürlicher Wassergehalt
stets nahe bzw. sogar vielfach unterhalb der Plastizitätsgrenze liegt.

c) Wasseraufnahmevermögen. Die Werte der Wasserbindung (Enslinwert) zei-
gen, daß die Zeit bis zum Erreichen der im Endzustand aufgenommenen Wassertemenge klein
ist. Diese Erscheinung läßt darauf schließen, daß Tonmineralien mit hohem Wasseraufnahme-
vermögen mengenmäßig nicht in Erscheinung treten. Vielmehr bewegen sich die angesaugten
Wassermengen und die erforderlichen Zeiten zur Erreichung des Endzustands in einem Bereich,
der im wesentlichen Mischungen aus Quarz und Kaolinit bzw. Illit gleichkommt (vgl. ENDELL
[2]). Selbstverständlich sagt diese Schlussfolgerung nichts aus über die wirkliche Natur der
vorhandenen Tonmineralien, da die ermittelten Enslinwerte weitgehend von dem hohen
Quarzmineralanteil bestimmt werden. Welche Tonmineralien daher im einzelnen an dem
Aufbau der Brodtener Bodenarten beteiligt und für ihren bodenphysikalischen Charakter
ausschlaggebend sind, läßt sich nur auf Grund einer quantitativen röntgenographischen Unter-
suchung feststellen. Der relativ hohe Enslinwert der Probe Nr. 22 (Abb. 3) dürfte vermutlich auf die Anwesenheit neu gebildeter Tonmineralien zurückzuführen sein, die mit den Bodenbildungsvorgängen in der Zeit nach dem Rückzug des letzten Eisvorstoßes in Zusammenhang stehen. Dabei zeigt sich, daß eine Abhängigkeit des Wasseraufnahmevermögens von der Kornfeinheit, d. h. von dem Kornanteil unter 2µ nicht besteht. Während zum Beispiel die

![Diagramm](image)

Abb. 3. Der natürliche Wassergehalt der Bodenproben bei Station 25,0—50 in profilgerechter Aufeinanderfolge im Vergleich zum Wassergehalt an der Plastizitätsgrenze und der Fließgrenze sowie zum Enslinwert

d) Scherfestigkeit. Der für die Standfestigkeit des Steilufers maßgebende physikalische Festigkeitswert des Bodens ist die Scherfestigkeit (τ_0), die sich aus dem normalen Druck (σ) mal dem Tangens des Winkels der inneren Reibung (φ) plus Kohäsion (c)

$$\tau_0 = \sigma \cdot \tan \varphi + c$$

dazu zusammensetzt. Über die Größenordnung der Scherfestigkeit unterrichtet die Tabelle 1.
Tabelle 1
Zusammenstellung der Scherfestigkeiten der wichtigsten Bodenarten vom Brodtener Ufer

<table>
<thead>
<tr>
<th>Probe-Nr.</th>
<th>Kennzeichen</th>
<th>Geologische Bezeichnung</th>
<th>natürl. Raumgewicht t/m³</th>
<th>Porenziffer s</th>
<th>Winkel d. Reibung</th>
<th>Kohäsion c</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>WLü/1—17/1a</td>
<td>Geschiebemergel</td>
<td>9,5</td>
<td>2,18</td>
<td>0,374</td>
<td>Max.</td>
</tr>
<tr>
<td>9</td>
<td>WLü/1—25/1</td>
<td>Geschiebemergel</td>
<td>9,9</td>
<td>2,15</td>
<td>0,352</td>
<td>Min.</td>
</tr>
<tr>
<td>29</td>
<td>WLü/1—21/2</td>
<td>Geschiebemergel</td>
<td>18,8</td>
<td>2,06</td>
<td>0,540</td>
<td>26° 30´</td>
</tr>
<tr>
<td>25</td>
<td>WLü/1—17/2</td>
<td>K reidemergel</td>
<td>15,4</td>
<td>2,18</td>
<td>0,404</td>
<td>28° 50´</td>
</tr>
<tr>
<td>26</td>
<td>WLü/1—17/3</td>
<td>Mergelsand</td>
<td>21,2</td>
<td>2,06</td>
<td>0,543</td>
<td>Max.</td>
</tr>
<tr>
<td>28</td>
<td>WLü/1—21/1a</td>
<td>Mergelsand</td>
<td>20,9</td>
<td>2,04</td>
<td>0,575</td>
<td>29°</td>
</tr>
<tr>
<td>28</td>
<td>WLü/1—21/1b</td>
<td>Mergelsand</td>
<td>24,3</td>
<td>2,00</td>
<td>0,660</td>
<td>Min.</td>
</tr>
<tr>
<td>28</td>
<td>WLü/1—21/1c</td>
<td>Mergelsand</td>
<td>24,8</td>
<td>2,02</td>
<td>0,673</td>
<td>25°</td>
</tr>
</tbody>
</table>

Wie Abbildung 4 zeigt, schwankt die mit Hilfe der Mohr'schen Spannungskreise festgestellte Kohäsion c für den Geschiebemergel je nach seinem Wassergehalt zwischen 0,1 und 0,55 kg/cm². Der Winkel der inneren Reibung bewegt sich zwischen 26 Grad und 28 Grad. Ähnliche Ziffern weisen auch die in dem Geschiebemergelkomplex eingelagerten, bzw. als Scholle auftretenden, schluffigen Staubdeckenabsätze und Kreidemergel auf. Dabei ist zu beachten, daß der „natürliche Böschungswinkel“ des Steilufers nicht mit dem Reibungswinkel des Bodens identisch ist, da zum Beispiel der Geschiebemergel infolge seiner Bindigkeit auch noch eine Kohäsion besitzt, die ihrerseits von dem Gefügewiderstand und der Haftfestigkeit der einzelnen Bodenteilchen beherrscht wird.

Abb. 4. Die Ergebnisse der dreiachssialen Bestimmungen der Scherfestigkeit (Winkel der inneren Reibung q und Kohäsion c) verschiedener Geschiebemergelproben aus dem Liegenden des Brodtener Ufers
3. Der geologische Aufbau des Kliffs und die Lagerungsverhältnisse der Bodenarten

4. Die Stabilitätssverhältnisse des Kliffs

Aus der Kohäsion c, dem Raumgewicht γ des Bodens und der Höhe H der Böschung läßt sich angenähert die Standsicherheit des Brodtener Ufers beurteilen.

1. Begünstigt der derzeitige natürliche Böschungswinkel des Steilufers, der im Durchschnitt etwa 45 Grad beträgt, ein Abgleiten der Bodenmassen?

2. Welcher natürliche Böschungswinkel ist erforderlich, um die Standsicherheit des Kliffs zu gewährleisten?

3. Inwieweit beeinflußt die Höhe des Steilufers die Stabilitätssverhältnisse der Kliffböschung?

Unter der vereinfachenden Annahme einer kreisförmigen Gleitfläche kann man mit Hilfe eines von Taylor (5) aufgestellten Graphikons die Stabilitätssziffer $\frac{c}{\gamma \cdot H}$, bei der c die Kohäsion, γ das Raumgewicht und H die Höhe der Böschung bedeuten, bestimmen. Bei einem durchschnittlichen Kohäsionswert von 3 t/m², einem Raumgewicht des Geschiebemergels von 2,2 t/m³, einem Winkel der inneren Reibung von 25 Grad und einer Klifthöhe von 15,0 m beträgt mithin die Stabilitätssziffer $\frac{3}{2,2 \cdot 15} = 0,091$. Dieser Wert entspricht einem Böschungswinkel von etwa 65 Grad. Mit anderen Worten, ein Abgleiten des Bodens wird unter den gegebenen Verhältnissen erst dann eintreten, wenn der natürliche Böschungswinkel den Wert von 65 Grad übersteigt. Der jetzige Böschungswinkel von 45 Grad beeinträchtigt also in keiner Weise die Standfestigkeit des Steilufers. Erst wenn der Winkel der inneren Reibung des Bodens auf 13 Grad absinkt, kann bei einer Böschung von 45 Grad mit einem Abrutschen des Bodens gerechnet werden. Da aber der Winkel der inneren Reibung wenigstens 25 Grad beträgt, kann also ein Abstürzen des Bodens selbst bei einer 15,0 m hohen Kliffwand nicht erwartet werden (Abb. 4). Wenn dagegen das Steilufer eine Höhe von über 27,5 m erreicht, sinkt die Stabilitätssziffer der Böschung auf 0,05 herab, und der Boden gleitet ab. Es zeigt sich also, daß unter den heutigen Boden- und Böschungsverhältnissen gegen ein Abrutschen der Bodenmassen hohe Sicherheit besteht.
Die Ursachen der Massenbewegungen müssen mithin auf Faktoren zurückgeführt werden, die eine weitgehende Änderung der Scherfestigkeit im Gefolge haben, durch die die Massen zum Abgleiten gezwungen werden. Da die Scherfestigkeit, und zwar vornehmlich die Kohäsion, weitgehend durch eine Änderung des Bodenwassergehaltes beeinflußt werden kann, erscheint es notwendig, das hydrologische Moment in den Vordergrund der Betrachtungen über die Ursachen des Kliﬀrückgangs zu stellen.

5. Die Veränderlichkeit der Festigkeitswerte

a) Einfluß des Oberflächenwassers

Mehr oder weniger tief eingefurchte Regenrinnen in den abgestürzten Schuttmassen, ausgewaschene und vertiefte Klüfte in dem Geschiebemergel deuten mit Nachdruck auf eine lineare, meist vertikale Erosionswirkung des oberflächlich abfließenden Wassers hin. Besonders dort, wo ein gesammelter Abfluß am Steilufer in die Ostsee einmündet, wie das am Mühlbachtal nördlich des Dorfes Brodten der Fall ist, oder wo oft mangelhaft verbaute Drainageleitungen zeigen, beobachtet man eine stark rückschreitende Erosion, die zur Entstehung von Einschnitten und tiefen Schluchten führt. Wenn auch dadurch zweifellos ein gewisser Bodenverlust eintritt, so spielt dieser im großen und ganzen gesehen für den Kliﬀrückgang doch nur eine untergeordnete Rolle, da eine wesentliche Änderung der physikalischen Eigenschaften des Bodens infolge der dynamischen Wirkung des abfließenden Waters nicht eintritt.

b) Einfluß des Grund- und Sickerwassers

Werden durch die abgestürzten Schuttmassen die Austritte des Grundwassers vorübergehend abgesperrt, so versickert das Wasser in die zerrütteten, in ihrer Struktur weitgehend gelockerten Bodenmassen. Der vorderwärts gewesene Belastungsdruck der überlagernden Schichten ist zum größten Teil verschwunden, so daß der Boden eine weitgehende Aufnahmebereitschaft für das Wasser zeigt. Die Folge ist ein allmähliches Durchweichen bis an die Grenze des Fließzustandes, so daß der Boden infolge der erreichten Nullreibung breiartig abgletei.

Infolge der gestörten Lagerungsverhältnisse der wasserführenden Beckenabsätze tritt aber das Grundwasser immer nur an einigen örtlich begrenzten Stellen des Steilufers aus. In den überaus größten Teilen des Kliffs wird es gestaut, indem es das vorhandene Spaltensystem des Geschiebemergels völlig erfüllt. Hierbei übt das Wasser auf die Seitenflächen der einzelnen Geschiebemergelschollen den vollen hydrostatischen Druck aus, der beispielsweise bei einer Spaltentiefe von 3,0 m auf den Wert von

\[
\frac{\gamma_w \cdot h^3}{2} = \frac{1 \cdot 3^2}{2} = 4,5 \text{ t/m}^2
\]

ansteigen kann. Zum anderen ist mit der Wasserüberflutung des Spaltensystems eine Raum-

c) Mitwirkung des Klimas

Die zerstörende Tätigkeit des Grundwassers wird noch wesentlich verstärkt durch die Mitwirkung extremer Temperaturschwankungen. Insbesondere die im negativen Temperaturbereich sich abspielenden Vorgänge sind von großem Einfluß auf die morphologische Umgestaltung des Steilufers. Dabei sind zwei grundsätzlich verschiedene Erscheinungen zu unterscheiden:

Die Betrachtungen zeigen also, daß das Grundwasser infolge seiner hydrostatischen und kryostatischen, den Strukturverband des Bodens auflockernden Druckwirkung und infolge der
Abb. 5 (oben). Als Kluft- und Gleitfläche ausgebildete Grenz-Mergelsandscholle (rechts) und Geschiebemergel (links) im Profil bei Station 25,0—50
Aufn. Ducker 10.10.1949

Abb. 6 (rechts). Aus der Kliffwand austretendes Grundwasser, das infolge der Auspüfung feinkörniger Bodenteilchen zur Bildung einer Höhlung führt, die bei genügender Größe zu nischen-artigen Abbrüchen Veranlassung gibt
Aufn. Ducker 28.1.1950
Abb. 7 (links). Auf einer vorgezeichneten Gleitfläche gelöste und im Abrutschen befindliche Bodenscholle
Aufn. Dücke 28.1.1950

Abb. 10 (unten). Über den Vorstrand gewaltete Schlamm-Mure bei Frostaufgang, die sich infolge übermäßig stärker, durch den Gefriervorgang bedingter Wassertonerreichung bildete
Aufn. Dücke Februar 1950
mit der Wasseraufnahme verbundenen Verminderung der Kohäsion und Erhöhung des Eigen-
gewichtes des Bodens ein wichtiger und wesentlicher Faktor des durch Schollenabbrüche ge-
kennzeichneten Steiluferrückganges ist.

d) Einwirkung des Meereswassers

Würde man sich das Brodtener Ufer nicht als Steilufer an der See, sondern als tiefen Ein-
schnitt in einer Moränenlandschaft vorstellen, so würde eine unter 45 Grad hergestellte Böschung
in verhältnismäßig kurzer Zeit in ihren eigenen Schuttmassen ertrinken. Nach Herausbildung
eriner flachen, natürlichen Böschung käme der Brodtener „Einschnitt“ zur Ruhe. Durch die stark
exponierte Lage des Brodtener Ufers innerhalb der Lübecker Bucht wird jedoch durch den Ein-
fluß des Meeres eine natürliche Böschungsbildung verhindert.

Dabei kann die Ostsee nur dann einen unmittelbaren Einfluß auf die Morphologie des
Steilufers nehmen, wenn durch stürmische Winde Wasserstandserhöhungen hervorgerufen wer-
den, die zu einer Überflutung des Strandes und damit zu einer Einwirkung auf die Kliffwand
führen. Stürmische, zumeist aus Nordost und Ost kommende Winde verursachen einen erheb-
lchen Wasserstau, dessen gestaltender Einfluß auf die Morphologie des Steilufers sich

a) in einer Materialverfrachtung und

b) in einer Abrasionswirkung
geltend macht. Hierbei werden zunächst die am Kliffuß angereicherten Absturzmassen von der
Brandung angegriffen, aufgearbeitet und durch den Küstenversatzstrom abtransportiert. Die
Geschwindigkeit, mit der das abgestürzte Schuttmaterial fortgeräumt wird, ist abhängig von
der Wasseraufnahmefähigkeit, der Durchlässigkeit und dem Ausmaß der Zerstörung und Ver-
nichtung der ursprünglichen Struktur und Textur der Bodenmassen. Größere, zusammen-
hängende Geschiebemergelschollen vermögen der Einwirkung der Brandung längere Zeit hin-
durch standzuhalten. Kleinere Schollen und Bruchstücke werden in der Brandung zu einzelnen
Geschiebemergelgeröllen umgeformt und nach und nach abgerollt. Je weitaus größer aber das
ursprüngliche Gefüge des abgerutschten Bodens durch die Faktoren der Atmosphärlien zer-
stört ist, desto schneller wird der Boden von der angreifenden See erfaßt und fortgeräumt, so
daß in verhältnismäßig kurzer Zeit der gewachsene Geschiebemergel des Kliffußes — völlig
reingewaschen — von der vollen Wucht der Brandung getroffen wird. Es entstehen dann meist
glatte, nach oben immer steiler werdende Abrasionsflächen, die das innere gleichflächenstrukturierte
Gefüge des Geschiebemergels deutlich hervortreten lassen. Dabei bilden sich gelegentlich auch
Schliffschichtkeilen heraus, die aber nur selten größeren Umfang erreichen, so daß eine den
Absturz fördernde Unterhöhlung des Kliffußes nicht stattfindet. Dagegen weisen die durch
Auskolkung lockerer Bodenarten (Sand und Schluff) und einzelner Geschiebe und Findlinge
entstandenen Höhlungen, die man als „Schwapplöcher“ bezeichnet, auf eine nennenswerte
morphologische Folgeerscheinung der Brandung hin. Sie können beträchtliche Ausmaße erreie-
chen, indem sie oft mehrere Meter tief in das Steilufer hineinragen und dabei zum Nach-
brechen der hangenden Schichten führen. Trotzdem kann aber gesagt werden, daß der un-
mittelbare Einfluß einer Wasserstandserhöhung in der Lübecker Bucht sich in der Hauptsache
auf die Forträumung des abgestürzten Bodens beschränkt und somit die Voraussetzungen für
ein weiteres Nachbrechen neuer Massen schafft, während der unmittelbare Einfluß auf den
Kliffrückgang nur gering zu sein scheint.

Eine besondere Bedeutung kommt der Brandungswirkung am submarinen Grund zu. Wie
entsprechende Versuche gezeigt haben (Abb. 11), wird ein vom Wasser bedeckter Geschiebe-
mergel mit einem Wassergehalt etwas unterhalb der Plastizitätsgrenze in seiner Oberflächen-
schicht unter Volumenzunahme völlig durchtränkt und durchwirbelt. Eine Bestätigung dieses
Versuchsvorgangs zeigen die Beobachtungen, die davon berichten, daß die aus dem Geschiebe-
mergel bestehende Abrasionsfläche eine schmierige, schlammige Oberfläche aufweist. Sobald
durch stürmische Nordostwinde das Wasser in stärkere Bewegung gerät, wird die oberflächlich
erweichte Schicht der Abrasionsfläche angegriffen, aufgearbeitet und fortgeführt. Durch die
Aufwirbelung der feinsten Tonteilchen nimmt das Wasser eine braungraue Färbung an, die
sich als mehr oder weniger breites Band vor dem Ufer kenntlich macht. Das Ergebnis dieser

\[
\text{Frostgefährlichkeitsgrad } \% = \frac{\text{Frosthebungsbetrag}}{\text{Frostbringenbetrag}} \times 100
\]

Abb. 9. Frosthebungsverlauf ungestörter Bodenproben aus dem Brodtener Ufer (Nr. 4, 15, 16, 20, 21, 22, 29, 30)
submaren Abrasion ist mithin die Freilegung neuer Oberflächen des Geschiebemergels, die damit erneut der Wasseraufnahme zugänglich und der Erweichung ausgesetzt sind. Mit der erfolgten Tieferlegung des Unterwasserstrandes geht ein Vorrücken der Mittelwasserstrandlinie gegen das Ufer im gleichen Maße einher.

![Diagram](image)

Abb. 11. Zeitlicher Verlauf der Schwellung des von Wasser überfluteten Geschiebemergels und Schluffes (unten) sowie Änderung des Wassergehaltes innerhalb der Bodenproben von Zentimeter zu Zentimeter (oben)

Neben der flächenhaften, tangentialen Abtragung des unmittelbar an die Uferlinie sich anschließenden Teiles des Meeres kommt es in der ufernahen Zone durch eine stärkere Erosionswirkung der Brandung, unterstützt durch die hydrostatische Druckwirkung in den spaltenreichen Schwächezonen des schollenartig zerstückelten Geschiebemergels, zur Herausbildung örtlich begrenzter submariner Kliffs von etwa einem halben Meter Höhe. Durch die Sogwirkung der rückströmenden Brandungswelle wird dabei das Kluftsystem des Geschiebemergels morphologisch besonders scharf markiert und hervorgehoben.

c) Der biologische Einfluß

Der biologische Einfluß auf die Abtragung des Steilufers ist nur gering. Es sei jedoch in diesem Zusammenhang auf die Mitwirkung des Menschen hingewiesen, soweit sich diese auf die Steinfischerei und Steinentnahme bezieht. Während die am Strand und in der ufernahen Zone vorkommenden großen Gesteinsblöcke als Wellenbrecher wirken und damit dem Steilufer einen gewissen Schutz bieten, bilden die auf der submarinen Abrasionsfläche liegenden Steine einen schützenden Panzer gegen die Erweichung und Abtragung des Geschiebemergels, womit die tangentielle Erosion der Plateauoberfläche weitgehend verhindert, zumindest aber
beträchtlich verzögert wird. Andererseits sei aber erwähnt, daß die in der Strandzone vorkommenden kleineren Geschiebe und Gerölle sehr leicht von der Brandung erfaßt werden und dabei, gegen die Uferwand geschleudert, aktiv die Abrasionswirkung der Brandung unterstützen und erhöhen.

6. Zusammenfassung und Stellungnahme zu den geplanten Schutzmaßnahmen

Schriftenverzeichnis

Pollenanalytische Untersuchungen an der inneren Lübecker Bucht

Von Heinz Schmitz

Der Zweck der vorliegenden pollenanalytischen Untersuchungen war es, Transgressionskontakte und damit ehemalige Strandlinien in den Ablauf der postglazialen Waldgeschichte einzuordnen, um auf diese Weise nicht nur ihr relatives Alter festzulegen, sondern auch einen Anhaltspunkt für ihre absolute Zeitstellung zu erhalten. Dadurch sollte ein Einblick in die Entwicklungsgeschichte des heutigen Ostseestrandes an der inneren Lübecker Bucht gewonnen und für das Brodtene Ufer im speziellen die Frage beantwortet werden, seit wann es im Abbruch gelegen hat.

Die bearbeiteten Bohrungen, die mit Ausnahme der Handbohrungen jeweils bis zum Diluvium niedergebracht wurden, liegen vom Priwall im Südosten bis zu den Haffwiesen bei Haffkrug im Norden. Außerdem wurde ein handgebohrtes Profil aus dem Kurauer Moor, rund 10 km landeinwärts, 12 km nördlich Lübeck, zum Vergleich herangezogen. Die Untersuchungen sind noch nicht abgeschlossen — insbesondere fehlt noch das Nordufer des Hemmelsdorfer Sees —, aber doch bereits soweit fortgeschritten, daß eine erste Mitteilung der Ergebnisse gerechtfertigt ist.

Um einen bequemeren Vergleich der einzelnen Abschnitte der verschiedenen Profile zu erreichen und eine zeitliche Einordnung zu erleichtern, sind die Diagramme in Pollenzonen eingeteilt. Unter Berücksichtigung der bisher aus Schleswig-Holstein vorliegenden pollenanalytischen Literatur (zu ersehen bei FIRBAS [1]) hat sich gezeigt, daß es möglich ist, die von SCHÖTRUPPF (6) in Holstein für die spätglazialen und älteren postglazialen Schichten aufgestellte und von OVERBECK und SCHNEIDER (4) in Niedersachsen bis zur Gegenwart ausgebaute Zoneneinteilung ohne wesentliche Änderungen für ganz Schleswig-Holstein zu übernehmen. Spätglaziale Zeiten sind von dem vorliegenden Material noch nicht bearbeitet worden, spielen auch für unsere Fragestellung keine Rolle. Die in Betracht kommenden Zonen sind von unten nach oben, so daß mit den ältesten begonnen wird, folgende:

V. Vorwärmezeit. Prähistorische Birkenzeit.
Diese Zone fällt archäologisch in das ältere Mesolithikum und liegt jedenfalls vor 7000 v. Chr.

Beginn mit der rationellen Pollengrenze der Hasel und der empirischen Pollengrenze1) des Eichenmischwaldes.
Teilweise fällt die Zonenanfangsgrenze etwa mit dem Schnittpunkt der fallenden Birkenkurve mit der steigenden Kieferkurve zusammen, jedoch sind Kurvenschnittpunkte immer viel mehr von rein lokalen Verhältnissen abhängig als Pollengrenzen und daher für die Abgrenzung der Zonen ungeeignet.
Kiefernvorherrschaft mit Pinus-Maximum.
Haselvertretung ständig zunehmend.
Zeitstellung: ebenfalls noch älteres Mesolithikum, etwa um 7000 v. Chr.

1) Absolute Pollengrenze einer Art: Zeitpunkt des ersten Auftretens des Pollens dieser Holzart.
Empirische Pollengrenze: Beginn der geschlossenen Kurve.
Rationelle Pollengrenze: Beginn des Kurvenanstiegs.
Zunahme des Eichenmischwaldes (EMW), Erscheinen von Erle und Linde, geschlossene Kurven dieser beiden Bäume jedoch erst gegen Ende der Zone.
Zeitstellung: noch älteres Mesolithikum, etwa 6500—5500 v. Chr.

Beginn mit der rationellen Pollengrenze der Erle, zugleich starker Anstieg des EMW, Pinus und Corylus fallend.
Zum Teil liegt etwa an der Abschnittsgrenze der Schnittpunkt der fallenden Kiefern- mit der steigenden EMW-Kurve.
Im Eichenmischwald sind Ulme und Linde stark beteiligt. Etwas später in Zone VIII erscheint die Esche in ziemlich geschlossener Kurve, gelangt aber nicht über geringe Prozentwerte hinaus.
Unterteilung in
VIII a mit 2. Corylus-Maximum und VIII b geschieden von Unterabschnitt a durch Corylus-Minimum.
Mit Beginn von VIII b Erlenanstieg auf Kosten des EMW.
Innerhalb des EMW Eichen-Zunahme und leichter Rückgang von Ulme und Linde.
In VIII a bereits erstes Auftreten vereinzelter Buchen- und auch Hainbuchen-Pollen, ab VIII b schon kurze Kurven der Buche mit 2 bis 3 v. H., die aber wieder verschwinden. Eine solche Buchen-Kurzkurve liegt um die Unterabschnittsgrenze VIII a/VIII b, eine zweite am Ende der Zone bzw. um die Zonengrenze VIII b/IX.
Zeitstellung: jüngeres Mesolithikum, etwa 5500—3000 v. Chr.

Beginn mit starkem Abfall von Ulmus und Tilia im Eichenmischwald.
Zeitstellung: Neolithikum, etwa 3000—1800 v. Chr.

Beginn mit dem Abfall der Haselkurve zu geringen Werten.
Buche noch in sehr kleinen Anteilen.
Zeitstellung: Bronzezeit, etwa 1800—600 v. Chr.

Beginn mit der empirischen Pollengrenze der Hainbuche und der rationellen Pollengrenze der Buche, wobei die rationelle Buchengrenze teilweise ein wenig später liegt, insbesondere in rasch gewachsenen Sedimenten, teilweise aber auch, vor allem im Nordosten des Landes (Ulsnis und Duvenstedt) etwas früher. Allerdings erreicht hier die Hainbuche sowieso keine geschlossene durchlaufende Kurve.
Der Beginn dieser Zone entspricht der Zeit des „Grenzhourokontes“ nach C. A. WEBER (8), d. h. der Grenze zwischen stärker zersetztem, älterem Hochmoorortf (Schwarztorf) und schwach zersetztem, jüngerem Hochmoorortf (Weißtorf).

In Zone XI sind zwei Buchengipfel deutlich zu unterscheiden. Die Hainbuchenwerte bleiben ziemlich gering.

Ein näheres Eingehen auf Zone XI liegt außerhalb der derzeitigen Fragestellung und ist an anderer Stelle erfolgt (Schmitz [5]).

Es ist klar, daß sich nicht in jedem Falle auf den ersten Blick die Zonengrenzen festlegen lassen. Insbesondere ist die Bestimmung der Zonengrenze IX/X und zum Teil auch VI/VII manchmal nicht einfach, vor allem dann nicht, wenn die Schichten sehr eng zusammengedrängt sind. Es gilt stets, alle Merkmale zu berücksichtigen und gegeneinander abzuwägen, um rein lokale Einflüsse und örtliche Besonderheiten nach Möglichkeit auszuschalten.

Als Beispiel für die Waldgeschichte und die Zoneneinteilung ist das Diagramm T 4 von Travemünde, Strand, in Abbildung 1a) wiedergegeben und als Fortsetzung für die jüngsten Zonen das Diagramm Sch 11 von Scharbeutz in Abbildung 2. Es reicht aber nur bis zum ersten Buchengipfel einschließlich, die spätere Zeit ist noch nicht mit eingetragen.

Eine Übersicht der bearbeiteten Profile gibt Abbildung 4. Soweit ein Nivellement vorliegt, sind die Profile in der Zeichnung auf NN bezogen, die Profile XI und VII sind entsprechend ihrer ungefähren Höhenlage eingeordnet, das Vergleichsprofil X aus dem Kurauer Moor ist bei rund 14 m Höhenlage über NN mit seiner Oberfläche in die NN-Linie eingetragen. In der Abbildung sind die Pollenzonen, soweit bisher untersucht, angegeben und ihre Grenzen durch gestrichelte Linien verbunden.

Eine Zusammenstellung der Tiefenlage der Transgressionspunkte und ihrer angenommenen Zeitstellung ergibt folgendes Bild (Abb. 4):

<table>
<thead>
<tr>
<th>Profil</th>
<th>Tiefenlage (m)</th>
<th>Zeitpunkt (v. Chr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 1</td>
<td>20,38</td>
<td>5300 v. Chr.</td>
</tr>
<tr>
<td>K 10</td>
<td>13,89</td>
<td>4700 v. Chr.</td>
</tr>
<tr>
<td>T 4</td>
<td>10,83</td>
<td>4500 v. Chr.</td>
</tr>
<tr>
<td>T 3</td>
<td>8,94</td>
<td>4500 v. Chr.</td>
</tr>
<tr>
<td>Sch 11</td>
<td>8,09</td>
<td>4000 v. Chr.</td>
</tr>
<tr>
<td>S 12</td>
<td>7,95</td>
<td>nicht feststellbar</td>
</tr>
</tbody>
</table>

Es besteht also keine unbedingte Parallelität zwischen Tiefenlage und Zeitpunkt der Transgression. Es hängt jeweils von den örtlichen Bedingungen, die wir nicht kennen, ab, ob ein Profilpunkt sogleich transgrediert wird, wenn der Meeresspiegel die gleiche Höhenlage wie der Profilpunkt erreicht hat, oder ob die Transgression erst später erfolgt, wenn nämlich die Überflutung durch eine zwischengelagerte ältere Geländewelle oder einen Strandwall noch zurückgehalten wird. Wir haben es nicht mit einer Flachküste zu tun, an der die ansteigende See eine allmähliche und gleichmäßige Transgression hervorrufen kann, sondern mit einer Küste mit beweglichen Geländeformen, die schon auf kurze Entfernung erhebliche Unterschiede in der Transgressionsmöglichkeit bedingen können. Das bedeutet aber, daß wir die Transgressionstiefe an einem gegebenen Profil noch nicht ohne weiteres mit der Höhe des Meeresspiegels zu der betreffenden Zeit gleichsetzen dürfen. Es ist einseitig möglich, daß die See nur mit wenigen Zentimetern oder Dezimetern Wasserstand über die Transgressionsstelle eingebrochen ist, sie kann in einem anderen Falle aber auch gleich mit einigen Metern Wasserhöhe die Überflutung vollzogen haben. Solange wir die genauen Verhältnisse an jedem Transgressionskontakt nicht kennen, können wir hierüber nichts Sicheres feststellen. Erst die Untersuchung möglichst zahlreicher Kontakte auf engem Raum wird es uns erlauben, zuverlässigere Aussagen über die Beziehung der Tiefenlage des Kontaktes zur jeweiligen Höhe des Meeresspiegels zu machen.

9) Legende zu den Darstellungen in Abbildung 5.
10) Die Zahlen sollen selbstverständlich keine Festlegung auf die Jahrhunderte sein. 5300 v. Chr. heißt also nur: kurz nach Beginn der mittleren Wärmezeit, deren Anfang auf 5500 v. Chr. angesetzt wird, und die Datierung der Transgression am Kühlbroktal auf 4700 v. Chr. bedeutet wieder nur: kurz vor der Transgression bei Travemünde, die auf ungefähr 4500 v. Chr. eingeschätzt wird.
11) Bei Profil S 12 wurde ein Eichenwaldboden transgrediert, aber keine organogenen Ablagerungen, daher ist eine Pollenanalyse nicht möglich.
Wie verschieden die örtlichen Verhältnisse in nächster Nachbarschaft sein können, zeigt deutlich der Vergleich der beiden Traveminder Profile T 4 und T 3, von denen T 4 unmittelbar an der heutigen Wasserlinie und T 3 nur rund 90 m weiter landeinwärts unter dem Strandwall liegt. Trotz fast 2 m Niveauunterschied der Transgressionskontakte ist die Überflutung zur gleichen Zeit erfolgt. Eine irgendwie wesentliche Aufarbeitung oder Abtragung des liegenden Torfes hat bei der Transgression offenbar nicht stattgefunden.

In beiden Profilen sind über dem Geschiebemergel Sedimente eines Süßwasserbeckens festgestellt, bei dem zuletzt Kalkgyttja unmittelbar von Bruchwaldtorf, der in den untersten Schichten zur Zeit

Abb. 3. Diagramm der Nichtbaumpollen von Profil Sch.11. Entsprechend Abbildung 2 (S. 38)

Abb. 2 (S. 38). Pollendiagramm Sch 11. Haffwiesen bei Scharbeutz, Nordende von Scharbeutz, etwa 250 m hinter dem Wilhelmienbad in Richtung Haffkrug, ungefähr 30 m westlich der Landstraße. Meßtischblatt Süsel, Nr. 1930. Planzeigerwerte r 18 440 h 89 630. Oberfläche + 0,13 m NN. Marine Sedimente (Spülsaum) ab — 8,09 m NN. Das wiedergegebene Profil reicht nur bis zum 1. Buchengipfel einschließlich.
seiner Entstehung noch ein sehr nasser Bruchwald mit viel offenen Wasserlachen gewesen ist, überlagert wird. Profil T 3 erweist sich durch die höhere Lage der Geschiebemergeloberkante (2,74 m höher als bei T 4), die geringere Dicke der Süßwassersedimente und die größere Mächtigkeit des Bruchwaldtorfes als weiter auf dem alten Uferrand gelegen aus. Das ehemalige Süßwasserbecken muß aber auch seewärtig durch eine Geländewelle abgeschlossen gewesen sein.

Wenn nun das seewärtige Ostufer des Gewässers nur 2 m höher gewesen ist als der Transgressionshorizont bei T 4, so ist es ohne weiteres verständlich, daß bei T 4 und T 3 die Überflutung zur gleichen Zeit stattgefunden hat, da sie ja erst einsetzen konnte, wenn die weiter außen gelegene Barriere überschwemmt wurde, d. h. also, wenn der Wasserspiegel mindestens 2 m über dem Niveau von T 4 stand. Die schon ab 30 cm vor dem Transgressionskontakt zeitweilig vorhandenen dünnen Schlidklagen in Profil T 4 sind die Auswirkungen von Sturmfluten, die bereits das Ostufer überspült haben.

In genau der gleichen Weise wie hier ein Seeufer kann auch eine andere Geländeerhöhung oder ein weiter draußen gelegener Strandwall wirken. Wird eine solche Barriere im Laufe der Transgression überflutet oder durchbrochen, so kann es in ihrem Hinterland durchaus zu einem plötzlichen Wasseranstieg von mehreren Metern kommen. Diese Überlegung zeigt aber auch, daß sich aus einem Transgressionspunkt immer nur auf die Zeit schließen läßt, zu der an dieser Stelle die Transgression erfolgt ist, nicht aber darauf, wann die Tiefenlinie dieses Transgressionskontaktes in einem weiteren Gebiet überschwemmt worden ist. Die ört-

![Diagram](image-url)
lichen Verhältnisse sind sicher nicht auf einer längeren Küstenstrecke für die einzelne Tiefenlinie gleich und können daher von einem Punkt aus nicht verallgemeinert werden.

Ähnlich liegen die Dinge bei der zeitlichen Festlegung einer Strandwallbildung. Hinzu kommt, daß sich die Rückseite eines Strandwales noch lange Zeit mit oder ohne Anstieg der Wasserhöhe in das Hinterland vorschieben kann und das insbesondere bei Meeressanstieg und Erhöhung des Strandwales tun wird.

Sch 13 und S 12 sind Profile auf dem landseitigen Abfall des Strandwales, können also nur ein Teilstück der Aufschüttung bringen. Dasselbe gilt in noch höherem Maße für K 10.

Bei S 13 an der Bekündung bei Haffkrug ist es genau wie bei T 4 möglich, daß der Scheitelpunkt des Strandwales etwas weiter landeinwärts gelegen hat und nicht mehr mitgetroffen worden ist. Trotzdem läßt sich sagen, daß die Aufschüttung eines Strandwales von fast

Abb. 5. Legende zu den Abbildungen 1 bis 4

9 m Höhe bei gleichbleibendem Wasserstand nicht zu erklären ist. Es muß während der Bildungszeit ein weiterer bedeutender Wasseranstieg vor sich gegangen sein. Dasselbe gilt auch für die Sandauflagerung am Priwall. Aus der Datierung der Strandwallbasis bei Profil T 4 läßt sich also schließen, daß auch nach 2000 v. Chr. noch eine erhebliche Niveauänderung des Meeres erfolgt ist.

also der Strandwall bereits soweit ausgebildet gewesen sein, daß er das Haffwiesengebiet abschloß, ohne daß selbstverständlich schon die heutige Höhe erreicht gewesen sein müßte und eine weitere Erhöhung und Verbreiterung damit ausgeschlossen wäre. Profil VII, etwas weiter vom Strandwallscheitel entfernt zwischen Sch 11 und S 12, weist allerdings den Torfbeginn erst um etwa 2000 v. Chr. auf, jedoch liegt der Torf auf einem späteren Spülsaum oder einer rückwärtigen Verbreiterung des Strandwales.

In dem Flachmoortorf des oberen Profils Sch 11 sind an einigen Stellen Auswirkungen von Sturmfluten festzustellen: ein Spülsaum zwischen 142 bis 136 cm, eine dünne Tonschicht bei 97 bis 96,5 cm und schließlich ein starker toniger, fast mudderartig zersetzter Torf von etwas hellerer Farbe mit leicht violetttem Schimmer in frischem Zustand zwischen 83 und 52 cm.

Der zuletzt genannte, sehr tonige Torfabchnitt, der fast genau der Pollenzone X entspricht, ist offensichtlich während einer lange Zeit anhaltenden Überflutung mit folgendem Brackwasserstadium gebildet worden. Wie das Diagramm der NBP (Abb. 3) deutlich zeigt, sind bald nach der Überflutung Salzwiesen mit massenhaft Salzpflanzen aus der Familie der Chenopodiaceen entstanden, die allmählich durch zunehmende Ausüßung wieder zurückschreiten und schließlich ganz verschwinden. Der Erhaltungszustand der Pollen in diesem Teile des Profils ist schlecht, wie schon aus der sehr überhöhten Kurve des widerstandsfähigeren Kiefernpollens hervorgeht.

Wir können nun aber nicht die Flutmarken als Anzeiger des jeweiligen Standes des Meerespiegels auswerten. Wenn sie auch noch, da unterhalb des heutigen Ostseespiegels liegen, in die Zeit des Meeresanstiegs fallen, so können wir doch nicht entscheiden, ob die Überflutung infolge Überlaufs über den Strandwall oder aber, was wahrscheinlicher ist, infolge Durchbrechens des Strandwalls bei einer großen Sturmflut stattgefunden hat. Wir können nur feststellen, daß sich ab 50 cm unter NN keine Merkmale einer Überschwemmung mehr finden bis — 5 cm NN, von wo ab sich Sand und Kulturboden bis zur heutigen Oberfläche auf den Torf auflagern, offenbar als rückwärtige Verbreiterung des Strandwales. Nach der Centrospermenkurve zu urteilen waren die Salzwiesen etwa um die Zeit Chr. Geb. wieder verschwunden, d. h., bis dahin war die Ausüßung erfolgt.

Erst die weitere Untersuchung möglichst zahlreicher Transgressionskontakte kann uns über Ende oder Anhalten der Transgression bis in historische Zeiten Aufklärung verschaffen.

4) Bei MIKKELSEN (2) findet sich bereits eine gleichsinnige Kritik der TAPPERSchen Arbeit.
und uns dann auch erlauben, den zeitlichen Verlauf der Transgression kurvenmäßig darzustellen.

Aus den weiter landeinwärts gelegenen Bohrungen ist in Profil III vom Travemünder Kurpark ein Grundwasseranstieg um etwa 5 m, in Profil XI aus dem oberen Kühlbrokta 1 ein solcher von 5 bis 6 m abzulesen. Daß dieser Grundwasseranstieg bei Travemünde einige Zeit früher einsetzt als im Kühlbrokta 1, ist aus der verschiedenen Höhenlage leicht verständlich.

Speziell für das Brodtener Ufer läßt sich folgendes sagen:

Die erste festgestellte Transgression ist am Priwall etwa um 5300 v. Chr. auf —20,38 m NN erfolgt. Es handelt sich bei dieser ersten Überflutung wohl im wesentlichen um den alten Travelauf und dessen nähere Umgebung. Ob und wieweit dabei bereits die Südostseite des alten Brodtener Kliffs betroffen worden ist, läßt sich an Hand der bisherigen Bohrungen noch nicht beurteilen. Der heutige Travemünder Strand ist auf mindestens 9 m Tiefe etwa um 4500 v. Chr. von der See erreicht worden, spätestens seit dieser Zeit, wahrscheinlich aber weiter seewärts schon früher, hat das Brodtener Kliff auf der Travemünder Seite in seiner ganzen Ausdehnung im Abbruch gestanden. Auf der Nordwestseite des Brodtener Ufers, am Ausgang des Kühlbroktales, aber fast 100 m hinter dem heutigen Strandwall, hat die Transgression auf 13,89 m Tiefe etwa um 4700 v. Chr. begonnen. Seit rund 4700 v. Chr. spätestens hat also das Brodtener Kliff auch auf seiner ganzen Nordwestseite im Abbruch gelegen.

Zusammenfassung

Die Zonengliederung der niedersächsischen Pollendiagramme läßt sich auf Schleswig-Holstein übertragen. Die Zonen und ihre Abgrenzung sind auf Seite 34/35 beschrieben.

Eine Zusammenstellung der Transgressionskontakte und ihrer Datierung ist auf Seite 37 gegeben.

Ein einzelnes Transgressionsprofil gestattet nur eine rein lokale Aussage, aber nicht eine Verallgemeinerung auf die gesamte Tiefenlinie. Auch kann Transgressionstiefe und damaliger Meerespiegel nicht ohne weiteres gleichgesetzt werden. Für eine Datierung der Überflutung der einzelnen Tiefenlinien ist die Untersuchung möglichst zahlreicher Transgressionsstellen erforderlich.

Die Anlage des Strandwalls zwischen Scharbeutz und Haffkrug hat früher begonnen als diejenige bei Travemünde. Der Strandwall zwischen Scharbeutz und Haffkrug hatte zwischen 3000—2500 v. Chr. die Senke der heutigen Haffwiesen abgeschlossen.

Die Aufschüttung der Strandwälle bei Travemünde und vor den Haffwiesen und auch der Priwallnehrung war nur möglich bei steigendem Wasserstand.

Es liegen wesentliche Hinweise darauf vor, daß der Anstieg des Meeresspiegels noch nach 2000 v. Chr. angehalten und sich vielleicht bis in die jüngste Zeit ausgewirkt hat. Über etwaige Stillstands- oder Regressionsphasen läßt sich bisher nichts aussagen.

Spätestens seit etwa 4500 v. Chr. hat das Brodtener Ufer in seiner ganzen Ausdehnung im Abbruch gestanden.

Schriftenverzeichnis

Sedimentpetrographische Untersuchungen an der Küste der inneren Lübecker Bucht

Von Wolfgang Otto

I. Einleitung

II. Die Untersuchungen an der Küste zwischen Brodtener Ufer und Sierksdorfer Kliff

1. Die Strandgerölle

Einen ersten Hinweis geben die Strandgerölle. Unmittelbar vor den Kliffs und in ihrer nächsten Nähe sind diese zahlreich und groß, mit zunehmender Entfernung werden sie kleiner, bis sie schließlich in einigen Kilometern Abstand von den Kliffs vollständig fehlen. Wiederholtes Freilesen des Strandes von Steinen an der gesamten Bäderküste machte Geröllmessungen am Strand mit Aussicht auf zuverlässige Ergebnisse unmöglich. Deshalb wurden bei Niedrigwasser die freiliegenden Gerölle dicht unterhalb der Mittelwasserlinie zur Messung verwandt. Im Abstand von 1 km wurden jeweils die kleinsten Durchmesser (nur > 10 mm) aller Gerölle festgestellt, die in einem Quadrat von 25 mal 25 cm enthalten waren.

An den Punkten wurden folgende Messungen durchgeführt:

<table>
<thead>
<tr>
<th>Geröllmeßpunkte:</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Messungen:</td>
<td>54</td>
<td>75</td>
<td>80</td>
<td>100</td>
<td>10</td>
<td>33</td>
<td>61</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>

¹) Die Arbeit wurde im Geologischen Institut der Universität Kiel unter Anleitung von Herrn Prof. Dr. Weyl durchgeführt.
der Geröllgröße dürfte auf einen Abrasionsbereich unmittelbar westlich des Niendorfer Hafens schließen lassen, worauf später auch die Mineralzusammensetzung der Sande hinweist.

Aus den Geröllmessungen ergibt sich:

2. Das Fehlen von Strandgerölle in der Mittelzone des Strandes zwischen km 4 und 8,4 spricht dafür, daß eine Geröllzufuhr von See her offensichtlich nicht stattfindet.

3. Da Gerölle vom Kliff am Strand entlang verfrachtet werden, ist mit einem Sandtransport in gleicher Richtung zu rechnen.

2. Die Strandsande

a) Untersuchungsmethode

Für die Untersuchung der Sande mußten geeignete Methoden entwickelt werden, die auf den Erfahrungen anderweitiger Sanduntersuchungen aufbauen. Hierzu wurden zunächst siebzehn Einzelproben in dem Abschnitt zwischen Brodtener Ufer und Sierksdorfer Kliff entnommen. Sie wurden folgenden Untersuchungen unterzogen:

3. Optisch-mineralogische Untersuchung der schweren Minerale.

Zu 1.: Korngrößentrennung durch Sieben mit Siebsatz DIN 1171.

Zu 2.: Bestimmung des Anteils def spezifisch schweren Minerale. Auf Grund der an anderen Sedimenten gewonnenen Erfahrungen ist es zweckmäßig, die Feinsandfraktion von 0,2—0,1 mm Durchmesser der Untersuchung zuzuführen. Aus 2 g des Feinsandes werden mittels Bromoform in einem Scheidetrichter die Schwerminerale mit einem spezifischen Gewicht > 2,9 abgetrennt und ihr prozentualer Anteil durch Wägen bestimmt.

Zu 3.: Optisch-mineralogische Untersuchung der schweren Minerale. Da die spezifisch schweren Minerale sehr empfindlich auf Verwitterung und Transportauslese reagieren, ver sprechen ihre nähere Untersuchung besonders wertvolle Hinweise auf Herkunft und Umlagerungsvorgänge der Sande. In der Voruntersuchung traten folgende Minerale für die Auswertung in hinreichender Menge auf:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Erz</td>
<td>5,20</td>
</tr>
<tr>
<td>Magnetit</td>
<td></td>
</tr>
<tr>
<td>Ilmenit</td>
<td>4,75</td>
</tr>
<tr>
<td>Granat</td>
<td>3,75</td>
</tr>
<tr>
<td>Hornblende</td>
<td>3,25</td>
</tr>
</tbody>
</table>

*) „Median“ des angelsächsischen Schrifttums.

Das Untersuchungsergebnis ist in Abbildung 3, Figur B und C, dargestellt. Figur B enthält in der ausgezogenen Kurve die Werte der „mittleren Korngröße“, in der gestrichelten Kurve den Gehalt an Schwermineralen. In der Darstellung wird deutlich, daß die Sande bis zu einer Entfernung von 5 km vom Brodtener Ufer verhältnismäßig grob sind und dann innerhalb eines Kilometers recht fein werden. Mit Annäherung an das Sierksdorfer Kliff nimmt die „mittlere Korngröße“ wieder zu, von km 8 bis 10,5 nur schwach und dann recht stark, im ganzen also erst in viel geringerer Entfernung vom Sierksdorfer Kliff als am Brodtener Ufer.

Der Gehalt an Schwermineralen schwankt mit Entfernung vom Brodtener Ufer zunächst erheblich; sehr schwermineralreiche Sande wechseln mit schwermineralarmen. Dies ist das Ergebnis zufälliger örtlicher Sonderungsvorgänge, die bis zur Bildung reiner Schwermineralseifen führen, wie man sie gerade in der Nähe des Brodtener Ufers vielfach beobachten kann. Ab km 6 bleibt der Gehalt an Schwermineralen konstant sehr niedrig; erst ab km 8 steigt er wieder langsam und ständig gegen das Sierksdorfer Kliff hin an.

Korngrößenverteilung und Schwermineralgehalt weisen darauf hin, daß die Sande von den Kliffs her am Strande bzw. vor dem Strande entlang wandern. Hierbei bleiben Körner größeren Gewichtes, also größere bzw. spezifisch schwere, in der Nähe des Kliffs liegen, und nur die feinen und spezifisch leichten Sandkörner werden bis in den kliffernen, mittleren Strandabschnitt, km 6—8, verfrachtet. Während mit den Geröllen eine Belieferung des Strandwalls vom Brodtener Ufer bis km 4,0 und vom Sierksdorfer Kliff bis km 9,6 nachzuweisen war, lassen Kornverteilung der Sande und ihr Schwermineralgehalt den Einfluß der Kliffs bis km 6 bzw. 8 erkennen.

Zur weiteren Einengung der Liefergebiete können nun die Anteile der verschiedenen Schwerminerale an der Schwermineralfraktion des Feinsandes herangezogen werden. Sie sind in

[Diagramm mit den entsprechenden Werten für Korngrößen und Schwermineralgehalt]
Abbildung 3, Figur C, zur Darstellung gekommen; die einzelnen Werte wurden ebenfalls zu Kurven verbunden. Verwendung fanden die Anteile von Erz, Granat und Hornblende.

Die übrigen Schwerminerale wurden ebenfalls bestimmt, doch nicht dargestellt, da sich aus ihnen keine für die vorliegende Fragestellung wichtigsten Schlüsse ziehen ließen.

Der Erzanteil wurde gesondert von den durchsichtigen Mineralen ausgezählt und in Prozenten zu deren Gesamtmenge dargestellt.

Die Küste, 1 Heft 1 (1952), 1-158

Abb. 3. Untersuchung der Strandsande und Geröllmessungen zwischen Brodtenner und Sierksdorfer Kliff

Die Schwerminerale lassen also auch wie die Korngröße eine sehr enge Abhängigkeit in ihrer Verteilung von der Entfernung von den Kliffs erkennen. Das bedeutet aber, daß im weit überwiegenden Maße mit einer Herkunft der Sande von diesen Kliffs zu rechnen ist und daß eine Materialzufuhr von der offenen See her nicht oder nur geringfügig stattfindet.
Der Einfluss des Brodtener Ufers läßt sich mit Hilfe der angewandten Untersuchungsmethoden bis in den Raum zwischen km 6 und 7 nachweisen, während der des Sierksdorfer Kliffs zwischen km 8 und 7 noch festzustellen ist.

Die Einflussgrenze beider Kliffs in der Materiallieferung etwa bei km 7 ist insofern interessant, als somit die Werte für die Verfrachtungsentfernungen der Sande denen proportional wären:

<table>
<thead>
<tr>
<th>Verfrachtungsweg in km</th>
<th>für Gerölle:</th>
<th>für Sande:</th>
</tr>
</thead>
<tbody>
<tr>
<td>vom Brodtener Ufer</td>
<td>4,0</td>
<td>6,4</td>
</tr>
<tr>
<td>vom Sierksdorfer Kliff</td>
<td>3,2 ≈ 5,1</td>
<td>≈ 1,25</td>
</tr>
</tbody>
</table>

Bei km 2 spricht das erneute Ansteigen der im allgemeinen vom Brodtener Ufer her fallenden Kurven des Schwermineralgehaltes (Abb. 3, Fig. B) und des Granat- und Erzanteiles (Fig. C) ebenso wie die oben erwähnte Zunahme der mittleren Geröllgröße (Fig. A) für einen Abrasionsbereich westlich des Niendorfer Hafens.

III. Die Untersuchungen an der Küste zwischen Brodtener Ufer und Schwansee/Mecklenburg

Die Untersuchungen wurden in diesem Bereich nach der gleichen Methode durchgeführt wie die im Abschnitt Brodten—Sierksdorf. An der mecklenburgischen Küste konnten die Proben nur in größeren Abständen entnommen werden. Von den beiden kleinen Kliffs, den einzigen bis Schwansee, gelangten auch Geschiebemergelproben zur Untersuchung. Das Kliff bei km 6 hat bei einer ungefähren Länge von 300 m eine maximale Höhe von 6 bis 7 m, das bei km 6,5 ist nur etwa 70 m lang und 4 bis 5 m hoch. — Die genauen Probenpunkte sind aus Abbildung 1 ersichtlich.

Die Untersuchungsergebnisse sind in Abbildung 4 festgehalten. Figur A veranschaulicht die zu Kurven verbundenen Werte der „mittleren Korngröße“ und des Gehaltes an Schwermineralen. Die Korngröße nimmt vom Brodtener Ufer her stark ab, erreicht aber hart nördlich der Nordermole (Trave) wieder einen recht hohen Wert. Dann fällt die Kurve bis km 5 gleichmäßig ab, schwankt im Bereich der beiden Kliffs zwischen km 5 und 6,5 erheblich und hält sich dann bis zur Untersuchungsgrenze hin auf gleicher Höhe. Einen ähnlichen Verlauf
hat die Kurve für den Gehalt an Schwerminenralen, dessen Wert im unmittelbaren Anschluß an das Brodtener Ufer mit 28 % sehr hoch liegt. (In diesem Abschnitt konnten reiche Granat-Erz-Seifen mit bis zu 97 % Schwermineralanteil in der Feinsandfraktion festgestellt werden.) — Nach einem sehr steilen Abfall der Schwermineralkurve zeigt sie ebenfalls vor der Nordermole einen erneuten Anstieg. Sie erreicht bei km 2,5 ihr Minimum und hält sich dann — abgesehen von den wenig höheren Werten zwischen km 3 und 5 — ohne die Schwankungen im Kliffbereich mitzumachen, auf etwa gleicher Höhe bis Schwansee mit einer kleinen ansteigenden Tendenz.

Mit Sicherheit geben „mittlere Korngröße“ und Schwermineralgehalt lediglich Auskunft über einen Transport der Sande vom Brodtener Ufer her bis zur Travemündung, eventuell noch bis vor den Priwall. Die hohen Werte beider Kurven vor der Nordermole (Probe T 5) dürften ihre Ursache in Aufspüllungen von Baggergut in diesem Gebiet haben, die außerdem noch am Travemünder Strand zwischen den Proben T 3 und T 4 stattfanden.

Figur B gibt die Anteile an der Schwermineralfraktion des Feinsandes wieder. Auch hier variieren Granat und Hornblende gegensinnig, Granat und Erz gleichsinnig. Im unmittelbaren Anschluß an das Brodtener Ufer sind Granat und Erz gegenüber Hornblende stark vertreten, nehmen aber dann schnell zugunsten der Hornblende ab und erreichen am Priwall bei km 2 ihr Minimum, dem ein Maximum an Hornblende entspricht. Wie der oben erwähnte Gehalt an Schwerminenralen lassen auch Granat und Erz in der Schicht zwischen km 3 und 5 eine Zunahme erkennen. Ab km 5 halten sich die Werte für Granat ziemlich konstant zwischen 30 und 40 %, die für Hornblende zwischen 40 und 50 %; der Erzanteil geht dem des Granates parallel, steigt aber gegen Ende des untersuchten Abschnitts leicht an. Dieser Anstieg und die geringfügige Abnahme an Hornblende allein dürften kaum zu dem Schluß berechtigen, daß die Sande von der mecklenburgischen Steilküste bei Klütz-Höved in Richtung auf den Priwall wandern. Hierfür können eher die Schwankungen sämtlicher drei Schwerminerale im Bereich des Kliffs bei km 6,5 und 6 als Beweis herangezogen werden. Wenn den von Mecklenburg her anwandernden Sanden mit etwa 38 % Granat und 47 % Hornblende in der Feinsandfraktion bei Punkt M 6 aus dem Geschiebemergel des Kliffs Material mit 20 % Granat und 62 % Hornblende in der gleichen Fraktion zugeführt wird, muß zunächst an dieser Stelle der Gehalt an Granat im Strandsand sinken (31 %) und an Hornblende steigen (55 %). Absolut betrachtet ist der Gehalt an Granat (natürlich ebenfalls an Hornblende) vom Kliff her erhöht worden. Dies tritt allerdings erst leewärts bei M 5 in Erscheinung, wo der unmittelbare Einfluß der Materialnachlieferung vom Kliff fehlt und infolge des schnelleren Hornblendeabtransportes der Granat angereichert wird. Durch erneute stärkere Sandzufuhr am Kliff M 4 aus dem Geschiebemergel (Granat 17 % und Hornblende 63 %) sinkt abermals der Granatgehalt und nimmt die Hornblende zu. In Richtung auf den Priwall tritt dann wiederum eine Granatanreicherung auf Kosten der Hornblende ein. Erst nach km 4 nimmt Granat ab und erreicht bei km 2 sein Minimum, dem ein Hornblende-Maximum entspricht.

IV. Die Untersuchungen an den Kliffs

Von den untersuchten Kliffs werden in tabellarischer Übersicht die Korngrößenverteilung, der Schwermineralgehalt sowie dessen Zusammensetzung für die Geschiebemergel- und Schmelzwassersand-Proben und für die Sande am Fuße der Kliffs aufgeführt.

1. Brodtener Ufer

<table>
<thead>
<tr>
<th>Probe</th>
<th>Korngr.-Verteilung:</th>
<th>Schwermineralgehalt:</th>
<th>Erz:</th>
<th>Hornbl.:</th>
<th>Granat:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK 1</td>
<td>I—V 18,9 %</td>
<td>0,6 %</td>
<td>65 %</td>
<td>65 %</td>
<td>12 %</td>
</tr>
<tr>
<td></td>
<td>VI 10,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 70,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 2</td>
<td>I—V 19,5 %</td>
<td>0,7</td>
<td>47</td>
<td>67</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>VI 11,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 69,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 3</td>
<td>I—V 19,2 %</td>
<td>1,6</td>
<td>78</td>
<td>70</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>VI 10,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 69,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 4</td>
<td>I—V 3,4 %</td>
<td>0,8</td>
<td>67</td>
<td>62</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>VI 3,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 93,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 5</td>
<td>I—V 19,0 %</td>
<td>0,8</td>
<td>78</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>VI 13,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 67,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 6</td>
<td>I—V 21,9 %</td>
<td>0,8</td>
<td>66</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>VI 12,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 65,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 7</td>
<td>I—V 14,8 %</td>
<td>0,8</td>
<td>47</td>
<td>54</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>VI 8,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 76,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geschiebemergel-Mittelwerte:

- Schwermin.: 0,9%
- Erz: 64%
- Hornbl.: 62%
- Granat: 19%

b) Schmelzwassersand:

<table>
<thead>
<tr>
<th>Probe</th>
<th>Korngr.-Verteilung:</th>
<th>„m. Korngr.“:</th>
<th>Schwermineralgehalt:</th>
<th>Erz:</th>
<th>Hornbl.:</th>
<th>Granat:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK 4</td>
<td>I—V 18,0 %</td>
<td>0,10 mm</td>
<td>0,4 %</td>
<td>26 %</td>
<td>62 %</td>
<td>18 %</td>
</tr>
<tr>
<td></td>
<td>VI 33,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 48,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK 5</td>
<td>I—V 35,3 %</td>
<td>0,13 mm</td>
<td>0,5</td>
<td>29</td>
<td>73</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>VI 43,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII 21,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schmelzwassersand-Mittelwerte:

- Schwermin.: 0,5%
- Erz: 28%
- Hornbl.: 67%
- Granat: 16%

c) Strandsand vom Fuße des Kliffs:

<table>
<thead>
<tr>
<th>Probe</th>
<th>„mittl. Korngr.“:</th>
<th>Schwermineralgehalt:</th>
<th>Erz:</th>
<th>Hornbl.:</th>
<th>Granat:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK 1</td>
<td>0,77 mm</td>
<td>2,7 %</td>
<td>116 %</td>
<td>51 %</td>
<td>30 %</td>
</tr>
<tr>
<td>BK 2</td>
<td>0,58</td>
<td>5,0</td>
<td>185</td>
<td>37</td>
<td>46</td>
</tr>
<tr>
<td>BK 3</td>
<td>0,34</td>
<td>1,8</td>
<td>52</td>
<td>63</td>
<td>18</td>
</tr>
<tr>
<td>BK 4</td>
<td>0,51</td>
<td>4,8</td>
<td>58</td>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td>BK 5</td>
<td>0,37</td>
<td>0,9</td>
<td>57</td>
<td>72</td>
<td>21</td>
</tr>
<tr>
<td>BK 6</td>
<td>0,34</td>
<td>1,6</td>
<td>42</td>
<td>60</td>
<td>26</td>
</tr>
<tr>
<td>BK 7</td>
<td>0,34</td>
<td>9,6</td>
<td>92</td>
<td>27</td>
<td>58</td>
</tr>
</tbody>
</table>

Mittelwerte der Sande vom Klifffuß:

- Erz: 3,8%
- Hornbl.: 86%
- Granat: 49%
Die Untersuchung der Geschiebemergel zeigt, daß alle Proben in ihrer Korngrößenverteilung, im Schwermineralanteil und dessen Zusammensetzung (Erz, Granat, Hornblende) der Feinsandfraktion (VI = 0,2—0,1 mm) untereinander recht ähnlich sind. Im Durchschnitt besteht der Geschiebemergel an der gesamten Küste der inneren Lübecker Bucht als Lieferant für die Strandsande zu 30 % aus Material > 0,1 mm. In der Feinsandfraktion enthält er durchschnittlich 0,8 % Schwerminerale; im Mittel sind Erz zu 59 %, Hornblende zu 62 % und Granat zu 20 % vertreten.

Die am Brodtener Ufer untersuchten Schmelzwassersande sind im Gehalt an Hornblende und Granat (67 % bzw. 16 %) dem Geschiebemergel sehr ähnlich. Der Erzanteil ist allerdings mit nur 28 % bedeutend geringer.

V. Zusammenfassung

Sedimentpetrographische Untersuchungen an der Küste der inneren Lübecker Bucht ergaben, daß die Strandsande vom Brodtener Ufer, vom Sierksdorfer Kliff und von den Kliffs an der mecklenburgischen Küste bzw. von deren submarinen Abrasionsflächen stammen.

Am Strandwall zwischen Sierksdorf und Niendorf ließ sich Sandlieferung vom Sierksdorfer Kliff auf eine Entfernung von 4,5 km bis Scharbeutz, vom Brodtener Ufer auf eine Entfernung von 7 km ebenfalls bis Scharbeutz nachweisen.

Im Gebiet östlich des Brodtener Ufers reicht der Einfluß des Brodtener Ufers bis in eine Entfernung von 2 km an das Westende des Priwall. Die Strandsande östlich des Priwall werden mit großer Wahrscheinlichkeit von der mecklenburgischen Küste geliefert.

Für Sandzufuhr aus dem Untergrund der Ostsee gaben die Untersuchungen keine Hinweise. Diese Feststellung stimmt mit dem Ergebnis der Seegrundkartierung (Rück [7]) überein.

Schriftenverzeichnis

Karten
Meßtischblatt 1930, Süssel
Meßtischblatt 2030, Schwartau
Meßtischblatt 2031, Travemünde
Seegrundkartierung der Lübecker Bucht
Von Klaus-Wolfgang Ruck

Für die Klärung der Frage, wo das Abbruchmaterial vom Brodtener Ufer lagert, ob es in die See hinausgeführt oder am Strande sedimentiert wird, wurde eine Seegrundkartierung der Lübecker Bucht durchgeführt. Es sollte dabei die Grenze der Sand- und Schlickverteilung erfaßt und festgelegt werden.

Im einzelnen zeigt das Sandgebiet noch einen Wechsel zwischen Zonen mit feinem und Zonen mit grobem Material, der von der Neigung des Meeresbodens abhängt. Das feine Material liegt auf relativ steilen Hängen, während das grobe Material auf Hängen mit flachem Gefälle anzutreffen ist.

Bestandteile des Schlicks sondern sich während der Abrasion aus, die organischen dagegen liefert fast ausschließlich das Meer selbst.

Die Grenze der Einwirkung der Wellen auf den Grund dürfte mit der durchschnittlichen Wassertiefe der Schlick-Sandgrenze zusammenfallen, also in der Lübecker Bucht bis etwa 15 bis 16 m reichen. Es kommen hierfür überwiegend die kustennahen Teile in Frage. Stärkere Strömungen treten ebenfalls nur in der Küstenzone auf. Die Hauptmaterialverfrachtung geht in den Sturmperioden vor sich, da in dieser Zeit die mobilisierenden und verfrachtenden Kräfte naturgemäß am stärksten sind und die größte Reichweite haben. In der Lübecker Bucht ist also außer der küstenparallelen Verfrachtung nur eine seewärts gerichtete mit abnehmender Komponente der Korngrößen vorhanden.

Schriftenverzeichnis

1. Der Werdegang des Priwall

Demnach war die breite Wasserfläche der Pötenitzer Wiek ursprünglich zweigeteilt. Drei weitere Bohrungen, die um Kriegsbeginn nahe der genannten Stelle bis 100 m hinuntergingen, bestätigten diese Tatsache.

Die ehemalige Insel muß das Wasser der Trave in die Gegend von Alt-Travemünde gelenkt haben. Von hier aus ergoß sich der Fluß in das Meer, wobei seine Mündung offenbar am Leuchtenfeld lag und hier versandete. Das nimmt auch REHDER (7) an.

In diesem Zusammenhang dürfte nunmehr klar werden, warum die nacheiszeitlichen Ablagerungen gerade bei Alt-Travemünde bis zu 30 m unter NN hinabreichen, wie FRIEDRICH (3) in einer Reihe von Bohrungen feststellte. Der Querschnitt der Trave war eingeengt. Auf der einen Seite faßte der Kern des Priwall die Wassermassen ein, und auf der anderen weisen Bohrungen der jüngsten Zeit gleich einwärts beim Sportplatz schon 2 m unter NN einen harten eiszeitlichen Lehm auf und weiter abwärts eine ältere Bohrung beim Warmbad unfern der Wurzel der Nordermole bei 5,40 m Geschiebemergel, der beim nahen Kurhaus fast die Oberfläche erreicht und sich dann am Kalvarienberg heraushebt.

Wenn das Wasser der Trave die Enge zwischen Priwallkern und dem Geschiebemergel auf der Travemünder Seite passierte, mußte es erfahrungsgemäß stärker in die Tiefe arbeiten, wozu noch das Hin- und Herfluten, namentlich bei Stürmen, beitrug. Derart entstand hier das typische Bild einer „Strömungsrinne“, wie wir sie bei ähnlichen Situationen vielfach an der Ostsee antreffen.

Aus dem Rahmen der Tiefe von 30 m fällt jedoch gegenüber der Vorderreihe ein Loch heraus, das FRIEDRICH (3) dort bei der Villa Potente unfern des Kohlenhofs bis gut 50 m unter Mittelwasser nachwies und das seither nochmals festgestellt wurde. Es hat viel Kopferzerbrechen verursacht. Zuerst wurde es als eine subglaziale Auskolkung angesprochen und dann mit Hilfe von Toteis erklärt, das hier beim Schwinden des Inlandeises stockengeblieben
sei. Im vorliegenden Falle scheint mir jedoch eine dritte Erklärung gerade in Verbindung mit der Strömungsrinne näher zu liegen, nämlich der Durchbruch des hier gar nicht so tiefen Grundwassers. Unter dem festen Kern des Priwall steht ein Stockwerk bei 50 m unter NN an*).

Der feste Kern unter dem Priwall hat naturgemäß nicht nur die Mündung der Trave, sondern den gesamten Aufbau des Priwall überhaupt stärker beeinflußt. Wenn FRIEDRICH (2) die Ansicht vertrat, der Priwall sei namentlich an der Seeseite vom Brodtener Ufer her aufgeschüttet, so hat REHDER (7) bereits 1898 unter Erwähnung einer Reihe von Einzelheiten darauf hingewiesen, er sei von der Mecklenburgischen Küste her entstanden. Ich selber neigte bis 1910 der FRIEDRICHschen Ansicht zu, schrieb aber seit 1912, daß die Lage der Trave-mündung an der Westseite des Priwall auf Anlandungen hinweise, die von Osten geschehen.

Diese Ansicht schließt nicht aus, daß die See zeitweise den schmalen Hals des Priwall durchbrach und der Priwall abermals, wie wir es bereits bei seiner frühesten geologischen Formung kennenlernten, eine Insel wurde, wenn auch in einem anderen Sinne.

Eine eingehende Untersuchung ergab, daß die älteste historische Urkunde von 1226 den Priwall unzweideutig als Insel aufführt. Dann nennen ihn zwei von 1247 und 1253 eine Ortlückigkeit. Nunmehr aber bezeichnen sie ihn, mit einer Ausnahme von 1306, fortlaufend 1286, 1300, 1307, 1311 und 1318 als Insel, wobei zuletzt geradezu von einem festen Begriff die Rede ist. In der folgenden Zeit aber, 1332 und 1377, wird dem Priwall eine geographische oder andere Bezeichnung nicht mehr beigefügt.

Alle diese Eingriffe von Menschenhand veränderten im Laufe weniger Jahrzehnte Gestalt und Gesicht des Priwall, aber auch die Zusammensetzung seines Erdreichs derart grundlegend, daß kaum ein Quadratmeter unberührt blieb, und der Eindruck einer schmalen und niedrigen Nehrung, wie er bis 1900 bestand, für immer verloren ging.

2. Die Strandwälle nördlich vom Hemmelsdorfer See

Mit der geschichtlichen Entwicklung des Priwall, des Travemünder Strandes und der Plate vermögen wir den Rückgang des Brodtener Ufers in seinen Einzelzügen jedoch noch

*) Derartige Durchbrüche von Grundwasser sind in der Gegend von Lübeck mehrfach nachweisbar, nicht nur an Hand von Bohrungen, die bei der Altenfahre niedergingen, sondern wir erleben im Dezember 1900 beim Aushub des Kuhlenkampkais tatsächlich einen derartigen Durchbruch, der mit großer Vegemenz eine Decke von 4 m Geschiebemergel durchstieß und von so starker Kraft war, daß sich das Loch monatelang nicht verstopfen ließ und noch heute Reparaturen an der dortigen Kaimauer verursacht.
nicht aufzuhellen. Diese erkunden wir erst, wenn wir auch die Ostseite des Brodtener Ufers studieren. Ehe wir uns aber dorthin begeben, wandern wir zum Pelzerhaken, der uns einen lehrreichen Wink gibt.

Vor seine Außenwerd legt sich eine breite Sandmasse, die sich zur See hin scharf abhebt. Sie wandert nach Westen und verkörpert dabei eine von der Strömung des Wassers bestimmte „Triftfläche“, die nach Südwesten mit ihrem natürlichen Aufschüttungswinkel in Gestalt einer „Triftböschung“ abfällt.

Auch vor der Westzone des Brodtener Steinriffs ist nördlich von Niendorf eine solche Triftböschung erkennbar und lenkt unsere Aufmerksamkeit darauf, daß wir die heutigen Tiefenlinien nicht ohne weiteres als Ergebnis einer Abtragung des Steinriffs ansehen dürfen, so in unserem Falle nicht etwa die von 20 m.

Demgegenüber fehlen auf der Ostseite des Steinriffs Triftfläche und Triftböschung oder sind nur schwach entwickelt. Hier greift in den Prozeß einer ruhigeren Ablagerung das Mündungswasser der Trave hinein, das seeauswärts und landeinwärts hin- und herflutet und ausgleichend wirkt und neben Zufuhren, die von der See kommen mögen, die einst sicher vorhandenen tieferen Flächen mit Sinkstoffen auffüllt und dabei die feineren Züge des Bodens einbezieht.

Beim Rückgang des Brodtener Ufers scheint es dann nach einer gewissen Zeit zu einem Stillstand in den Ablagerungen gekommen zu sein, woraufhin von beiden Seiten her die Andrift von Strandmaterial ziemlich plötzlich wieder kräftig zunahm und sich in zum Teil erstaunlich breiten Placken vor die älteren Strandwälle legte, bis schließlich die Bogen flacher und flacher wurden und in den heutigen Küstenverlauf zwischen Timmendorf und Niendorf übergingen, jedoch unter mancherlei Abänderungen. Im großen und ganzen lag die Trennungslinie zwischen den östlichen und westlichen Strandwällen in der Achse des heutigen Tatergrabens.

Bei der Verlandung blieb lange Zeit die große Schilfzone frei, die uns in der Gegend der Dwerbek nahe dem Ostrand der Niederung begegnet. Hier sorgt noch heute die Aalbek für die Entwässerung des Hemmelsdorfer Sees, während der Tatergraben ihm Wasser zuträgt. Die Mündung der Aalbek war schon vor dem Bau des Niendorfer Hafens deutlich
nach Westen verschleppt. Das kleine begradigte Gerinne weist an seinem Unterlauf mehrere Altwasser auf.

Die Untersuchungen des Verfassers sind in diesem Gebiet noch nicht abgeschlossen, aber vier bedeutsame Tatsachen schälen sich nach dem Forschungsstand vom Mai 1951 schon heraus. Erstens: Der Rückgang des Steilufers an der Küste, sowohl am Wohld, an der Kammer und am Hang als auch am Brodtener Ufer, setzte sich nicht ununterbrochen fort, sondern zeigt einen Hiatus, eine Störung, die wahrscheinlich mit der von TAPFER (11) nachgewiesenen zeitweisen Verlangsamung der Landsenkung zusammenhängt.

Zweitens liegen ebenso wie am Pelzerhaken auch am Hemmelsdorfer See die älteren Strandwälle beträchtlich tiefer als die jüngeren, was nicht ausschließlich auf eine nachträgliche Abtragung zurückgehen kann, sondern auch in diesem Falle ein Hinweis sein dürfte, daß die Senkung des Landes, von der angegebenen Unterbrechung abgesehen, sich seit dem Ablagern der älteren Strandwälle, wenn auch langsам, so doch ständig fortsetzt.

Drittens tritt an Hand der neuen Ergebnisse ein Gebilde zutage, das in Form und Inhalt aufs lebhafteste an den Priwall östlich Travemünde erinnert und in kleinem Ausmaß in der Tat einem zweiten Priwall darstellt, nur daß jenseits von Travemünde gewisse feinere Züge nicht mehr zu erkennen sind. Dort, wo sich heute das Warmbad von Niendorf erhebt und wo bis zur Sturmflut von 1872 ein alter Bauernhof stand, setzt im Anschluß an das Brodtener Ufer der Hals zu einer Niederung ein, die sich über den Niendorfer Hafen hinzieht, sich nach Süden aber über den dortigen Loopgraben, d. h. Laufraben, hinaus jenem hohen Ufer nähert, das ostwärts so markant emporsteigt.

Viertens baut sich vor Niendorf gegenwärtig einer der größten Strandwälle der Lübecker Bucht vor unsren Augen auf. Er setzt am Kliff des Brodtener Ufers bereits dort ein, wo östlich des Brodtener Weges im letzten Krieg der Reichsarbeitsdienst einige bühnenartige Anlagen schuf. Von hier aus erstreckt er sich bis fast zum Niendorfer Hafen auf 3,5 km ununterbrochen dahin, so daß der Verfasser ihn im vergangenen Herbst bei einem tieferen Stand des Wassers in seiner ganzen Länge abwandern konnte, wobei er teilweise trocken lag. Aber auch bei höherem Wasserstand zeichnet er sich an dem Brandungsgischt deutlich ab. Einstweilen gleicht er einer Nehrung, die einen schmalen Wassersstreifen abschnürt, bis auch dieser eines Tages versandet ist.

Dieser Vorgang ist für die Zukunft des Brodtener Ufers von größter Bedeutung. Schon heute erfreut sich das Kliff, so weit es hinter ihm liegt, einer dichteren Bewachsung, die einige Jahrzehnte standhielt, und die nur ab und zu durch Rutschungen gestört wird, während sich vor dem Niendorfer Strand eine breitere Sandzone aufbaute.

Schließlich werfen die Strandwälle östlich des Hemmelsdorfer Sees ein Licht auf die Entstehung des Priwall. Er ist weit verwickelter aufgebaut, als es seine heutige Gestalt vermuten läßt.

Wir überblicken noch nicht, wie weit und in welcher Form die Insel selber Material zum Aufbau des Priwall beisteuerte, bis schließlich der Augenblick erreicht war, daβ die Sande der mecklenburgischen Küste über sie hinaus in die Sichenerbucht hinein gelangten, wo wir sie in Bohrungen nachweisen können. Dabei verfeinerte sich das Material von Osten nach Westen. Nahe der mecklenburgischen Grenze liegen bezeichnenderweise die Kiesgruben, weiter zur Mitte des Priwall finden wir nur selten einmal einige Steinchen, und in der Sichenerbucht stoßen wir auf feine Sande.
Die Materialmengen, die vom mecklenburgischen Ufer heranfrachteten, lagerten sich dabei größtenteils, wie zahlreiche Bohrungen belegen, auf den feinen Sinkstoffen ab, die das Litorinameer niedergeschlagen hatte, so daß der Priwall, soweit er aus Sand besteht, sich gleich einem großen Küstenhaken auf Bildungen von Mudde und Moor legt (Abb. 1—4).

In dieser Hinsicht bietet eine andere Stelle der Lübecker Bucht, die Einfahrt in den Neustädter Hafen, ein Gegenstück, das in seiner Erkundung an den Ostseeufern einzigartig sein dürfte. Eine dichte Folge von Bohrprofilen zeigt ungewöhnlich anschaulich, wie sich von der nördlichen Einfahrtseck ein Haken über Wasser und unter Wasser ebenfalls auf Mudde und Moor verschiebt und dabei den weichen Untergrund mit seinem Gewicht zusammendrückt, so daß er stellenweise seitwärts ausweicht, was vielleicht auch hier und da am Priwall der Fall war.

3. Die rechnungsmäßige Erfassung des Küstenrückgangs

Wenn nunmehr versucht wird, zahlenmäßig den Rückgang des Brodteners Ufers zu erfassen, so soll dabei nicht der übliche Weg eingeschlagen werden, indem der jährliche

Abb. 1 (oben). Der Rückgang des Brodteners Ufers in seiner Auswirkung auf die Flanken. 1. Phase

Abb. 2 (unten). Der Rückgang des Brodteners Ufers in seiner Auswirkung auf die Flanken. 2. Phase
Rückgang an den einzelnen Uferstücken berechnet wird. Es wird vielmehr danach betrachtet, die Flächen und die Mengen zu ermitteln, die der Rückgang noch ergreifen wird.

Es wurde zunächst versucht, auf der Landseite des Brodtener Ufers die noch mögliche Abtragung abzuschätzen, wobei, wie auch bei den Berechnungen für die Seeseite, ein Maßstab 1:20 000 der Feldermethode mit Quadraten von 20 mm Seitenlänge benutzt wurde. Einmal wurde dabei zwischen dem Ostende von Niendorf und dem Seetempel ein flacher Bogen gezogen, bis zu dem mutmaßlich der Rückschnitt erfolgen wird, dann aber zwischen beiden Punkten eine gerade Linie, die als äußerste in Betracht kommt. Die derart umgrenzte Fläche schwankt zwischen 2,048 km² und 2,672 km². Da mit einem Totlaufen der Brandung zu rechnen ist, dürfen wir wohl 2 km² als noch „mögliche“ Abtragungsfläche in Rechnung stellen.

Dann wurde die seewärtige Fläche in drei Zonen gegliedert, zwischen 20 m und 10 m Tiefe, zwischen 10 m und 5 m Tiefe und zwischen 5 m Tiefe und dem Strand. Es war dabei klar, daß der Verlauf der 20-m-Isobathe teilweise konstruktiv unsicher ist, da eine Arbeitskarte 1:20 000 und eine andere 1:10 000 zugrunde gelegt

Abb. 3 (oben). Der Rückgang des Brodtener Ufers in seiner Auswirkung auf die Flanken. 3. Phase

Abb. 4 (unten). Der Rückgang des Brodtener Ufers in seiner Auswirkung auf die Flanken. 4. Phase
werden mußte, die überdies nicht annähernd aneinander schließen, dann aber auch, weil sich die Isobathen seit dem Rückgang des Ufers in einer Umgestaltung befinden, und ferner weil das Steinriff sich über die Steinriffzunge hinaus nach Niendorf zu noch etwa 3 km fortsetzt.

Unter diesem Gesichtswinkel ergaben sich 11,088 km² als abgetragen zwischen 20 m und 10 m, 10,704 km² zwischen 10 m und 5 m und 3,888 km² zwischen 5 m und dem Strand.

Dennach hat die See von der 20-m-Isobathe an bis zum Strand 25,680 km², also rund 25,7 km² Fläche, fortgenommen. Demgegenüber wird sie in Zukunft mit 2 km² nur noch ein Dreizehntel fortnehmen können.

Ferner wurde eine Berechnung nach der Masse angestellt. Bei der Zone, die noch abgetragen wird, wurde eine durchschnittliche Landhöhe von 15 m zugrunde gelegt. Je nachdem, wie weit die Abtragung bis zum Meeresspiegel zurückstreicht, ergibt sich ein Wert von 0,031 km³ bis 0,040 km³. Dabei wurde eine Abtragung bis zum Meeresspiegel in dem Gedanken eingesetzt, daß ein Teil noch eine Schrägen unter Wasser und der Rest wahrscheinlich eine Schrägen über Wasser zeitigt wird. Seewärts wurde ebenfalls eine mittlere Landhöhe von 15 m angenommen. Stellenweise mag sie, wie bei Fallum, niedriger gewesen sein. Andererseits ragte die Gegend der Hermannshöhe mit 20 m wohl auch seewärts vor, und ferner lehrt ein Vergleich mit der entsprechenden Zone auf der Mecklenburger Seite, daß das Land vielleicht stellenweise sogar anstieg und seine Höhe über 15 m lag.

Für die drei seewärtigen Zonen wurde dann bei der Zone von 20 m bis 10 m Tiefe eine mittlere Tiefe von 15 m zugrunde gelegt, bei der Zone zwischen 10 m und 5 m Tiefe eine von 7,5 m und bei der Zone von 5 m Tiefe bis zum Strand eine von 2,5 m. Nunmehr ergab sich ein Abtrag in der ersten Seezone 0,332 km³, in der zweiten Seezone 0,332 km³ und in der dritten Seezone 0,068 km³. Insgesamt beläuft sich der Abtrag in der Zone von 0,640 km³. Noch abzutragen sind, roh gerechnet, ein Zwanzigstel des Vorganges auf der Seezone, während es an Fläche ein Dreizehntel war.

Berechnen wir nunmehr die Beträge, die für den Schutz des Brodten Ufers aufzuwenden sind, so gliedern sie sich in eine einmalige Ausgabe für die Errichtung von Schutzbauten und in laufende Ausgaben zur Unterhaltung dieser Schutzbauten und für den Kapitaldienst.

Die Kosten eines Deckwerks, das nach gewissenhafter technischer und wissenschaftlicher Überprüfung den bestmöglichen Schutz zu gewähren scheint, belaufen sich nach Regierungsbaurat Petersen, dem derzeitigen Leiter der „Untersuchungsstelle Brodten Ufer“, auf 6 bis 7 Millionen DM, wobei sich die Berechnung auf den Stand der Preise von 1950 bezieht. Berücksichtigt man das seitherige weitere Ansteigen der Preise und verschiedene andere Faktoren, so glauben wir mit Fug und Recht 8 Millionen DM als bescheidenes Minimum einsetzen zu können. Sie werden für zwei Quadratkilometer aufgewandt, so daß auf 1 qm mindestens 4,— DM entfallen, auf einen Hektar demnach 40 000,— DM. Bei den alljährlich laufenden Ausgaben in Höhe von 300 000,— DM ergeben sich dazu für den Quadratmeter noch 0,15 DM und demnach je Hektar alljährlich 1500,— DM.

Diese Zahlen bekunden ohne weiteren Kommentar, ein wie gewaltiger Betrag zum Schutz je Hektar Land einwärts vom Brodten Ufer erforderlich ist, ein Betrag, der weit über den Ertragswert und den Verkaufspreis je Hektar hinausgeht.

Bei allen diesen Berechnungen blieb außer Ansatz, daß das Deckwerk bestimmt ab und zu in größerem Umfang zu reparieren ist, nicht nur, weil sich der „Vorsand“ abbaut und somit die Brandung schärfer arbeitet, sondern weil sich sicherlich auch wieder einmal eine schwere Sturmflut einstellen wird.

Vor allem aber droht noch eine andere Gefahr. Mit dem Bau des Deckwerks wird sich die Sandzufuhr nach Travemünde und auch nach Niendorf vermindern und eines Tages aufhören und dann nach kustenmorphologischen Erfahrungen dort zwangsweise sogar eine Sandabtragung einsetzen. Der Strand von Niendorf geht auf jenen schmalen Streifen zurück, wie er ihn um die Jahrhundertwende aufwies, und in Travemünde wird er allmählich wieder nur wenig über die Strandpromenade hinausreichen, wie es bei deren Bau der Fall war. Andererseits wandert von der Mecklenburger Küste mehr Sand heran, weil das Gleichgewicht gestört
ist. Ein „Neuer Priwall“ wächst an den heutigen heran, versandet aber die Plate und damit die Fahrrinne nach Travemünde hinauf.

Schließlich aber geht mit einem Deckwerk um das Brodtener Ufer für zahlreiche Besucher ein Anziehungspunkt erster Ordnung verloren. Seine landschaftliche Schönheit wäre dahin, das menschliche Auge sieht nichts mehr von der ungehinderten Natur der westlichen Ostsee.

Gegenüber einem Deckwerk hat es seit Beginn des Jahrhunderts noch eine Reihe anderer Vorschläge gegeben. FRIEDRICH (2) trat seit 1901 mit Nachdruck für den Ausbau von Buhnen ein, schränkte aber seine Auffassungen auf Grund neuer Tatsachen nach knapp einem Jahrzehnt wesentlich ein. REHDER (7) erachtete einen Seedamm vor dem Seetempel als ein gutes Mittel, wenigstens eine weitere Versandung der Plate zu verhindern. SÖHRMANN (8) errichtete nördlich vom Seetempel ein kleines Parallelwerk in Gestalt eines Steinndammes, der später etwas verbessert wurde, und Baurat DALSTEIN (1) plante 1947, diesen Damm technisch zu verbessern und weiter um das Ufer vorzustrecken. Schließlich befaßte sich eine andere Gruppe von Projekten mit der Verlängerung und Verstärkung der Molen an der Mündung der Trave, wobei 1937 sogar eine zweite Nordermole vorgeschlagen wurde.

10. Einige praktische Vorschläge

Der Verfasser — als Nicht-Techniker — macht einige praktische Vorschläge, weil er seit einem halben Jahrhundert die Erfahrungen kennt, die bei den verschiedenen Bauten gesammelt wurden. Wenn er dabei zugleich die gegenwärtig so schlechte allgemeine Finanzlage berücksichtigt, so sind es rein persönliche und dazu unabhängige Vorschläge, die niemandem zuliebe oder zuleide geschehen.

Sieben Vorschläge haben sich dem Verfasser vom Priwall bis nach Niendorf hin immer wieder aufgedrängt:

4. Durch eine kritische Untersuchung technischer und wissenschaftlicher Art ist zu prüfen, ob es ratsam ist, die Nordermole zu verstärken und zu verlängern. Ehe hier etwas unternommen wird, ist eine sorgfältige Planung unter Auswertung aller vorliegenden Erfahrungen erforderlich.

5. Den Stumpf der Südermole sollte man durch ein Leitwerk verlängern ähnlich, wie es schon REHDER (7) vorgeschlagen hat.

6. Der anderen Flanke des Brodtener Ufers entsprechend ist ein Umbau des Niendorfer Hafens vorzunehmen, der durch seine seewärts erfolgten Verlängerungen der Gefahr ausge setzt ist, von der Ostseite her weiter zu versanden, auf seiner Westseite aber einen gefährlichen Wirbel begünstigt, der bei gewissen Winden die Einfahrt und Ausfahrt sehr erschwert und zugleich die Küste angreift und ins Land vorstößt.
7. Der siebente und letzte Vorschlag aber geht dahin, auf der weitaus größten Strecke des Brodtener Ufers nichts zu unternehmen, sondern es dem Abbruch zu überlassen. Selbst ein Deckwerk verspricht keinen Schutz für die Ewigkeit und ist überdies im Hinblick auf den Wert des Bodens wie auch auf die notwendigen Finanzmittel in einem auf Jahre verarmten Deutschland nicht vertretbar. Außerdem wäre die landschaftliche Schönheit des Brodtener Ufers für lange Zeit dahin.

Schriftenverzeichnis

2. FRIEDRICH, P.: Das Brodtener Ufer bei Travemünde, sein Rückgang und seine Erhaltung. Lübeckerische Blätter 1901.

Wie Tabelle 3 erkennen läßt, wurden die meisten hohen Wasserstände durch die unter A gezählten Wetterlagen verursacht, während die unter B und C gezählten Wetterlagen beide

2) Gradient = Luftdruckgefälle des Barometerstandes in Millimetern auf einer Strecke von 111 km, senkrecht zu den Isobaren gemessen.
3) Das umfangreiche Tabellenwerk befindet sich im Archiv des Wasser- und Schifffahrtsamtes in Lübeck, Musterbahn 19.
gleich stark beteiligt waren. Bei den Wasserständen + 50 bis + 60 cm NN steht C an weit- aus erster Stelle, während bei Wasserständen ab mehr als + 60 cm NN schon die unter A gezählten Wetterlagen führend sind und die C-Wetterlagen bei Wasserständen von mehr als + 100 cm NN auch hinter den B-Wetterlagen zurückstehen.

Zusammenfassung

2. Hochwasser tritt in der Lübecker Bucht bei folgenden Wetterlagen auf:
 a) bei einem Hochdruckgebiet über Skandinavien und einem Tiefdruckgebiet über Mittel- bzw. Südeuropa;
 b) wenn ein kräftiges Tief von Westen über die Odermündung in östlicher Richtung abzieht und
 c) auch dann, wenn ein kräftiges Tiefdruckgebiet über Nordskandinavien sich nach Osten verlagert und der Wind auf der Rückseite eines solchen Tiefs in der östlichen Ostsee mit Sturmsstärke aus nordöstlicher Richtung weht, während er in der westlichen Ostsee wohl etwas abflaut, aber seine Richtung im wesentlichen aus West bis Nordwest beibehält.

4. Der am Abbruch des Brodtener Ufers beteiligte Wasserstand von z. B. + 1,00 m NN hat in den letzten 65 Jahren rund 600 Stunden den Fuß des Kliffs benetzt.

5. In den Sommermonaten Juni, Juli und August steigt das höchste Hochwasser im allge- meinen nicht über + 70 bis + 80 cm NN.
Strömungsverhältnisse in der Lübecker Bucht

Von Günter Dietrich und Hartwig Weidemann

Inhalt

1. Aufgabenstellung .. 69
2. Das Untersuchungsprogramm und seine Durchführung 71
3. Die Strömungsverhältnisse bei ausgewählten Windlagen
 a) bei östlichen Winden 74
 b) bei westlichen Winden 78
4. Die Strömungsverhältnisse in der Travemünde 83
5. Zusammenfassung und Bemerkungen zu den Strömungsverhältnissen
 in der Brandungszone 85

1. Aufgabenstellung

Das Meßprogramm befaßte sich ausschließlich mit der Ermittlung der Strömungsverhältnisse der Lübecker Bucht außerhalb der Brandungszone. Auch diese Aufgabe stellte umfangreiche Anforderungen an die Messungen, die sich aus der allgemeinen Natur der Strömungen in der Lübecker Bucht ergaben.

Abb. 1. Oberflächentemperaturen in der Ostsee bei Ostwind und bei Westwind und Starke 6 (nach G. Dierßen, 1951)

2. Das Untersuchungsprogramm und seine Durchführung

Keine einzelne oceanographische Meßmethode gestattet, die Mannigfaltigkeit der Strömungsvorgänge in ausreichender Vollständigkeit zu erfassen, besonders nicht im vorliegenden Seegebiet bei der zu erwartenden Veränderlichkeit der Strömungen. Erst aus der gegenseitigen Ergänzung der Ergebnisse nach verschiedenen Untersuchungsmethoden, die nebeneinander zur Anwendung gebracht wurden, konnte man hoffen, dem Untersuchungsziel näher zu kommen. Es handelte sich um folgende Methoden, die zur Anwendung gelangten:

I. Abgrenzung der Wasserkörper nach Temperatur und Salzgehalt und Verfolgung ihrer Ausbreitung durch wiederholte Messungen in ein- bis dreitägigen Abständen innerhalb eines festgelegten Stationsnetzes.

II. Messungen der Strömungen innerhalb des gleichen Stationsnetzes mit dem Stromkreuz an der Oberfläche und in Bodennähe.

IV. Dauermessungen in einer Tiefe an ausgewählten Punkten über mehrere Wochen. Hierfür wurden drei Schaufelradstrommesser verwendet.
V. Wasserstandsregistrierungen mit Schreibpegeln an der Küste, zeitweilig ergänzt durch einen Hochseepegel in der Öffnung der Lübecker Bucht zur Mecklenburger Bucht.

Abb. 2. Verteilung der Meßstellen in der Lübecker Bucht

I ○ für Wasserkörperbestimmung aus Temperatur- und Salzgehaltsschichtung
II ⊕ zusätzlich zu I für Stromstichproben mit Stromkreuz
III ● R1—R5 für Bestimmung vertikaler Stromverteilung mit Rauschelbach-Strommesser
IV ○ S6—S17 für Dauerstrommessungen mit Schaufelradstrommern

--- Verlauf der Vertikalschnitte in Abb. 3 und 6

Tiefen in m

Die Verteilung der Meßstellen zu den einzelnen Programm punkten ist aus Abbildung 2 zu ersehen. Tabelle 1 enthält zur Ergänzung die Positionen und Meßzeiten zu den Programm punkten I—IV.
Tabelle 1
Meßzeiten und Positionen der ausgeführten Beobachtungen in der Lübecker Bucht zu den Programmpunkten I—IV im Jahre 1950

<table>
<thead>
<tr>
<th>Programmpunkte</th>
<th>Meßzeit</th>
<th>Wiederholungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Wasserkörper (Temperatur- und Salzgehaltsverteilung)</td>
<td>5. 2.—21. 2.</td>
<td>6 mal mit 12—19 Stationen</td>
</tr>
<tr>
<td>II. Strom-Stichproben (Stromkreuz)</td>
<td>5. 2.—21. 2.</td>
<td>6 » » 9—13 »</td>
</tr>
<tr>
<td>III. Vertikale Stromverteilung (Rauschelbachstrommesser)</td>
<td>27. 4.—12. 5.</td>
<td>8 » » 9—14 »</td>
</tr>
<tr>
<td>IV. Dauerstrommessungen (Schaufelradstrommesser)</td>
<td>54°05'50" 10°53'50"</td>
<td>22. 3.—4. 4.</td>
</tr>
</tbody>
</table>

Meßstelle Nr. \(\varphi \) (N) \(\lambda \) (E) Meßzeit Meßtiefen m

III. Vertikale Stromverteilung (Rauschelbachstrommesser)	53°58.5' 10°53.6'	23. 7.—25. 7. 0.5—2.5—4.5
S6	53°55'50" 10°53'05"	22. 3.—4. 4. 3 5
S7	54°06'06" 11°05'30"	26. 7.—28. 7. 0.5—2.5—4.5
S8	54°05'52" 11°05'09"	29. 7.—31. 7. 0.5—2.5—4.5
S9	53°58'54" 10°54'00"	1. 8. 3. 8. 0.5—2.5—5.5
S10	54°00'09" 10°53'48"	4. 8. 3 5.0
S11	54°00'12" 10°50'21"	5. 4.—6. 4. 3 4.5
S12	54°06'18" 10°55'18"	19. 4.—3. 5. 3 3.5
S13	54°00'12" 10°50'21"	5. 4.—6. 4. 3 4.0
S14	53°58'54" 10°54'00"	3. 2. 0.5—2.5—5.5
S15	53°57'50" 10°53'05"	3. 2. 0.5—2.5—5.5
S17	53°57'50" 10°53'05"	3. 2. 0.5—2.5—5.5

Zu der Durchführung der Programmpunkte I bis IV sei ergänzend bemerkt:

I. Die Lage der Stationen (vgl. Abb. 2) war so gewählt, daß in einer eintägigen Rundfahrt alle hydrographisch wichtigen Punkte einmal berührt wurden. Auf allen Stationen wurden Salzgehalt und Temperatur in Tiefenstufen von 5 zu 5 m bestimmt; der unterste Meßpunkt lag jeweils etwa 1 m über Grund. Die einzelnen Rundfahrten folgten einander in Abständen von 1 bis 2 Tagen (bzw. 3 Tagen während der 3. Meßreihe).

II. Auf den küstennahen Stationen dieses Netzes (Wassertiefe 6—8 m) und einigen ausgewählten Stationen im mittleren Teil der Lübecker Bucht (Wassertiefe 20—25 m) wurden außerdem auf jeder Rundfahrt kurze Strömungsmessungen mit Stromkreuzen gemacht. Zu diesem Zweck wurden vom Heck des verankerten Schiffes aus zwei Stromkreuze ausgesetzt, deren Treibkörper bei dem einen unmittelbar unter der Oberfläche, bei dem zweiten in 4 bis 6 m Tiefe (1—2 m über Grund) standen. Mit Hilfe von Logleinen, die an den Tragebojen befestigt waren, wurden die Längen gemessen, die in bestimmten Zeiträumen ausgelaufen waren. Die Richtung der Bojen wurde in dem Augenblick bestimmt, in dem das Schiff in seine Ausgangslage zurückgeschwommen war. Zur Kontrolle der Ausgangslage wurde zu Beginn der Messung ein Lot am Heck geworfen und erst dann gepeilt, wenn die Lotleine wieder senkrecht stand.

Diese einfache Meßmethode, die auch auf den Feuerschiffen in ähnlicher Weise üblich ist, ergibt recht zuverlässige Werte; lediglich der Bodenstrommessung kann ein gewisser Fehler da-
durch anhaften, daß bei großen Differenzen zwischen Oberflächen- und Bodenstrom die Schwimmboje des Tiefenkreuzes durch den Oberflächenstrom etwas mitgeschleppt wird.

III. Auf fünf jedesmal 48-stündigen Dauerstationen (vgl. Abb. 2) wurden die vertikale Stromverteilung und ihre zeitlichen Schwankungen näher untersucht. Zu diesem Zwecke wurde ein elektrisch registrierender Bifilar-Strommesser nach RAUSCHELBACH (Beschreibung s. RAUSCHELBACH [9]) je 20 Minuten an der Oberfläche, in mittlerer Tiefe (2—3 m) und dicht über Grund (4—6 m) ausgebracht, so daß in jeder Stunde in allen drei Tiefenstufen Richtung und Geschwindigkeit beobachtet werden konnten. Zur Ergänzung wurde gleichzeitig auch die Änderung der thermohalinen Schichtung verfolgt.

3. Strömungsverhältnisse bei ausgewählten Windlagen

In der Lübecker Bucht sind im allgemeinen zwei verschiedene Wasserkörper vorhanden, die sich hinsichtlich ihrer Dichte unterscheiden:
2. Salzreiches und daher verhältnismäßig schweres Wasser in der bodennahen Schicht mit Salzgehalten um 20 bis 25 °/oo, dessen Herkunftsgebiet im Kattegat zu suchen ist. Beide Wasserkörper sind durch eine Sprungschicht voneinander getrennt, die je nach Jahreszeit und Wetterlage mehr oder weniger scharf ausgebildet ist. Sie liegt überwiegend in 15 bis 20 m Tiefe. Die vertikale Mächtigkeit der Decksschicht ist damit wesentlich größer als die der salzreicheren Unterschicht; denn für diese bleiben bei den größten Tiefen von 25 m in der Lübecker Bucht im allgemeinen nur wenige Meter übrig.

Eine horizontale Lagerung der beiden Wasserkörper beobachtet man nur bei ruhigen Wetterlagen. Stärkere Winde wirken sich deutlich auf die Verlagerung der Sprungschicht aus und damit auch auf die Verbreitung der Wasserkörper. Aber ihr Einfluß bleibt nicht auf diese Wirkung beschränkt. Die Wassermengen der beiden Wasserkörper innerhalb der Lübecker Bucht wechseln je nach den Strömungsverhältnissen in der Öffnung der Lübecker Bucht zur Mecklenburger Bucht. Wenn also die horizontale Ausbreitung der Wasserkörper aus den Beobachtungen der Salzgehaltsverteilung abgeleitet werden soll, muß stets beachtet werden, daß neben den Wirkungen von Verlagerungen in horizontaler Richtung auch solche in vertikaler Rich-
tung auftreten.

a) Strömungsverhältnisse bei östlichen Winden

Zu Beginn der Nordostlage (4. 5., oberster Schnitt Abb. 3) ist die Schichtung der Bucht noch normal, d. h. an der Oberfläche 12 bis 13 % Salzgehalt. Im Nordteil zeigt sich jedoch bereits eine Erniedrigung an der Oberfläche auf unter 11 %. Am 6. 5. hat sich diese Entwicklung weiter fortgesetzt; der Einschub salzarmen Wassers mit Salzgehalten unter 10 % hat sich wesentlich verbreitert und dabei die Sprungschicht im gesamten Querschnitt der Bucht um etwa 5 m gesenkt. Auf dem Höhepunkt der Nordostlage am 8. 5. ist praktisch die ganze Bucht von salzarmem Wasser (10—12 %) ausgefüllt; das Tiefenwasser ist bis auf einen geringen Rest mit über 14 % Salzgehalt völlig verdrängt. Am 10. 5. schließlich ist die Aussüßung der oberen Schichten weiter fortgeschritten, und der Salzgehalt ist überall unter 11 %, zu einem großen Teil sogar unter 10 %. In der Bodenschicht jedoch dringt bei nachlassendem Anstau bereits wieder salzreiches Wasser von etwa 20 % ein, das durch eine außerordentlich scharfe Sprungschicht von der Oberschicht getrennt ist.
Wie schon aus diesen Schnitten hervorgeht, erfolgt die Ausbreitung des salzarmen Ostsee-
wassers nicht gleichförmig über die ganze Breite der Lübecker Bucht. Die in Abbildung 4 dar-
gestellten Ergebnisse der Oberflächenmessungen erlauben einen Einblick in den zeitlichen Ab-
lauf an der Oberfläche.

![Diagramme von salzarmem Ostsee-Wasser in der Lübecker Bucht]

Abb. 4. Beispiel für die Ausbreitung der Wasserkörper bei östlichen Winden vom 4.—10. 5. 1950

Verteilung des Salzgehalts an der Oberfläche in °/oo und Schema der Ausbreitung der Wasser-
massen mit Ergebnissen der Stromkreuzmessungen

In den Karten der Abbildung 4 sind für die gleichen Tage wie in Abbildung 3 (4. bis 10. 5. 1950) die Verteilung des Oberflächensalzgehaltes und die Oberflächenströmung wiedergegeben. Die Dichte der Schraffur deutet die Größe des Oberflächensalzgehaltes an (weiß: unter 10 °/oo, dichteste Schraffur: über 13 °/oo). Die dicken Pfeile stellen die Ergebnisse der Oberflächen-
stromkreuzmessungen dar, wobei die Länge des Schafes ein Maß für die Stromgeschwindigkeit
ist. Die dünnen gestrichelten Pfeile sollen den Gesamtarakter der Wasserbewegung nach
Rückschlüssen aus Stromkreuzmessungen und Salzgehaltsverteilung verdeutlichen.

Der Einstrom erfolgt vornehmlich längs der nördlichen Begrenzung der Lübecker Bucht; die Ergebnisse der Stromkreuzmessungen und die Verlagerung der 10 °/oo-Isohaline sprechen
deutlich dafür. Dem steht an den beiden ersten Tagen in der südlichen Hälfte der Bucht ein
kräftiger Ausstrom gegenüber. Ferner fallen in den drei Karten für den 6., 8. und 10. 5. zwei
Erscheinungen in der Ausbreitung der Wassermassen auf, die sich in ähnlicher Weise wieder-
holen: einmal die Gabelung der Strömung vor der Mitte des Brodtenfer Ufers, ferner eine
Konvergenz zwischen dem nördlichen Zweig dieser Gabelung und der an der Küste Haff-
krug—Scharbeutz nach Süden setzenden Strömung.

Die Ausbreitung der Wasserarten an der Oberfläche, wie sie sich aus dem Salzgehalt und
dazu aus Stichproben von Strommessungen mit dem Stromkreuz ergeben, deuten im ganzen
gesehen darauf hin, daß sich bei östlichen Winden eine Wasserbewegung einstellt, die die

Abb. 5. Beispiele für den Strömungsverlauf nach Dauerstrommessungen in einer einzigen Tiefe bei östlichen Winden

A. Nördlich und westlich des Brodtener Ufers auf den Meßstellen S 10 und S 11 vom 15. 4. 16h bis 16. 4. 16h, 1950
B. Bei Pelzerhaken und westlich und östlich des Brodtener Ufers auf den Meßstellen S 12, S 13 und S 14 vom 20. 4. 21h bis 21. 4. 21h, 1950

Lage der Meßstellen s. Tab. 1 und Abb. 2

In Abbildung 5 sind zwei Ausschnitte über je 24 Stunden aus den Ergebnissen der Dauerstrommessungen mit Schaufelräudern wiedergegeben. Leider fielen in die Meßperiode keine stürmischen Ostwindlagen, so daß sich die Beispiele nur auf mäßige und frische östliche bis nördliche Winde beziehen. Die Windangaben stützen sich auf die Terminbeobachtungen auf dem

Nach Abbildung 5 B wurde auf der Meßstelle S 12 nördöstlich von Pelzerhaken bei mäßigen Winden aus NO, Stärke 3—4, ein recht beständiger Einstrom nach WSW in die innere Lübecker Bucht beobachtet. Er verlief parallel zur Küste mit Geschwindigkeiten, die 30 cm/sec nicht überschritten. Westlich und östlich des Brodtener Ufers auf den Meßstellen S 13 und S 14 war die vorherrschende Stromrichtung O bis SO, wobei im Westen 45 cm/sec, im Osten 20 cm/sec nicht überschritten wurden. Im Westen vor Niendorf war die Stromrichtung parallel zur Küste, während sie im Osten quer über die Travemünder Bucht verlief.

Auf allen fünf Meßstellen überwogen bei mäßigen und frischen Winden aus östlichen Richtungen, wie sie in den Ausschnitten der Abbildung 5, aber auch in anderen Fällen, erfaßt wurden, Bewegungen, die die Lübecker Bucht entgegen dem Uhrzeigersinn umkreisten. Westlich des Brodtener Ufers kamen Ausnahmen vor, indem eine Stromumkehr auftrat. Dieses Bild deckt sich mit dem, was aus der Ausbreitung der Wassermassen und den Stromkreuzmessungen erschlossen wurde. Leider fehlen Beobachtungen der vertikalen Stromverteilung bei östlichen Winden.

b) Strömungsverhältnisse bei westlichen Winden

In Abbildung 6 ist eine Lage mit kräftig auffrischendem WNW-Wind in zwei Schnitten dargestellt. Die Schnitte verlaufen etwa parallel zur Windrichtung von Sierksdorf an der Neustädter Bucht über den äußeren Teil des Stein-Riffs bis zu einem Punkt etwa 2 sm nördlich
von Groß Schwansee in Mecklenburg (vgl. Abb. 2). Im ersten Schnitt (22. 7.) erkennt man bei noch ruhigem Wetter eine als normal zu bezeichnende Schichtung: an der Oberfläche etwa 12 bis 13 %, eine breite Übergangszone zwischen 7 und 18 m Tiefe und eine Bodenschicht mit über 22 %. Am 24. 7. frischte der Wind aus West auf zeitweise Stärke 7 bis 8 auf und drehte am 25. 7. (zweiter Schnitt) auf WNW bei Stärke 6 im Mittel. Das salzarme Oberflächenwasser wurde dadurch aus der gesamten Bucht hinausgetrieben. Die Folge war, daß an der Leeküste das Tiefenwasser an die Oberfläche emporstieg. Während an der Oberfläche die Strömung überall etwa in Windrichtung setzte, muß also an der Leeküste ein nicht unerheblicher Strom auf die Leeküste zu geherrscht haben, leider liegen für dieses Beispiel keine direkten Strommessungen vor. Im Salzgehaltsschnitt erkennt man, daß das Bodenwasser vom 22. 7. mit 22 % am 25. 7. in der Neustädter Bucht als Oberflächenwasser auftrat, und daß als Ersatz des alten Bodenwassers ein stärker salzhaltiges mit über 24 % einströmte.

In Abbildung 7 ist zur Ergänzung der Vertikalschnitte die Salzgehaltsverteilung an der Oberfläche für die gleichen Tage dargestellt; leider fehlen an diesen Tagen die Stromkreuz-Stichproben, da es sich um Rundfahrten zwischen je zwei der 48ständigen Dauerstationen handelte. Den geringen horizontalen Unterschieden am 22. 7. steht das außerordentlich starke Salzgehaltsgefälle am 25. 7. gegenüber, das fast genau parallel zur Windrichtung verläuft. Die Wirkung des Auftriebsereffektes auf die Salzgehaltsverteilung ist auch an der Leeküste bei Travemünde und zwischen Pelzerhaken und Grömitz zu erkennen, wenn auch nicht so kräftig wie in der Neustädter Bucht.

Aus den Ergebnissen der Dauerstrommessungen mit Schaufelräder werden drei Ausschnitte von je 24 Stunden in Abbildung 8 wiedergegeben. Abgesehen von dem Fall bei mäßigen westlichen Winden in Abbildung 8 A konnten in 8 B und 8 C stürmische Westlagen ausgesucht werden mit Windstärken bis 8 Beaufort.

Auf den Meßstellen S 7 und S 8 wurde der Strom in Oberflächen- und Bodennähe in der offenen Lübecker Bucht bei 22 m Wassertiefe registriert. Die Geschwindigkeiten erreichten in der Oberflächenhöhe 20 cm/sec, in Bodennähe blieben sie unter 8 bis 10 cm/sec. Das Manometer geriet überhaupt nicht in Umdrehungen. Im Ablauf der Stromrichtungen über die 24 Stunden, die in Abbildung 8 A dargestellt sind, erscheint bemerkenswert, daß die Wasserbewegung in Oberflächenhöhe angenehmert in Richtung des Windes lief, bevorzugt ein wenig im Uhrzeigersinn von der Windrichtung abgelenkt. Die Richtungsänderungen in Bodennähe zeigen an, daß
Bewegungen vorhanden waren, die aber gering blieben und nicht ausreichten, um das Meßrad zu drehen. Ferner ist zu beachten, daß die Bewegungsrichtungen in Oberflächen- und Bodennähe einen großen Winkel einschlossen, der zwischen 90 Grad und 180 Grad schwankte. In Abb.7. Beispiel für die Ausbreitung der Wasserkörper bei westlichen Winden vom 22.—25. 7. 1950

Verteilung des Salzgehalts an der Oberfläche in °/oo

Abb. 7. Beispiel für die Ausbreitung der Wasserkörper bei westlichen Winden vom 22.—25. 7. 1950

Verteilung des Salzgehalts an der Oberfläche in °/oo

der Deckschicht überwog die Ausstrom-, in der Unterschicht die Einstromrichtung in die Lübecker Bucht. Das ist derselbe vertikale Stromaufbau, der aus der Ausbreitung der Wasserarten nach den Vertikalschnitten in Abbildung 6 qualitativ erschlossen wurde.

Wenn man die Ergebnisse der Strommessungen in den Ausschnitten in Abbildung 8 B und C überblickt, dann ist auffallend, daß auf allen Meßstellen trotz der hohen Windstärken die Stromgeschwindigkeiten verhältnismäßig klein bleiben. Auf S 10 und S 11 nördlich und westlich des Brodtener Ufers waren sie unter 22 cm/sec, bei S 13 und S 14 westlich und östlich des Brodtener Ufers unter 15 cm/sec, wobei sie im letzten Fall nur selten maßbar waren und 8 bis 10 cm/sec überstiegen. Nur bei S 12 nordöstlich von Pelzerhaken wurden 30 cm/sec erreicht. Die Strömungen erfolgten vornehmlich parallel in östlicher Richtung, d. h. in der Ausstromrichtung aus der Lübecker Bucht. In der Umgebung des Brodtener Ufers traten aber auf allen Meßstellen wiederholt schnelle Richtungswechsel auf. Sie können darin begründet
sein, daß eine starke vertikale Stromrichtung auch in Küstennähe vorhanden ist, so daß das Meßinstrument zeitweise in die Strömung der Oberschicht, zeitweise in einen entgegengesetzt laufenden Strom der Unterschicht geriet. Es kann sich aber auch um einen Richtungswechsel der Strömungen über die ganze Wassersäule handeln.

Abb. 8. Beispiele für den Strömungsverlauf nach Dauerstrommessungen in einer einzigen Tiefe bei westlichen Winden

A. In der Lübecker Bucht und in der Travemündung auf den Meßstellen S7, S 8 und S 6 vom 27. 3. 15b bis 28. 3. 17b, 1950

B. Nördlich und westlich des Brodtener Ufers auf den Meßstellen S10 und S 11 am 11. 4. 0h bis 12. 4. 0h, 1950
Die erste Meßstelle (Abb. 9 A) lag vor Niendorf (vgl. Abb. 2) auf etwa 5 m Wassertiefe. Die Meßtiefen waren 0,5 bis 2,5 und 4,5 m, charakterisieren also den Oberflächen-, Mittel- und Bodenstrom. Die Messung begann am 26. 7., unmittelbar im Anschluß an die in Abbildung 6/7 dargestellte extreme Westlage des 25. 7. mit ihren starken Auftriebserscheinungen in der Neustädter Bucht. Bei noch anhaltendem, jedoch etwas abgeflautem Wind aus NW bis W zeigte sich am 26. 7. bald nach 9 Uhr ein rasches Ansteigen der Geschwindigkeit des in allen Tiefen nach Osten gerichteten Stromes, wobei der Oberflachenstrom zwischen 10 und 13 Uhr Beträge von 55 bis über 60 cm/sec erreichte. Der Bodenstrom setzte während der gleichen Zeit nur mit

Abb. 9. Beispiele für den Strömungsverlauf in verschiedenen Tiefen bei westlichen Winden
A. Westlich des Brodtener Ufers auf der Meßstelle R 2 vom 26. 7. 8h bis 27. 7. 8h, 1950
etwa 10 bis 20 cm/sec, der Mittelstrom hielt sich mit etwa 30 bis 40 cm/sec in der Mitte. Von 13 Uhr bis gegen 20 Uhr begann die Oberflächenströmung langsam wieder abzusinken bis etwa 20 cm/sec, Mittel- und Bodenstrom dagegen stiegen noch weiter an und erreichten ab 16 Uhr den Wert des Oberflächenstromes, um von da an mit ihm gleichzeitig langsam abzunehmen. In der Periode zwischen 20 Uhr und 2 Uhr (27.7.) zeigte zeitweise der Bodenstrom höhere Werte als Oberfläche und Mitte. Von 2 bis 8 Uhr ging in allen Tiefen bei weiter abflauendem Wind die Geschwindigkeit auf 10 cm/sec und weniger zurück.

Die während dieser 24 Stunden in der Ostströmung aufgetretenen Richtungsschwankungen waren relativ geringfügig; die allgemeine Tendenz zeigte beim Oberflächenstrom die größte Südkomponente (im Mittel 110—120 Grad), beim Bodenstrom dagegen eine fast reine Ostrichtung (mit geringen nördlichen Komponenten, 80—90 Grad). Da die Richtung der benachbarten Küstenstrecke etwa 95 Grad betrug, bedeutet das, daß die Oberflächenströmung eine auflandige Komponente (Einfluß der Oberflächen-Winddrift), der Bodenstrom eine ablandige Komponente enthielt (Abfluß der oberflächlich angestauten Wassermassen).

Bei der zweiten Meßstelle R 3 (Abb. 9 B) vor der Mitte des Brodtener Ufers auf ebenfalls 5 m Wassertiefe (mit den gleichen Meßtiefen wie in der zeitlich vorangegangenen eben erwähnten Meßstelle R 2) herrschten wiederum frische nordwestliche Winde (mit Stärke 5—6 im Mittel). Der Stromgeschwindigkeitsverlauf war hier jedoch wesentlich ruhiger: an der Oberfläche wurden zwei Maxima von 25 bis 30 cm/sec, am Boden nur 10 bis 15 cm/sec beobachtet, dazwischen zeitweise fast Stromstille. Bei der Richtungsangabe ist deutlich zu erkennen, daß zu den Zeiten der Geschwindigkeitsmaxima (29.7., 18—20 Uhr und 30.7., 6—10 Uhr) die Stromrichtung in allen Tiefen parallel zur Küste und mit dem Winde nach Südosten (110—130 Grad) setzte; lediglich während des zweiten Maximums hatte der Bodenstrom eine ablandige östlichere Komponente (90—110 Grad).

4. Strömungsverhältnisse in der Travemündung

Die Strömungsverhältnisse in der Travemündung und ihrer nächsten Umgebung nehmen eine Sonderstellung ein. Es ist nicht allein der Einfluß des Oberwassers der Trave, der dabei eine Rolle spielt; auch schnell wechselnde Spiegelgefälle, die zeitweise große Werte erreichen, tragen dazu bei.
Ein Längsschnitt des Salzgehalts verdeutlicht die starke Schichtung, die hier auftritt (Abb. 10). Dazu ist zu bemerken, daß die vertikale Salzgehaltszunahme nur unzureichend bei Beobachtungsabständen von 4 m erfaßt wird. Der Übergang von dem salzarmen Travewasser zu dem salzreichen Wasser aus der Lübecker Bucht, die hier übereinander liegen, dürfte im allgemeinen noch ausgeprägter sein.

Abb. 10. Beispiel für die Salzgehaltschichtung in der Travemündung (aufgenommen am 17. 2. 1950)

Abb. 11. Beispiel für den Strömungsverlauf nach Dauerstrommessungen mit Schaufelradstrommessern in der Travemündung in Oberflächenhöhe und in Bodennähe

Die Bedeutung der Gefällsströmungen in der Travemündung kommt in Abbildung 8 A und Abbildung 11 nach Dauerstrommessungen mit Schaufelradstrommessern zum Ausdruck. Die Meßstellen S 6, S 15 und S 17 lagen in der engsten Stelle der Travemündung querab vom

5. Zusammenfassung und Bemerkungen zu den Strömungsverhältnissen innerhalb der Brandungszone

Bei westlichen Winden, wenn sie lange genug wehen, so daß sie angenähert stationäre Verhältnisse einstellen können, überwiegt auf allen Meßstellen in Oberflächennähe außerhalb der Travemündung Ausstrom in östlichen Richtungen, bei Pelzerhaken sowohl wie am Brodtener Ufer. Die abtransportierten Wassermassen werden durch Kompensationsbewegungen in der Tiefe ergänzt. Die starke Stromrichtung besonders bei westlichen Winden nach den

Die Tabelle 2 enthält die beobachteten Spitzengeschwindigkeiten und die dabei auftretenden Richtungen.

Tabelle 2

Beobachtete Spitzengeschwindigkeiten auf den Meßstellen in der Lübecker Bucht

<table>
<thead>
<tr>
<th>Gebiet und Meßstelle</th>
<th>v_{max} cm/sec</th>
<th>Meßtiefe üb. Grund in m</th>
<th>Bem. z. Stromrichtung bei Spitzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travemündung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 6</td>
<td>95</td>
<td>3</td>
<td>Ein- und Ausstrom</td>
</tr>
<tr>
<td>S 15</td>
<td>60</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>S 16</td>
<td>60</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Travemündер Bucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 14</td>
<td>25</td>
<td>3</td>
<td>O—SO</td>
</tr>
<tr>
<td>R 4</td>
<td>25</td>
<td>1</td>
<td>NO</td>
</tr>
<tr>
<td>R 1</td>
<td>15</td>
<td>1 → Obfl.</td>
<td>SW</td>
</tr>
<tr>
<td>Stein-Riff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 10</td>
<td>40</td>
<td>3</td>
<td>SO</td>
</tr>
<tr>
<td>R 3</td>
<td>15 (30)</td>
<td>1 (Obfl.)</td>
<td>SO</td>
</tr>
<tr>
<td>S 11 + S 13</td>
<td>45</td>
<td>3</td>
<td>O, selten SW</td>
</tr>
<tr>
<td>R 2</td>
<td>30 (60)</td>
<td>1 (Obfl.)</td>
<td>O</td>
</tr>
<tr>
<td>Pelzerhaken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 12</td>
<td>45</td>
<td>3</td>
<td>SW, auch NO</td>
</tr>
<tr>
<td>R 5a</td>
<td>20 (40)</td>
<td>1 (Obfl.)</td>
<td>SW</td>
</tr>
<tr>
<td>Mitte Lübecker Bucht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 8</td>
<td>40</td>
<td>17,5</td>
<td>(NW, veränderlich)</td>
</tr>
<tr>
<td>S 7</td>
<td><11</td>
<td>3</td>
<td>ONO und W</td>
</tr>
</tbody>
</table>

Die Werte unterliegen natürlich ganz den Zufälligkeiten der Beobachtungszeit und sind daher nicht allgemein gültig. Aber die Zeiträume der Dauermessungen über mehrere Wochen mit verschiedenen Sturmlagen geben doch einen wichtigen Anhalt. In Bodennähe bis zu Tiefen von 10 bis 15 m, aber außerhalb der Brandungszone, dürften unter Berücksichtigung der Geschwindigkeitsabnahme zwischen 3 m über Grund und dem Boden die Strömungen nur in seltenen Fällen und dann nur kurzfristig 30 cm/sec überschreiten. Ausgenommen davon ist die Travemündung an ihrer engsten Stelle, in der wesentlich höhere Geschwindigkeiten auftreten.

Zieht man die Ergebnisse neuerer Untersuchungen über die Erosionsfähigkeit strömenden Wassers heran (F. HJULSTRÖM [4]), so ergibt sich daraus, daß wenigstens 25 cm/sec bei einem Kornendurchmesser von 0,5 mm notwendig sind, um den Boden anzugehen. Mit kleineren und größeren Kornendurchmessern steigen die Grenzgeschwindigkeiten an, und zwar auf 50 cm/sec.
bei Korndurchmessern von 0,03 mm bzw. 2,5 mm. Die Strömungen in der Lübecker Bucht werden demnach nur selten und dann nur in geringen Tiefen schwach aktiv in die Erosion eingreifen. Entscheidend hierfür sind die Vorgänge innerhalb der Brandungszone. Den Strömungen außerhalb kommt fast ausschließlich nur Bedeutung für den Transport der Schwebstoffe zu, die in der Brandungszone vom Wasser aufgenommen worden sind. Als morphologisch wirksam müssen die wechselnden, aber zeitweise starken Strömungen in der Travemüngung angesehen werden. Sie dürften zu der natürlichen Offenhaltung des Fahrwassers entscheidend beitragen.

Unter der Annahme einer geradlinigen Küste, einer gleichmäßigen Bodenneigung und von langgestreckten Kämmen der auflaufernden Wellen geben J. A. Putnam, W. H. Munk und M. A. Traylor (8) folgende Beziehung für die Geschwindigkeit v der Brandungslängsströmung an:

$$v = K \sqrt{\frac{3}{m \cdot H^2 \cdot \sin 2a}}$$

In der Lübecker Bucht sind die Voraussetzungen für eine Anwendung der angeführten Beziehung nicht ausreichend erfüllt, um zuverlässige Angaben über die Geschwindigkeiten der Brandungsströmung machen zu können. Es ist noch eine wesentliche Vertiefung unserer Kenntnisse von den Vorgängen in der Brandungszone notwendig. Es läßt sich lediglich eine rohe Überschlagsrechnung anstellen, um eine Vorstellung über die Größenordnung der Küstenparallelen Brandungslängsströmung zu vermitteln. Nach umfangreichen Seegangsmessungen auf dem Feuerschiff Fehmarnbelt von H. Brauer (1) ist bei Windstärke 7 die Wellenhöhe $H = 1.4$ m, dazu gehört die Wellenperiode $T = 4.5$ sec; die Strandneigung wird mit 0,03 angesetzt, $a = 10$ Grad angenommen; $K = 8.0$ gilt angenähert für Sandstrand. Daraus ergibt sich $v = 1.3$ m/sec. Das ist ein Vielfaches der gemessenen Stromgeschwindigkeiten außerhalb der Brandungszone bei Sturm. Die Richtung der Brandungslängsströmung ist durch die Fortpflanzungsrichtung der Wellen bestimmt. Sie verläuft in Richtung auf die Öffnung des spitzen Winkels, den die Kammlinie der Wellen und die Strandlinie einschließen.
entgegen dem Uhrzeigersinn umläuft, wirkt sie zum Teil in derselben Richtung wie die Brandungslängsströmung, zum Teil auch entgegen. In der Travemünder Bucht überquert sie die Bucht, ohne bis zum Travemünder Strand nach Süden vorzudringen.

Bei anderen Windrichtungen werden sich andere Richtungen in der Brandungslängsströmung ausbilden, deren Geschwindigkeiten aber verhältnismäßig gering bleiben müssen. Teils sind die Winde ablandig, dann tritt kein nennenswerter Seegang auf, teils haben sie zwar eine auflandige Komponente, aber dieser fehlt es an genügendem Seeraum zur vollen Ausbildung des Seegangs und zur Entwicklung einer Dünung. Einzig bei nordöstlichen Winden können größere Wellenhöhen erreicht werden, die die Voraussetzung von stärkeren Brandungslängsströmungen sind. Das schematische Strombild in Abbildung 12 stellt nicht den häufigsten Fall dar — anhaltende nordöstliche Winde sind verhältnismäßig selten. Es gibt auch keine Geschwindigkeiten der Strömungen an; dafür fehlen die Beobachtungsgrundlagen. Es gilt aber für diejenigen Windlagen, bei der im Vergleich zu allen anderen bei gleicher Windstärke die höchsten Stromgeschwindigkeiten zu erwarten sind, in der Brandungslängsströmung sowohl als auch in der küstennahen Strömung außerhalb der Brandungszone. Von dieser skizzierten Lage ist anzunehmen, daß sie sich entscheidend für die vorherrschende Richtung des Materialtransportes auswirkt. Ihre Bedeutung für morphologische Vorgänge bleibt aber auf einen verhältnismäßig schmalen Küstenstreifen beschränkt, dessen Wassertiefen kleiner als 10 bis 15 m sind.

Schriftenverzeichnis

Hydrographische Untersuchungen in der Lübecker Bucht*)

Von Walter Hansen

In der Lübecker Bucht findet am Brodtener Ufer Abbruch statt. Auf Veranlassung der Wasserbaubehörden wurden umfangreiche Untersuchungen in diesem Seegebiet durchgeführt, deren Ergebnisse dem Wasserbau als Hilfsmittel und Unterlagen bei der Erörterung der praktisch zu treffenden baulichen Maßnahmen dienten. Für die Ozeanographie ergab sich in diesem Rahmen folgende Fragestellung: Welche ozeanographischen Faktoren sind für die Küsten- gestaltung in der Lübecker Bucht, vornehmlich am Brodtener Ufer, mittelbar oder unmittelbar von Bedeutung und welche Wirkung üben sie aus?

*) In einer ausführlicheren unveröffentlichten Untersuchung sind die Bewegungsvorgänge in der Lübecker Bucht behandelt worden, die vorliegende Arbeit stellt eine Zusammenfassung derselben dar.

Im folgenden werden die wirksamen Kräfte in ihrer Wirkung auf die Bewegung im einzelnen behandelt.

Die physikalischen Grundlagen für die quantitative Ermittlung der Wasserstände und der Strömungen aus dem Windfeld sind in einer früheren Arbeit behandelt worden (1). Die dort mitgeteilten Gleichungen liefern für verschiedene Windfelder die Gestalt der Meeresoberfläche und die Strömungen. Mit Hilfe der dort mitgeteilten Gleichungen ist zunächst festgestellt worden, daß die unmittelbar auf die Wassermassen der Lübecker Bucht wirkende Schubkraft des Windes nur geringe örtliche Gefälle und Stromgeschwindigkeiten hervorzurufen in der Lage ist. Als Anhaltspunkt sei eine aus Beobachtungen vom freien Meer abgeleitete Beziehung zwischen Wind W und Stromgeschwindigkeit v für mittlere Breiten mitgeteilt:

\[v = 0,0144 \cdot W , \]

mit deren Hilfe die folgenden Werte ermittelt sind:

<table>
<thead>
<tr>
<th>Windgeschwindigkeit m/sec</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromgeschwindigkeit m/sec</td>
<td>0,14</td>
<td>0,22</td>
<td>0,29</td>
<td>0,36</td>
<td>0,43</td>
</tr>
</tbody>
</table>

Selbst bei sehr hohen Windgeschwindigkeiten von 30 m/sec ist die Oberflächenstromgeschwindigkeit noch kleiner als 0,5 m/sec. Hier interessiert in erster Linie die Geschwindigkeit in Bodennähe, diese ist aber nur ein Bruchteil des Oberflächenwertes; maximal kann mit dem dritten Teil gerechnet werden, auf jeden Fall ist dann die Geschwindigkeit so klein, daß keine Erosion am Boden stattfindet. Bei geringeren Windgeschwindigkeiten wird erst recht kein Transport erfolgen. Der durch den örtlichen Wind in der Lübecker Bucht erzeugte Stau erreicht ebenfalls keine beträchtlichen Werte, wie folgende Zusammenstellung zeigt, die für eine Buchtfläche von 30 km und eine Tiefe von 20 m gilt:

<table>
<thead>
<tr>
<th>Windgeschwindigkeit m/sec</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stau cm</td>
<td>2,4</td>
<td>9,5</td>
<td>21,6</td>
<td></td>
</tr>
</tbody>
</table>

Es ist sicher, daß die bei heftigen, orkanartigen Stürmen in der Lübecker Bucht auftretenden Erhöhungen, die mehr als 3 m erreichen können, nicht durch den örtlichen Wind in der Lübecker Bucht bedingt sein können. Während der Sturmflut von 1872 trat in der Ostsee ein Windstau von 3,5 m auf. In derartigen Fällen findet ein Einstrom über die Grenzlinie Dahmeshöved—Groß Klützhöved statt. Die während dieses Einstroms auftretenden Geschwindigkeiten können aus der Geschwindigkeit des Steigens des Wasserstandes ermittelt werden; es ist die Einströmgeschwindigkeit im Eingang zur Lübecker Bucht gleich dem durch den Querschnitt dividierten Produkt aus der Oberfläche und der Steiggeschwindigkeit. Diese erreichte bei der obengenannten Sturmflut von 1872 bei mehr als 30 m/sec Windgeschwindigkeit einen Betrag
von 0,21 m/Std. Im Winter und Frühjahr 1950, wo Stauhöhen von weniger als 1 m beobachtet wurden, war die maximale Steigungsgeschwindigkeit nur 0,06 m/Std.

Die folgende Tabelle gibt einen Einblick in den Zusammenhang zwischen Steig- und Einstromgeschwindigkeit.

<table>
<thead>
<tr>
<th>Steigungsgeschwindigkeit:</th>
<th>0,05</th>
<th>0,10</th>
<th>0,15</th>
<th>0,20 m/Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstromgeschwindigkeit:</td>
<td>0,02</td>
<td>0,04</td>
<td>0,06</td>
<td>0,08 m/sec</td>
</tr>
</tbody>
</table>

Auch hieraus ist wiederum zu ersehen, daß bei sehr hohen Windgeschwindigkeiten die Stromgeschwindigkeiten im Eingang zur Lübecker Bucht und in dieser nur Beträge annehmen, die nicht ausreichen, um einen Transport von Bodenmaterial in Gang zu bringen. Angemerkt sei, daß die in der Ostsee auftretenden Steigungsgeschwindigkeiten wesentlich kleiner sind als diejenigen, die im Zusammenhang mit den Gezeiten in der Deutschen Bucht beobachtet werden.

In der ausführlichen unveröffentlichten Darstellung ist für ausgewählte Windfelder und Ein- und Ausstromfälle die zugehörige Gestalt der Meeresoberfläche und die Stromgeschwindigkeit in der Lübecker Bucht ermittelt worden. In allen Fällen hat sich gezeigt, daß die örtlichen Unterschiede im Wasserstand und die Beträge der Stromgeschwindigkeit in der offenen Lübecker Bucht nur gering sind und daß diese Faktoren nicht die Ursache nennenswerten Bodenmaterialtransportes sein werden.

Außer dem winderschöpfenden Triftstrom und Windstau kann der Seegang eine Rolle spielen. Aber auch hier läßt sich abschätzen, daß die in der offenen Lübecker Bucht auf Tiefen von etwa 20 m auftretenden, durch den Seegang bedingten horizontalen Wasserbewegungen am Boden so weit abgeklungen sind, daß kein Materialtransport zu erwarten ist. Erst in den Flachwassergebieten, vor allem dort, wo Brandung auftritt, wird das Bodenmaterial aufgehoben und durch die in Verbindung mit den Wellen auftretenden Strömungen in Küstenrichtung transportiert. Diese Strömungen können Beträge bis zu 1 m/sec annehmen. Die Tiefe, in der der Seegang wirksam wird, hängt von den Dimensionen des Seegangs ab; in der Lübecker Bucht wird das größtenordnungsmäßig der Küstenstreifen von 0 bis 10 m Tiefe sein.

Wenn auch die Gezeiten in der Ostsee im Vergleich zur Nordsee nicht so stark hervortreten, so sind doch die dadurch bedingten Wasserstandsschwankungen, insbesondere in der Lübecker Bucht, klar erkennbar, vornehmlich bei ruhigen Wetterlagen. Sowohl in Lübeck als auch in Travemünde überwiegen die Halbtagesgezeiten, die Hauptmondtide M_s erreicht Amplituden von 4 bis 5 cm. Daß die Unterschiede im Wasserstand, bedingt durch die Gezeiten, nicht groß werden können, ergibt sich bereits aus dem vorstehend Gesagten.

Aus den Größenabmessungen für die Lübecker Bucht und dem dort auftretenden Tidenhub kann eine Abschätzung für die mittlere Gezeitenstromgeschwindigkeit gewonnen werden. Es ergibt sich ein Wert von weniger als 1 cm/sec, zu dem wiederum ein sehr geringes Spiegelgefälle von weniger als 10^{-2} und daraus für die Gesamtlänge der Lübecker Bucht von 30 km einen Niveauunterschied von noch nicht $\frac{1}{2}$ cm folgt. Danach sind in der offenen Bucht die Gezeiten praktisch ohne Bedeutung. In der Travemündung liegen die Verhältnisse allerdings anders. Der schmale Flußteil bei Travemünde verbindet die ausgedehnteren seearmigen Erweiterungen der Trave mit der Bucht, und diese seearmigen Erweiterungen spielen die Rolle von Spülbecken, so daß die durch die Travemündung im Gezeitenrhythmus ein- und ausstromenden Wassermassen wie in einer Düse zusammengepreßt werden und die Geschwindigkeit Beträge von über 1 m/sec erreichen kann.

diese Schwingungen recht häufig. Am ausgeprägtesten werden die durch diese Schwingungen bedingten Wasserstandsänderungen in der Neustädter Bucht festgestellt.

Neben diesen kurzfristigen Eigenschwingungen, die auf die Lübecker Bucht beschränkt sind, werden hier Schwingungen beobachtet, die Periodendauern bis zu 24 Stunden oder mehr besitzen. Diese sind als Schwingungen ausgedehnter Wassermassen zu verstehen, und zwar kommen hierfür Teile der Ostsee oder die gesamte Ostsee in Frage. Für den Teil der Ostsee vom Fehmarnbelt bis in den Bottnischen und Finnischen Meerbusen ergibt sich als längste Schwingungsdauer 39 Stunden.

Für die Ostsee ohne Bottnischen Meerbusen werden folgende Schwingungsdauern erhalten:

| Schwingungsdauer in Stunden: | 28 | 18 | 11 |

wobei nach den üblichen Verfahren für eindimensionale Kanäle gerechnet wurde (3). Ganz grob ergibt sich aus der Länge $l = 1500$ km und einer mittleren Tiefe von 50 m für die Ostsee eine Dauer der Grundschwingung von 37 Stunden, die sich dem oben angegebenen Wert recht gut nähert. Dieses ist ein Beispiel dafür, daß selbst in der recht kompliziert gestalteten Ostsee die einfache Schwingungsformel für den rechteckigen Kanal eine durchaus brauchbare Näherung liefert.

Ganz allgemein gilt: Je ausgedehnter und je flacher die schwingende Wassermasse ist, desto länger wird die Dauer der einknotigen Schwingung. Die Amplituden dieser können insbesondere im Finnischen Meerbusen Werte bis zu einem Meter und mehr erreichen. Diese Eigenschwingungen können durch den Wind oder durch Luftdruckänderungen angefacht werden.

Insgesamt ergibt sich folgendes Bild der Bewegungsvorgänge in der Lübecker Bucht: In der freien Bucht sind die örtlichen Unterschiede des Wasserstandes und damit auch die Stromgeschwindigkeit, insbesondere in Bodennähe, nur gering; im allgemeinen wird kein Materialtransport stattfinden. In einem schmalen Küstenstreifen wird durch Seegang und vor allem durch die Brandung das Bodenmaterial in Bewegung gesetzt und durch die in diesem Bereich auftretende Küstenströmung küstenparallel oder auch durch den dem Triftstrom entgegengerichteten Bodenstrom seewärts transportiert. Wenn das Bodenmaterial seewärts verlagert wird, dann ist aber zu erwarten, daß sehr bald die Geschwindigkeit so weit absinkt, daß das mitgeschleppte Material wieder abgesetzt wird. Die insbesondere auch für den Wasserbau bedeutungsvollen ozeanographischen Vorgänge und morphologischen Veränderungen sind demnach auf einen relativ schmalen Küstenstreifen beschränkt, außerhalb dessen passiert praktisch nichts mehr; selbst wenn der Wasserstand in der Lübecker Bucht um Meter ansteigt, so ist die damit verbundene Einstromgeschwindigkeit sogar bei den heftigsten bisher beobachteten Sturmfluten so gering, daß nicht mit Materialtransport gerechnet werden darf.

Wesentlich anders liegen die Dinge in denjenigen Meeresgebieten, in denen die Gezeiten eine Rolle spielen; hier können auch auf tieferem Wasser Bewegungen in horizontaler und vertikaler Richtung auftreten, und selbst in Bodennähe sind noch Stromgeschwindigkeiten möglich, die einen Materialtransport bedingen. Während der Triftstrom eine rasche Abnahme von der Oberfläche bis zum Boden erfährt, besitzt der Gezeitenstrom eine nahezu konstante Geschwindigkeit von der Oberfläche bis in Bodennähe. Hinzu kommt noch, daß etwa die in der Deutschen Bucht auftretenden Gezeitenströme jedenfalls partiell wesentlich höhere Beträge der Geschwindigkeit erreichen, als selbst die bei hohen Windgeschwindigkeiten auftreten-
den Triftströme. Dementsprechend ist in Gezeitengebieten auch nicht die Zone morphologischer Veränderungen auf einen schmalen Küstenstreifen beschränkt, sondern erstreckt sich über das gesamte Meeresgebiet.

Daraus ergibt sich für meereskundliche Untersuchungen, die im Hinblick auf wasserbauliche Maßnahmen im Küstenbereich angestellt werden, die Folgerung, daß in den Seegebieten, in denen die Gezeiten ohne Bedeutung sind, die Arbeiten auf einen relativ schmalen Küstenstreifen konzentriert werden können, in Gezeitengebieten dagegen sollten die Untersuchungen auf ein möglichst umfassendes Meeresgebiet ausgedehnt werden.

Zusammenfassend gilt folgendes: Wasserstandsänderungen der Lübecker Bucht über 0,5 m bis zu einigen Metern kommen nur dann vor, wenn entsprechende Wassermassen in die Bucht ein- oder aus der Bucht ausströmen. Die hierbei auftretenden Stromgeschwindigkeiten bleiben gering (maximal 20 cm/sec). Das zeigen sowohl die Beobachtungen als auch die dynamischen Untersuchungen. Diese Erscheinung, daß nämlich bei erheblichen Wasserstandsänderungen die Stromgeschwindigkeit von derselben Größenordnung ist wie die, die bei den Wasserstandsänderungen geringen Ausmaßes auftreten, mag zunächst befremden, wird aber sofort verständlich, wenn den obigen Überlegungen entsprechend beobachtet wird, daß für die Stromgeschwindigkeiten nicht die Wasserstände, sondern die Gefälle entscheidend sind. Beobachtung und Theorie haben gezeigt, daß dieses Gefälle bei Wasserstandsänderung von absolut geringem Ausmaß ebenso groß und größer werden kann, als das bei absolut großen Änderungen auftretende Gefälle.

Es erscheint dementsprechend grundsätzlich unzweckmäßig, etwa einzelne Wasserstands- und Strombeobachtungen in Beziehung zur Wetterlage zu bringen und Zusammenhänge zwischen diesen Größen nachzuspüren. Aus diesem Grunde wurden in der vorliegenden Untersuchung die Beobachtungen nach hydrodynamischen Gesichtspunkten behandelt.

Schriftenverzeichnis

Die Pflanzenwelt des Brodtener Ufers

Von Willi Christiansen und Hans Purps

Wenn auch die Dreiteilung des Brodtener Ufers: Vorstrand, Steilküste, Oberkante, zunächst in die Augen fällt, so ist doch eine Zweiteilung: Totes Kliff, Lebendes Kliff, besser begründet, da es die dynamischen Verhältnisse der drei genannten Streifen zum Ausdruck bringt.

Der bei weitem größte Teil des Brodtener Ufers ist ein lebendes Kliff. Nur der an Travemünde angrenzende Teil ist wirklich zur Ruhe gekommen und kann als totes Kliff bezeichnet werden. Selbst die stark mit Sträufern bestandenen Strecken (z. B. beim Seetempel) unterliegen einem, wenn auch weniger offenkundigen Abbruch, sind also nicht „tot“.

An der Umgestaltung, und zwar in erster Linie Abtragung des Brodtener Ufers, sind zwei Kräftegruppen tätig. Das Meer greift von außen an, zerreißt und zerreibt sowohl abgestürzte als auch stehende Moränenmassen der Steilküste und führte sie zum größten Teil fort. Innere Kräfte, insbesondere die Wasserführung, zerklüfteten das Gestein und stürzten und spülen es herab. Da indessen das Meer die herabgestürzten Massen schnell fortzuschaffen pflegt, kommt es an dem lebenden Kliff nirgendwo zur Bildung eines Schuttkegels, der bis an die Oberkante reicht, und auch der Vorstrand kann sich niemals auftönen.

— An den Schörmannsdamm lehnt sich auch ein Fragment eines Brackwasserrhrichts (Scirpetum maritimi) an, dessen Rhizome aber schon vom Wasser teilweise freigelegt worden sind. Die Strandhafergesellschaften (Elymion arenariae) kommen ebenfalls nicht über die ersten Anfänge hinaus. Kleine Fragmente findet man hin und wieder an den Schuttkegeln am Fuße des Kliffs angelehnt (mit Ammophila arenaria und Elymus arenarius).

schnellen Wechsel des Substrats zur Verfügung steht. Es bleibt daher fast nur die Besiedlungs-
möglichkeit von oben her. Aus der Lockerheit des Bewuchses und der Herkunft der Besiedler
läßt sich die stete Jugendlichkeit des Substrats, also der schnelle Abbau des Schuttkegels,
erkennen.

Eine besondere Eigenart innerhalb der Schuttkegelbildungen stellen die feuchten Nischen
dar. Sie entstehen, wo an Orten reichlichen Wasseraustritts größere Teile aus dem oberen
Steilhang ins Fließen, Gleiten oder Stürzen geraten und etwa horizontale Plattformen heraus-
bilden. Der Boden ist stets durchnässt, und dementsprechend finden sich auf ihm Feuchtigkeits-
zeiger an. In erster Linie sind es wieder einjährige Ackerunkräuter; Krötenbinse (Juncus
bufonius) und Sumpf-Ruhrkraut (Gnaphalium uliginosum) finden sich bald ein. Etwas später
erscheinen ausdauernde Arten: Flatterbinse (Juncus effusus), Sumpfdistel (Cirsium palustre),
Sumpfziest (Stachys palustris) und andere.

Dieses Nacheinander kann man an den verschiedenen nebeneinander liegenden Zuständen
erkennen. Nur selten aber kommt es zur Entwicklung von Dauerzuständen, in denen sich
Holzgewächse einzstellen (siehe unten).

In den meisten Fällen wird die Pflanzendecke der feuchten Nischen nach einer oder zwei
Vegetationsperioden wieder zerstört, indem sie entweder von unten her angenagt und fort-
geschwemmt oder von oben her mit neuen Erdmassen überdeckt wird.

Die oberhalb des Schuttkegels in verschiedener Breite anstehende Steilwand ist äußerst
vegetationsarm. Dennoch lassen sich an ihr zwei Zonen erkennen. Die untere Zone entbehrt in
typischer Ausbildung jeglicher höheren Pflanze. Mitunter lassen sich grüne horizontale Streifen
erkennen; diese deuten Wasserstände an, auf denen sich Grünalgen und Moosvorkeime an-
siedeln. Nur wo Unebenheiten in der fast senkrechten Abbruchwand von oben abfallende
Teile der Ackerkrume mit Pflanzenwuchs festgehalten haben, kann man eine Blütenpflanze
finden. Dagegen zeigt der obere, der Oberkante nahe stehende Teil der Steilküste, eine
eigenartige Besiedlung mit Blütenpflanzen: aus den Wurzeln und Wurzelstöcken mancher
Arten der Oberkante treiben an der Abbruchstelle grüne Sprosse hervor. Diese Fähigkeit, neue
Sprosse zu bilden, kommt natürlich nicht allen Arten und nicht einmal allen ausdauernden
Arten zu. Insbesondere ist es der Huflattich (Tussilago farfara), der diese Fähigkeit in hervor-
gragender Weise besitzt und daher die Oberkante mit seinen Blättern dicht überzieht. Da-
neben stehen Ackerdinse (Convulvulus arvensis), Ackerdistel (Cirsium arvense), Gemeines
Johanniskraut (Hypericum perforatum) und andere. Der Bewuchs auch der Steilkante des
lebenden Kliffs deutet stets Jugendlichkeit, also fortlaufenden Abbruch, an.

An der Oberkante des Brodtener Ufers entlang führt ein Fußweg. Zwischen ihm und der
Kante bildet sich eine eigenartige Pflanzengesellschaft aus, wenn genügend Zeit vorhanden ist:
die Rainfarn-Hochstaudenflur. Am Brodtener Ufer aber hat sie an keiner Stelle Zeit zu einer
typischen Ausbildung gefunden. Der Rainfarn (Tanacetum vulgare) selber ist nur spärlich
vorhanden, neben ihm stehen einzelne Pflanzen der Flockenblume (Centaurea jacea), des Bei-
fußes (Artemisia vulgaris) und die vorhin erwähnten Stauden, die ihre Wurzeln tief in den
Lehm Boden hinabgesenkt haben und an der Abbruchkante neue Sprosse bilden. Zur Haupt-
sache aber wird dieser Streifen mit Gräsern besiedelt: Knaulgras (Dactylis glomerata), Rot-
swingel (Festuca rubra) u. a. Daneben stehen Arten, die anzeigen, daß vor einem oder zwei
Jahren der Fußweg auf diesem Streifen entlang ging, wie Breitwegerich (Plantago major),
Vogelknoterich (Polygonum aviculare), Strahllose Kamilie (Matricaria matricarioides). Also
auch hier deutet die Pflanzendecke ständigen Abbruch an. Wo der Angriff des Meeres weniger
 stark ist, und daher der Abbruch weniger schnell vor sich geht, wird der Vegetationsdecke
mehr Zeit gelassen, sich weiter zu entwickeln. Das ist namentlich im Schutze des Söhmann-
Dammes möglich gewesen. Hier hat sich daher ein geschlossener Strauchbestand vom Vor-
strand bis zur Oberkante hinauf ausbilden können. An der Artenzusammensetzung läßt sich
erkennen, daß dieser Bewuchs nicht urwüchsig ist, denn neben einheimischen Arten, wie
Schwarzdorn (Prunus spinosa), Weißdorn (Crataegus spec.), Rosen (Rosa spec.), Weiden
(Salix spec.) und besonders Stranddorn (Hippophae rhamnoides), stehen fremde, besonders
die falsche Akazie (Robinia pseudoacacia). Es ist also mindestens ein Teil dieser Sträucher gepflanzt worden, doch läßt sich nicht feststellen, ob die Bepflanzung unmittelbar am Hang erfolgt ist oder ob die Sträucher auf der Oberkante gepflanzt und nachträglich heruntergerutscht sind. Auf alle Fälle aber erfüllen sie ihre Aufgabe leidlich gut, denn ein Abbruch der Steilkante findet hier zur Zeit nur in sehr geringem Maße statt. Dies ist um so beachtenswerter, als das Meer am Fuß des Schuttkegels streckenweise ein Sekundärkliff gebildet hat, dessen weitere Ausbildung man durch Steinpackungen abzuwehren versucht hat. Die Steine aber sind durch Zweige und Wurzeln der Sträucher, die über sie hinwegrutschen, fast verdeckt. Der bebautete Hang ist noch so steil, daß man annehmen darf, daß er den durch das Substrat bedingten natürlichen Neigungswinkel nicht erreicht hat. Ohne den Schutz durch die Sträucher würden die inneren Zerfallkräfte einen viel stärkeren Abbau verursachen. An einer besonders gefährdeten Stelle (neben der Treppe) scheint eine Stauden eine wirksame Schutz zu bilden. Es ist der Staudenholunder (Sambucus ebulus), dessen dichtes Wurzelstockgefl echt den Boden festhält. Er ist allerdings eben wegen dieses Wurzelstockgeflechtes und zugleich wegen des tiefen Schattens, den sein dichtes Laubwerk hervorruft, vor seinem Wurzeln durch das Meer fortgespült wird, bis sie selber den Fluten zum Opfer fallen. Er läßt sich also feststellen, daß ein Strauchbewuchs das Ufer nicht vor dem Abbruch bewahren kann, wenn nicht ein genügend hoher Strand den Klifffuß schützt.

Ein „totes“, also in Ruhe befindliches Kliff befindet sich nur an der Südfanke, also in der Nähe von Travemünde. Hier ist der Sandvorstrand so hoch, daß er nur bei ausnahmsweise hoher Flut überspült wird, und auch dann scheint die Gewalt der Wellen so gebrochen zu sein, daß sie das Kliff nicht mehr annagt. Der Vorstrand ist hier mit einer dichten Pflanzendecke überzogen, die einer Abtragung einen erheblichen Widerstand zu bieten vermag. An der Außenkante dieses hohen Sand-Vorstandes bemerkt man allerdings ein kleines Sekundärkliff, das anzeigt, daß auch dichtbewachsenen Vorstrand nicht unbedingt vor Abbruch schützt. Sollte der hohe Vorstrand einst aufgezehrt sein, wird der Hang selber angegriffen werden.

Die Küste, 1 Heft 1 (1952), 1-158
der Abbruch von der Beschaffenheit des Vorstrandes abhängig ist. Ohne technische Hilfsmäß-
nahmen aber erhöht sich der Sandstrand nicht, da auch der aus dem Geschiebemergel an-
fallende Sand fortgeführt wird. Da aber auch die Ausbreitungseinheiten der Strandpflanzen
sich nicht oder doch nur ausnahmsweise absetzen können, kann sich selbst in ruhigen Jahres-
zeiten keine schützende Vegetation entwickeln. Es müßte daher, falls durch technische Maß-
nahmen ein Sandvorstrand geschaffen würde, dieser mit Strandpflanzen besät (mit Arten der
„Tomatenzone“) oder bepflanzt (mit Strandhafer) werden. Dadurch würde der Abbruch zwar
nicht verhindert, aber doch verzögert werden.

Wenn der Kliffuß ungeschützt bleibt, dürfte es zwecklos sein, den Hang künstlich zu
besiedeln. Selbst wenn durch umfangreiche technische Bauten ein Abbau des Kliffs durch
das Meer verhindert wird, würden die inneren Abbaukräfte noch lange Zeit am Kliff arbeiten.
Eine künstliche Begrünung würde erst dann zum Ziele führen, wenn eine Beruhigung
eingetreten ist. Es wäre denkbar, diesen Zustand durch Abschrägung der Steilküste so-
fort herbeizuführen. Wenn auf natürlichem Wege (nach Einbau eines Schutzes des Kliffußes
oder nach künstlicher Abtragung) dem stärksten Abbau gewehrt ist, dann kann der weitere
Abbau in hervorragender Weise durch eine Pflanzendeckel verhindert oder doch bis auf ein
erträgliches Maß verzögert werden. Dann müssen folgende Arten, deren Auswahl sich aus der
Beobachtung am heutigen Kliff ergeben hat, angesetzt werden. An Gräsern kämen daher in
erster Linie in Betracht:

Knaulgras (Dactylis glomerata)
Rotschwingel (Festuca rubra)
Franz. Raygras (Arrhenatherum elatius)
Quecke (Agropyron repens).

Ferner an Stauden:

Gem. Beifuß (Artemisia vulgaris)
Löwenzahn (Taraxacum officinale)
Rainfarn (Chrysanthemum vulgare)
Gem. Flockenblume (Centauraea jacea)
Schaftgarbe (Achillea millefolium)
Weißklee (Trifolium repens).

Ihrer Pflicht als Beschützer der Bodenoberfläche werden sie durch ihre Wurzelform nach-
zukommen in der Lage sein, sowohl oberirdisch durch die Staudenform als auch unterirdisch
durch ein sich gut verfilzendes Wurzelwerk.

Die wichtigste Festigung des Hanges aber müssen Holzgewächse leisten.
Es wurde am Broderner Ufer wie auch an ähnlichen anderen Abbruchufern und ruhigen
Steilufern eine nicht geringe Anzahl gut gedeihender Gehölzarten beobachtet.

Sträucher:

Schwarzdorn (Prunus spinosa)
Stranddorn (Hippophaes rhamnoides)
Feldahorn (Acer campestre)
Weißdorn (Crataegus)
Hasel (Corylus avellana)
Vogelbeere (Sorbus aucuparia)
Rosen (Rosa spec.)
Weiden (Salix spec.) u. a.

Wo stärkerer Wasseraustritt eine natürliche Nischenbildung hervorrufte, müßte man diese
erher fördern als hindern, da gerade sie als schön empfunden wird. Wenn sich die entsprechen-
den Pflanzengesellschaften nicht selber ansiedeln, müßte man z. B. den Riesenschachtelhalm
(Equisetum maximum), die Weise Pestwurz (Petasites albus) und andere schöne Stauden, die
andere Steilküsten der schleswig-holsteinischen Ostsee zieren, anpflanzen.
Wenn es technisch durchführbar ist, das Ufer so stark abzuschären, daß die inneren Abbaukräfte überhaupt unwirksam werden, dann würde bis an den Klifffuß ein Buchenwald mit seinem Vorgehölz den ganzen Hang besiedeln können oder er könnte bis unten hin der landwirtschaftlichen Nutzung zugeführt werden. Dann aber wäre die gigantische Schönheit des Brodttener Ufers, um derentwillen jährlich Tausende von Menschen es aufsuchen, verloren.

Schriftenverzeichnis

Abbruch und Schutz der Steilufer an der Ostseeküste*)
(Samland bis Schleswig-Holstein)
Von Marcus Petersen

Inhalt
A. Einleitung .. 101
B. Der Abbruch an Steilufern .. 102
 I. Erdgeschichtliche Entwicklung ... 102
 II. Landverluste .. 103
 III. Das landseitige Kräftepiel im Kliff ... 109
 IV. Das seeseitige Kräftepiel vor den Kliffs .. 110
 a) Aufarbeitung der Schutthalde .. 110
 b) Beschreibung und Bewertung der Wasserstände 111
 c) Strömungs- und Brandungsverhältnisse vor der Küste 117
 d) Abtragung des Unterwasserstrandes ... 119
 V. Verbleib des Abbruchmaterials .. 122
 a) Sedimentpetrologische Untersuchungen ... 122
 1. Seegrundkartierung .. 122
 2. Kartierung des Strandes ... 123
 b) Kartenvergleiche ... 124
 c) Berechnung der Transportkraft ... 124
C. Der Schutz von Steilufern .. 125
 I. Bauformen .. 125
 a) Dünenbau .. 125
 b) Biologischer Uferschutz .. 126
 c) Bedeutung der Steinentnahme ... 126
 d) Längswerke ... 127
 1. Flechtwerke ... 127
 2. Steindämme .. 127
 3. Ufermauern .. 128
 4. Deckwerke ... 129
 5. Kosten ... 133
 e) Querwerke (Buhnen) .. 133
 1. Anordnung der Buhnengruppen ... 133
 2. Bauweisen ... 135
 Längsschnitte ... 135
 Grundrisse ... 137
 Querschnitte .. 137
 Baustoffe ... 138
 3. Kosten ... 138
 f) Dränung .. 139
 g) Wirkung der Schutzmaßnahmen ... 139
 II. Wirtschaftliche Betrachtungen für die Planung von Uferschutzmaßnahmen vor Steilufern ... 142
 III. Vorschläge für flächenhafte Küstenschutzmaßnahmen 143
 IV. Besiedlung von Steilufern .. 147
D. Zusammenfassung ... 147
E. Schriftenverzeichnis und Quellen .. 149

*) Diese Abhandlung erscheint zugleich als Inaugural-Dissertation zur Erlangung der Würde eines Dr.-Ing. an der Technischen Hochschule (Franzius-Institut), Hannover.
A. Einleitung

In den letzten Jahrzehnten begannen auch Forscher verschiedener wissenschaftlicher Disziplinen sich mit den Naturvorgängen an der Küste zu beschäftigen [FRIEDRICH (13) 1901, KRÜGER (44) 1910, MORTENSEN (57) 1921, HARTNACK (29) 1926, WASMUND (96) 1938, GROSCHOFF (23) 1936 u.a.m.].

Um den Küstenveränderungen nachzuspüren, beauftragte die Wasserstraßendirektion Stettin im Jahre 1939 das derzeitige meeresgeologische Forschungsinstitut des Reichsamtes für Bodenforschung in Kiel-Kitzeberg, an der pommerschen Küste systematische wissenschaftliche Untersuchungen über die Vorgänge im Küstenannahem Seegebiet vorzunehmen¹). Damit ist ein neuer Abschnitt für die Beurteilung der Wirkung von Schutzwerken und für künftige Pläne an der Ostseeküste eingeleitet worden.

In beiden Fällen wurden nun andere Wege beschritten. An der pommerschen Küste bearbeiteten drei Meeresgeologen je einen bestimmten Küstenabschnitt in ozeanographischer,

¹) An der Westküste Schleswig-Holsteins wurde im Jahre 1934 mit der Durchführung eines großzügig angelegten Forschungsprogramms für die Pläne der Landgewinnung und der Landerhaltung im Wattengebiet begonnen [LORENZEN (47)].

Die Untersuchungen an der pommerschen Küste und am Brodtener Ufer haben eine Reihe von neuen Erkenntnissen über die Naturvorgänge und über die Wirkung von Eingriffen in diese gezeitigt, so daß nunmehr eine eingehende Betrachtung des Schutzes von Steilufern an der Ostseeküste angebracht erscheint. Verfasser hat die schleswig-holsteinische Küste im Rahmen der Dienstgeschäfte als Leiter der Untersuchungsstelle Brodtener Ufer beim Wasser- und Schifffahrtsamt Lübeck und als Mitarbeiter der Arbeitsgruppe Steil- und Flachküsten im „Küstenausschuß Nord- und Ostsee“ mehrmals besichtigen können. Wenn auch eine Ortsbesichtigung der mecklenburgischen, pommerschen und samländischen Küste nicht möglich war, so dürften die angezogenen Veröffentlichungen und Berichte ausreichen, um die beiden Hauptfragen dieser Arbeit unter Berücksichtigung der unterschiedlichen geographischen Lage der Küstenabschnitte zu behandeln:

1. Warum brechen Steilufer ab?
2. Wie wurden die Maßnahmen zur Verhinderung des Uferabbruchs ausgeführt?

Auf Grund einer rund hundertjährigen Baueraufahrung und der neuen Erkenntnisse über die Naturvorgänge an der Ostseeküste werden Überlegungen für künftige Uferschutzplanungen angestellt.

B. Der Abbruch an Steilufern

I. Erdgeschichtliche Entwicklung

Die zeitliche Datierung von Überflutungsmerkmalen wurde an der schleswig-holsteinischen Ostseeküste von TAPPFER (90) und besonders an der inneren Lübecker Bucht von SCHMITZ (81) mit Hilfe pollenanalytischer Untersuchungen vorgenommen.

Der Angriff des Meeres auf die Brodtener Landzunge begann etwa um 4000 v. Chr. und dauert noch heute an. Die Verlagerung des Anschnittwinkels bzw. des Kliffußes ist also durch zwei Bewegungsrichtungen gekennzeichnet:

1. durch eine augenscheinlich landwärtige und
2. durch eine langsamere, von dem Ansteigen des Wasserspiegels abhängige, senkrechte Bewegung.
Abb. 1. Die deutsche Ostseeküste vom Samland bis Schleswig-Holstein
Erst wenn auch die Wurzel der Landzunge bis hinter das Dorf Brodten abgebaut sein wird, dürfte die natürliche Alterung des Kliffs, ähnlich wie seit längerem vor Scharbeutz, in der inneren Eckernförder Bucht und an anderen Steilufern eintreten.

Der heutige Zustand der Steilufer stellt nur eine Momentaufnahme des säkularen erdgeschichtlichen Geschehens dar. In diesen Vorgang wird man mit Erfolg nicht eher eingreifen können, bis eine Klärung der Grundbedingungen der Entwicklung herbeigeführt worden ist.

II. Landverluste

Die 70 km langen Steilküsten des Samlandes traten danach jährlich im Mittel um 0,50 m zurück. Dieser Wert würde sich wahrscheinlich verringern, wenn er aus planmäßig für die Ermittlung des Landverlustes angelegten Messungen gewonnen werden könnte.

Die Angaben über den Rückgang der Steilküsten Pommerns mögen zunächst als reichlich erscheinen. Doch für eine genaue Ermittlung der mittleren Uferrückgangswerte fehlen vor allem Maße über die Küstenstrecken, denen die Werte für die Bestimmung des Areals jeweils

<table>
<thead>
<tr>
<th>Küstenabschnitt</th>
<th>Uferrückgang</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samland (nach Heiser (31))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marscheiten</td>
<td>1847—1885 38</td>
<td>0,85</td>
</tr>
<tr>
<td>Marscheiten</td>
<td>1895—1920 25</td>
<td>0,37</td>
</tr>
<tr>
<td>Kreislaken</td>
<td>1821—1910 90</td>
<td>0,50</td>
</tr>
<tr>
<td>Kraxteppel</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>Palmnicken</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>Hubnicken</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>Sorgenauer Bucht</td>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td>Samland 70 km</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>Pommern (nach Heiser (31) und Hartnack (29))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rixhöft</td>
<td>1862—1938 76</td>
<td>2,35 (?)</td>
</tr>
<tr>
<td>Nordöstl. Stolpmünde</td>
<td>bis 150</td>
<td>bis 2,0 — Maximalwert nach Geib (16)</td>
</tr>
<tr>
<td>Jershoff</td>
<td>1841—1883 42</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>1883—1922 39</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>1841—1922 81</td>
<td>0,55</td>
</tr>
<tr>
<td>Rügenwaldermünde</td>
<td>1872—1924 52</td>
<td>70—100 1,40—1,90 östlich der Molen</td>
</tr>
<tr>
<td>Sorenbohm</td>
<td>53</td>
<td>100 0,70—1,90</td>
</tr>
<tr>
<td>Bornhagen</td>
<td>53</td>
<td>31—90 0,60—1,70</td>
</tr>
<tr>
<td>Funkenhagen</td>
<td>53</td>
<td>60 1,15</td>
</tr>
<tr>
<td>Bodenhagen</td>
<td>53</td>
<td>60 1,15</td>
</tr>
<tr>
<td>Elysium</td>
<td>54</td>
<td>40 0,75</td>
</tr>
<tr>
<td>Henkenhagen</td>
<td>1822—1924 102</td>
<td>40—50 0,45</td>
</tr>
<tr>
<td>Horst</td>
<td>1842—1892 50</td>
<td>0,47 — ausgezeichnete Quelle</td>
</tr>
<tr>
<td>Horst</td>
<td>1842—1908 66</td>
<td>0,31</td>
</tr>
</tbody>
</table>
Küstenabschnitt | Zeitabschnitt | Uferrückgang | Bemerkungen
--- | --- | --- | ---
Kirche von Hoff | 1750—1883 | 133 | 0,42
Kirche von Hoff | 1883—1922 | 39 | 0,23
Misdroy-Swantuß | 1694—1886 | 192 | 0,80
Wollin | 1695—1924 | 229 | 180—200, 0,90 — Annahme (HEISER)
Usedom Koserow | | 320 | 1,45 — „an dieser Stelle“
Usedom Streckelsberg | 220 | 240 | 1,00
Usedom Streckelsberg | 1874—1913 | 40 | „keinerlei wesentliche Abbrüche“
Zingst | 1828—1924 | 96 | 75—220, 1,50 — „an einer Stelle“ 2,30 m

Tabelle 2

Landverlust der mecklenburgischen Küste nach ZANDER (105)

Küstenabschnitt	Länge (km)	m/Jahr	m³/Jahr	Bemerkungen
Fischland	3,15	0,65	2050	
Nehrung	6,5	0,52	3380	
Nordöstl. Heide	17,9	0,60	10700	
Breitling Ost	4,0	0,44	1760	
Stoltera-Konventersee	10,9	0,32	3480	
Heiligendamm-Buk	7,8	0,18	1400	
Buk — Alt Gaarz	6,0	0,38	2270	
Werder	1,5	0,26	390	
angrenzende Felder	3,8	0,05	190	
Redentin-Wismar	5,3	0,12	640	
Hohen Wieschendorf	6,4	0,47	3000	
Redewisch	2,3	0,66	1500	
Gr. Klütz Höved — Priwall	17,8	0,16	2650	
Poel	11,9	0,23	2700	
Total	**115,25**	**0,32**	**36110**	---

zugeordnet werden müßten. Auf Schätzungen kann daher nicht verzichtet werden. Wird angenommen, daß die Abbruchstrecken Pommerns zusammen rund 200 km umfassen und daß der Uferrückgang im Durchschnitt etwa 0,80 m/Jahr beträgt, dann dürften diese Werte im Vergleich zu anderen Küsten als reichlich angesehen werden können. Für die wirtschaftlichen Betrachtungen (vgl. S. 142) sind sie darum begründet, weil sie mit Sicherheit eher zu günstige als übertriebene Werte darstellen.

Mit der Ermittlung der Landverluste an der mecklenburgischen Küste haben sich GEINITZ (17) und ZANDER (105) befaßt. GEINITZ rechnete mit abgerundeten Maßen, die entsprechend zusammengestellt 52,7 km Abbrucharste und 33 590 m² Abbruchfläche, d. h. einen Uferrückgang von 0,64 m/Jahr, ergaben. ZANDER kam nach Auswertung von Vermessungen auf 115 km Abbrucharste und 36 110 m² Abbruchfläche, d. h. auf einen Uferrückgang von nur 0,32 m/Jahr (Tab. 2).

Entsprechende Untersuchungen an den Steilküsten Schleswig-Holsteins [KANNENBERG (39)] ergaben 53,5 km Abbrucherfer und 0,21 m/Jahr als mittleren Rückgangsbetrag. Der letzte Wert kann mit einem mittleren Fehler von ± 17 v. H. behaftet sein (Tab. 3). Deshalb wird sicherheitshalber mit dem ungünstigsten Wert von rund 0,25 m/Jahr gerechnet.
Der durchschnittliche jährliche Bodenverlust beträgt danach für die betrachteten Küstenabschnitte:

<table>
<thead>
<tr>
<th>Küstenabschnitt</th>
<th>Länge (km)</th>
<th>Breite (m)</th>
<th>Fläche (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samland</td>
<td>70</td>
<td>0,50</td>
<td>3,5</td>
</tr>
<tr>
<td>Pommern</td>
<td>200</td>
<td>0,80</td>
<td>16,0</td>
</tr>
<tr>
<td>Mecklenburg</td>
<td>115</td>
<td>0,32</td>
<td>3,6</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>53,5</td>
<td>0,25</td>
<td>1,3</td>
</tr>
<tr>
<td>zus. rund</td>
<td></td>
<td></td>
<td>24,4</td>
</tr>
</tbody>
</table>

Tabelle 3

<table>
<thead>
<tr>
<th>Steilufer</th>
<th>Gesamtlänge km</th>
<th>Abbruchlänge* km</th>
<th>Abbruchfläche qm</th>
<th>mittl. Rückg. jährl. Rückg. d. Abbruchfläche m</th>
<th>± v. H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brodten</td>
<td>4,5</td>
<td>4,0</td>
<td>130 000</td>
<td>32,5</td>
<td>0,43</td>
</tr>
<tr>
<td>Sierksdorf</td>
<td>2,4</td>
<td>1,3</td>
<td>12 000</td>
<td>9,2</td>
<td>0,12</td>
</tr>
<tr>
<td>Wintershagen</td>
<td>0,6</td>
<td>0,3</td>
<td>5 000</td>
<td>16,7</td>
<td>0,22</td>
</tr>
<tr>
<td>Pelzerhaken</td>
<td>1,3</td>
<td>(1,0)</td>
<td>30 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Bliesdorf</td>
<td>5,4</td>
<td>(3,0)</td>
<td>15 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Dahmeshöved</td>
<td>2,0</td>
<td>1,6</td>
<td>50 000</td>
<td>31,2</td>
<td>0,42</td>
</tr>
<tr>
<td>Siggen</td>
<td>6,2</td>
<td>(3,8)</td>
<td>30 000</td>
<td>7,9</td>
<td>0,11</td>
</tr>
<tr>
<td>Großenbrode</td>
<td>4,3</td>
<td>(1,0)</td>
<td>15 000</td>
<td>7,5</td>
<td>0,10</td>
</tr>
<tr>
<td>Lütjenbrode</td>
<td>2,4</td>
<td>(2,0)</td>
<td>15 000</td>
<td>7,5</td>
<td>0,10</td>
</tr>
<tr>
<td>Heiligenhafen</td>
<td>2,0</td>
<td>(1,5)</td>
<td>15 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Johannisthal</td>
<td>4,0</td>
<td>(1,5)</td>
<td>15 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Putlos</td>
<td>2,8</td>
<td>(2,0)</td>
<td>25 000</td>
<td>12,5</td>
<td>0,17</td>
</tr>
<tr>
<td>Weißenhaus</td>
<td>4,0</td>
<td>(1,2)</td>
<td>25 000</td>
<td>20,8</td>
<td>0,28</td>
</tr>
<tr>
<td>Hohwacht</td>
<td>0,7</td>
<td>(0,3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lippe</td>
<td>0,3</td>
<td>0,2</td>
<td>2 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Satjendorf</td>
<td>5,3</td>
<td>(3,0)</td>
<td>70 000</td>
<td>23,3</td>
<td>0,31</td>
</tr>
<tr>
<td>Stein</td>
<td>1,6</td>
<td>1,2</td>
<td>15 000</td>
<td>12,5</td>
<td>0,17</td>
</tr>
<tr>
<td>Kieler Innenförde</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schilksee</td>
<td>1,8</td>
<td>(1,0)</td>
<td>10 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Strande</td>
<td>0,5</td>
<td>(0,2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alt-Bülk</td>
<td>0,8</td>
<td>0,3</td>
<td>3 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Stohl</td>
<td>4,0</td>
<td>(3,0)</td>
<td>57 000</td>
<td>19,0</td>
<td>0,25</td>
</tr>
<tr>
<td>Dän. Nienhof</td>
<td>3,4</td>
<td>1,3</td>
<td>19 000</td>
<td>14,6</td>
<td>0,19</td>
</tr>
<tr>
<td>Surendorf</td>
<td>3,0</td>
<td>(0,8)</td>
<td>5 000</td>
<td>6,3</td>
<td>0,08</td>
</tr>
<tr>
<td>Nör</td>
<td>3,0</td>
<td>(1,5)</td>
<td>16 000</td>
<td>10,6</td>
<td>0,14</td>
</tr>
<tr>
<td>Altenhof</td>
<td>2,6</td>
<td>(1,0)</td>
<td>10 000</td>
<td>10,0</td>
<td>0,13</td>
</tr>
<tr>
<td>Hemmelmark</td>
<td>0,8</td>
<td>0,4</td>
<td>3 000</td>
<td>7,5</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Die Küste, 1 Heft 1 (1952), 1-158
<table>
<thead>
<tr>
<th>Steilufer</th>
<th>Gesamtlänge km</th>
<th>Abbruchlänge* km</th>
<th>Abbruchfläche qm</th>
<th>mittl. Rückg. d. Abbruchlänge m</th>
<th>jährl. Rückg. d. Abbruchlänge m</th>
<th>F**)</th>
<th>± v. H.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein Waabs</td>
<td>2,7</td>
<td>(2,2)</td>
<td>42 000</td>
<td>19,1</td>
<td>0,25</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Boknis</td>
<td>2,3</td>
<td>1,6</td>
<td>35 000</td>
<td>21,8</td>
<td>0,29</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Schönhagen</td>
<td>2,0</td>
<td>1,6</td>
<td>55 000</td>
<td>34,3</td>
<td>0,46</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Düttrebüll</td>
<td>2,1</td>
<td>(1,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geltinger Bucht</td>
<td>2,4</td>
<td>(1,8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinberghaff</td>
<td>2,2</td>
<td>(1,2)</td>
<td>10 000</td>
<td>8,3</td>
<td>0,11</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Habernis</td>
<td>1,8</td>
<td>(0,8)</td>
<td>18 000</td>
<td>22,5</td>
<td>0,30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Neukirchen</td>
<td>2,6</td>
<td>(1,0)</td>
<td>14 000</td>
<td>14,0</td>
<td>0,19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Dollerupholz</td>
<td>3,8</td>
<td>(2,3)</td>
<td>23 000</td>
<td>10,0</td>
<td>0,13</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Langballigholz</td>
<td>1,2</td>
<td>(0,8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bockholm</td>
<td>2,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holnis</td>
<td>2,7</td>
<td>(0,8)</td>
<td>9 000</td>
<td>11,2</td>
<td>0,15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Flensburg Innenförde</td>
<td>8,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Die eingeklammerten Abbruchlängen umfassen lediglich die Hauptabbruchstrecken gemäß der Definition des Abbruchsteilufers.

**) F = Genauigkeit der berechneten Abbruchfläche. Die unterschiedliche Genauigkeit ergibt sich aus der Verschiedenartigkeit der zur Verfügung stehenden Meßergebnisse, je nachdem ob Nachvermessungen durch Katasterämter vorlagen oder in welchem Umfange eigene Messungen durchgeführt werden konnten.

In den Veröffentlichungen und Berichten über die Abbruchmaße schwankt der mittlere Wert des jährlichen Rückgangs zwischen 3,45 m [DALMANN (7)] und 0,34 m [BURK (3)]

Für die Stirnseite des Steilufers veröffentlichte FRIEDRICH (13) das Maß von 1,20 m/Jahr. REHDER hatte es für die Zeit von 1877 bis 1901 über die ganze Länge der Abbruchstrecke bereits zu 0,49 m/Jahr ermittelt. HEISER (31) gab für das Brodterer Ufer noch den Betrag von „mehr als 1,00 m“ an.

Bei den Erörterungen über die Gefahr für die Ortschaft Brodten rechneten FRIEDRICH (13) und REHDER (76) damit, daß das Kliff in dreihundert bis vierschundert Jahren den Ortsrand erreicht haben würde. Die kürzeste Entfernung zum Steilufer beträgt heute etwa 400 m und der mittlere jährliche Rückgang 0,43 m. Unter der Voraussetzung der seit 1877 beobachteten und gleichbleibenden Rückgangsgeschwindigkeit würde das bedeuten, daß Brodten in etwa neunhundert Jahren unmittelbar gefährdet sein dürfte.

1) In der Berechnung des mittleren jährlichen Abbruchs fehlt bei BURK die Fläche des Zeitabschnittes 1901 bis 1914. Führt man diese in die Rechnung ein, so erhöht sich der Wert auf 0,45 m/Jahr.
Tabelle 4

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Legendebezeichnung</th>
<th>Fläche in m²</th>
<th>Länge in m</th>
<th>Gesamt-Breite in m</th>
<th>Br. d. Abt. in m</th>
<th>Fläche in m²</th>
<th>Länge in m</th>
<th>Gesamt-Breite in m</th>
<th>Br. d. Abt. in m</th>
<th>Fläche in m²</th>
<th>Länge in m</th>
<th>Gesamt-Breite in m</th>
<th>Br. d. Abt. in m</th>
<th>Fläche in m²</th>
<th>Länge in m</th>
<th>Gesamt-Breite in m</th>
<th>Br. d. Abt. in m</th>
<th>Fläche in m²</th>
<th>Länge in m</th>
<th>Gesamt-Breite in m</th>
<th>Br. d. Abt. in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>

An einigen Küstenstrecken wird der Abbruch von Steilufern durch die Wirkung von Uferschutzwerken langsamer vonstatten gehen. Es dürfte aber eine Beweisführung über den Anteil, den ein Bauwerk an der Verzögerung des Rückgangs gehabt hat, kaum gelingen; denn die am Ufersrückgang beteiligten Faktoren stehen in zu komplizierter Wechselwirkung zueinander, um den quantitativen Anteil eines einzelnen Faktors erfassen zu können.

Abb. 2. Der Rückgang des Brodteners Ufers von 1877 bis 1949

III. Das landseitige Kräftespiel im Kliff

\(^3\) MW = Mittelwasser ist das gewogene Mittel aller Terminbeobachtungen eines Zeitabschnitts (Monat, Jahreszeit, Jahr oder Jahresreihe).

Die vorstehend beschriebenen Eigenschaften des Geschiebemergels dürften je nach Abweichung von dem hier untersuchten Boden auch für andere Steilküsten gelten. Sie erklären die in jedem Winter zu beobachtenden Schlammströme (Abb. 6), das Abstürzen der mehr oder weniger großen Mergelshollen (Abb. 7) und die Bildung der Schutthalde am Fuße des Kliffs. Bei einer Besichtigung des Steilufers unmittelbar nach einem Hochwasser kann man feststellen, daß die Schutthalde nicht mehr vorhanden ist. Sie wurde in der Brandung aufgearbeitet. Selbst das anstehende Kliff ist noch in Mitleidenschaft gezogen worden (Abb. 4 u. 8). Im Anschnittwinkel können und werden sich neue Bodenmassen anhäufen, bis sie demselben Schicksal verfallen. Es ist eine sich stets wiederholende Naturerscheinung.

In diesem Zusammenhang wird abschließend festgestellt: Ohne Einwirkung der lösenden und transportierenden Kräfte des Meeres würde sich vor den Steilufern bald ein flach geböschter und bewachsender Hang ausbilden.

IV. Das seeseitige Kräftepiel vor den Kliffs

a) Aufarbeitung der Schutthalde

Der natürliche Überwasserstrand vor einem abbrechenden Steilufer ist meist schmal. Bei MW beträgt seine Breite etwa 8 bis 15 m. In den Wintermonaten wird der Überwasserstrand zeit- und streckenweise ganz mit breiigen Schlammassen und abgestürzten Mergelbrocken bedeckt, die zur Bildung einer an die anstehende Geschiebemergelwand angelehnten Schutthalde führen (Abb. 6 u. 7).

Die Höhe des Überwasserstandes beschränkt sich im allgemeinen auf wenige Dezimeter über MW, so daß die Schutthalde bereits bei etwas überhöhten Wasserständen benetzt wird. Da die Entstehung der Schutthalde zeitlich in den Monaten November bis April mit häufig überhöhten Wasserständen zusammenfällt, sind die Voraussetzungen für eine laufende Aufarbeitung des niedergeflossenen bzw. -gestürzten Bodens günstig. Der lockere Boden wird durch die turbulente Bewegung des Wassers nach seinen Bestandteilen sortiert, und diese werden entsprechend ihrer Größe und Schwere abtransportiert. Zunächst werden die tonigen und schluffigen Teile ausgesondert und schwebend im Wasser fortgetragen. Die Ausfällung

*) Sämtliche Aufnahmen vom Verfasser.
Frische Schlammströme vor der Koppel Ahrenlande als Folge intensiven Grundwasseraustritts

Staffelförmiger Schollenabbruch an der Koppel Ahrenlande als Folge von Grundwasseraustritt und Frostwirkung
Brandungshöhlen 4 und 5 m tief, rechts Zusammenbruch der Steilwand

Brandungshöhlen 4 und 5 m tief, rechts Zusammenbruch der Steilwand

Vertrocknete, später durch Regenwasser erodierte Schlammmasen.
Im oberen Teil freigelegte anstehende Geschiebemergelbank
und Ablagerung der Schwebstoffe findet in Zonen ohne oder mit geringer Wasserbewegung, d. h. in größeren Tiefen der Ostsee statt. Sande und Kiese hingegen verbleiben im Küstenbereich, wo sie den Kräften der Brandung und Strömung ausgesetzt auf dem unternahen Seegrund entlang bewegt werden (Geschiebe). Etwa faustgroße und bei Stürmen auch kopfgroße Steine werden in der Uferzone fortgerollt (Gerdlle). Die geringste Ortsveränderung erfahren Felsblöcke, die bei dem Ausbrechen aus dem Steilhang seewärts stürzen und im Abrasionsgebiet gelegentlich nochmals umkippen können und der Vertiefung des Unterwasserstrandes folgen.

Im Sommer bleibt die Form des Steilufers, von unwesentlichen Abbrüchen abgesehen, unverändert. Der Teil der Schutthalde, der im Frühjahr nicht mehr aufgearbeitet wird, erhärtet sich infolge Verdunstung der Feuchtigkeit und wird zu einem verhältnismäßig widerstandsfähigen Boden (Abb. 9).

Die Beseitigung der Schuttmassen vor Steilufern ist demnach ausschließlich auf die Dynamik des Meeres bei hohen Wasserständen zurückzuführen.

b) Beschreibung und Bewertung der Wasserstände

Um die Zeit, als eine verstärkte Bautätigkeit an den Hafeneinfahrten einsetzte, richtete die Wasserbauverwaltung einen Beobachtungsdienst zur Erfassung der Wasserstände ein, da über das Verhalten des Wasserspiegels und über die Ursache seiner Schwankungen für die Belange der Schiffahrt und für die Bemessung von Bauwerken genaue Angaben benötigt wurden. Die Aufzeichnungen am Lattenpegel Swinemünde und Kolberg reichen bis zum Jahre 1810 und die vom Lattenpegel Travemünde bis zum Jahre 1826 zurück (Tab. 5).

<table>
<thead>
<tr>
<th>Ostseepegel</th>
<th>Beobachtet seit</th>
<th>Lattenpegel (L)</th>
<th>Schreibpegel (S)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memel</td>
<td>1811</td>
<td>L + S</td>
<td></td>
<td>S seit 1901 veröffentlicht.</td>
</tr>
<tr>
<td>Stolpmünde</td>
<td>1. 2. 1858</td>
<td>L + S</td>
<td></td>
<td>Zeit der Inbetriebnahme liegt weiter zurück.</td>
</tr>
<tr>
<td>Kolberg</td>
<td>1. 8. 1810</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swinemünde</td>
<td>1. 9. 1810</td>
<td>L + S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stralsund</td>
<td>1. 3. 1846</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warnemünde</td>
<td>1855</td>
<td>L + S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wismar</td>
<td>1849</td>
<td>L + S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travemünde</td>
<td>1826</td>
<td>L + S</td>
<td></td>
<td>S seit 1885</td>
</tr>
<tr>
<td>Kiel</td>
<td>1870</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flensburg</td>
<td>1. 3. 1872</td>
<td>L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nach HAGEN (25) wurde im Jahre 1845 die Vorschrift erlassen, „daß der Wasserstand jedesmal Mittags um 1200 Uhr beobachtet und in die Tabelle eingetragen werden solle“. Seitdem gibt es eine systematische Beobachtung.

Die Auswertung der Aufzeichnungen zielt darauf hin, das MW an den Pegelstellen und die Abweichungen der Einzelbeobachtungen vom MW zu ermitteln. Die täglichen Schwankungen um das MW sind im Verhältnis zu den Gezeitenerscheinungen der Nordsee gering.

Tabelle 6

<table>
<thead>
<tr>
<th>HHW 1896—1925</th>
<th>MW 1896—1925</th>
<th>NNW</th>
<th>HHW—NNW</th>
<th>HHW—MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>Memel</td>
<td>651</td>
<td>504</td>
<td>410</td>
<td>241</td>
</tr>
<tr>
<td>Swinemünde</td>
<td>696</td>
<td>498</td>
<td>375</td>
<td>321</td>
</tr>
<tr>
<td>Travemünde</td>
<td>830</td>
<td>490</td>
<td>293</td>
<td>537</td>
</tr>
</tbody>
</table>

4) Jahrbuch für die Gewässerkunde Norddeutschlands, Abflußjahr 1926.
Die nördlich Osten erhöhte MW-Fläche (Abb. 10) erklärt sich als Stau infolge der vorherrschenden westlichen Winde. Die extremen Wasserstände dagegen vermögen in der westlichen Ostsee bis zu + 3,40 m MW anzuschwellen. Sie nehmen nach Memel hin ab.

Zum Vergleich sei erwähnt, daß der Unterschied vom mittleren Tidehochwasser (MThw 641 cm) zum höchsten beobachteten Wasserstand (HHThw 966 cm) am Pegel Cuxhaven 3,25 m beträgt.

Als Ursache für die Wasserstandsschwankungen der Ostsee kommen meteorologische, morphologische und kosmische Faktoren in Betracht. Der wirksamste Faktor ist der Wind. Stürme aus SW oder NO überlagern alle anderen Schwankungserscheinungen, wenn sie in Richtung des langgestreckten Ostseebeckens das Wasser absenken oder anstauen. Bei sprungartigem Luftdruckanstieg, rascher Temperaturzunahme, plötzlichem Umspringen des Windes oder ganz lokaler plötzlicher Steigerung der Windstärke ist in wenigen Minuten eine Hebung des Wasserspiegels bis zu 1,5—2,0 m möglich [CREDNER (6)].

6) in Travemünde.
Man darf hieraus schließen, daß die Flutwelle etwa 12 Stunden gebraucht, um den sehr unregelmäßigen und vielfach gekrümmten Weg durch das Kattegat und den Großen Belt zurückzulegen. Den normalen Hub in Travemünde haben GRIESEL (22) und PETERSEN (66) mit 18 bis 19 cm nachgewiesen.

Für die Auswertung von Wasserstandsbeobachtungen g rößerer Zeitabschnitte haben MODEL (56) und GAYE (15) verschiedene Verfahren angewandt. Das Ergebnis beider Arbeiten kann dahingehend zusammengefaßt werden, daß in der südlichen Ostsee auch heute noch eine Niveauverschiebung zugunsten des Meeres stattfindet. Was MODEL als „Küstenkenkung“ deutet, erklärt GAYE als „Anstieg des Meeresspiegels“. Wahrscheinlich sind sowohl eustatische als auch isostatische Faktoren an dem Vorgang beteiligt. Nach GAYE beträgt die Verschiebung in hundert Jahren für Travemünde 25,6 cm und für Pillau 16,3 cm, d. h. sie nimmt nach Osten hin ab. Als REHDER 1886 die Peilungen vor der Travemündung ausführte, lag das MW 18 cm unter dem heutigen MW.

Den größten Einfluß auf die Küstenveränderungen haben die Sturmfluten mit den extremen Wasserständen. Sie bedeuten für die Bauwerke an der See zugleich Zeiten der Bewährung. Deshalb interessieren den Seebauingenieur in besonderem Maße die höchsten Wasserstände, die an einem Ort der Küste auftreten können, und die Häufigkeit ihrer Wiederkehr. Nach der verdienstvollen Zusammenstellung von KRÜGER (44) wurden die mit Höhenmaßen angegebenen Sturmfluten in Tabelle 7 übertragen, die für die letzten Jahrzehnte nach dem Jahrbuch für die Gewässerkunde noch ergänzt werden konnten.

Tabelle 7

Sturmfluten an den Küsten der südlichen Ostsee
(mit Wasserständen von 1,50 m und mehr über MW)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Tag u. Monat</th>
<th>Ort</th>
<th>Wasserstand über MW in m</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1625</td>
<td>10.2.</td>
<td>Rostock</td>
<td>3,06</td>
<td>KRÜGER (44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lübeck</td>
<td>2,84</td>
<td></td>
</tr>
<tr>
<td>1694</td>
<td>10./11.1.</td>
<td>Lübeck</td>
<td>2,86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flensburg</td>
<td>2,7</td>
<td></td>
</tr>
</tbody>
</table>

Die Küste, 1 Heft 1 (1952), 1-158
<table>
<thead>
<tr>
<th>Jahr</th>
<th>Tag u. Monat</th>
<th>Ort</th>
<th>Wasserstand über MW in m</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1823</td>
<td>4./5. 12.</td>
<td>Kolberg</td>
<td>1,87</td>
<td></td>
</tr>
<tr>
<td>1835</td>
<td>19. 12.</td>
<td>Flensburg</td>
<td>2,54</td>
<td></td>
</tr>
<tr>
<td>1836</td>
<td>26. 12.</td>
<td>Lübeck</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>1855</td>
<td>2. 1.</td>
<td>Swinemünde</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>1864</td>
<td>29. 6.</td>
<td>Danzig</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>1864</td>
<td>5./6. 11.</td>
<td>Stralsund</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>1867</td>
<td>30. 12.</td>
<td>Lübeck</td>
<td>2,04</td>
<td></td>
</tr>
<tr>
<td>1872</td>
<td>12./13. 11.</td>
<td>Travemünde</td>
<td>1,97</td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>9./10. 2.</td>
<td>Kolberg</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>4./5. 12.</td>
<td>Stolpmünde</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>25. 11.</td>
<td>Travemünde</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td>24./25. 3.</td>
<td>Travemünde</td>
<td>1,72</td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>19. 4.</td>
<td>Kolberg</td>
<td>1,51</td>
<td></td>
</tr>
<tr>
<td>1904</td>
<td>30./31. 12.</td>
<td>Wismar</td>
<td>1,56</td>
<td></td>
</tr>
<tr>
<td>1906</td>
<td>4. 12.</td>
<td>Swinemünde</td>
<td>1,73</td>
<td></td>
</tr>
<tr>
<td>1908</td>
<td>9. 1.</td>
<td>Warnemünde</td>
<td>1,93</td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td>25. 1.</td>
<td>Travemünde</td>
<td>2,22</td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>30./31. 12.</td>
<td>Flensburg</td>
<td>2,33</td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>7. 11.</td>
<td>Flensburg</td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>7. 11.</td>
<td>Flensburg</td>
<td>1,74</td>
<td></td>
</tr>
<tr>
<td>1935</td>
<td>2./3. 3.</td>
<td>Flensburg</td>
<td>1,59</td>
<td></td>
</tr>
<tr>
<td>1936</td>
<td>9. 2.</td>
<td>Flensburg</td>
<td>1,85</td>
<td></td>
</tr>
<tr>
<td>1939</td>
<td>13./14. 2.</td>
<td>Flensburg</td>
<td>1,89</td>
<td></td>
</tr>
<tr>
<td>1941</td>
<td>13. 11.</td>
<td>Flensburg</td>
<td>1,90</td>
<td></td>
</tr>
<tr>
<td>1946</td>
<td>13. 1.</td>
<td>Travisemünde</td>
<td>1,70</td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>2. 3.</td>
<td>Kiel</td>
<td>1,69</td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>11. 12.</td>
<td>Travemünde</td>
<td>1,88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wismar</td>
<td>1,53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kiel</td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travemünde</td>
<td>1,58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kiel</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flensburg</td>
<td>1,51</td>
<td></td>
</tr>
</tbody>
</table>
Zu der Vollständigkeit der Tabelle 7 ist folgendes zu bemerken: Bis zum Beginn des vorigen Jahrhunderts wurden nur außergewöhnlich hohe Sturmfluten mehr oder weniger zufällig überliefert. Im 19. Jahrhundert wuchs das Bedürfnis und damit das Interesse zur Beobachtung der Wasserstände, ohne daß sie gleich vollständig erfaßt werden konnten. Das Jahrbuch für Gewässerkunde, welches nach den ausgewerteten Wasserstandslisten zusammengestellt ist, enthält alle Sturmfluten, die an den verschiedenen Orten gemessen worden sind.

Aus Tabelle 7 geht weiter hervor, daß die hohen Wasserstände vor allem in der Beltsee keine Seltenheit sind. Zeitabschnitte ohne größere Sturmfluten, wie z. B. seit dem Jahre 1913, bieten keinerlei Gewähr dafür, daß Sturmfluten nicht wiederkehren. Von 1825 bis 1913, d. h. in rund neunzig Jahren sind an der Küste der westlichen Ostsee elf Sturmfluten mit Wasserständen von mehr als 2 m über MW gezählt worden. Im Durchschnitt muß also etwa alle zehn Jahre mit einer schweren Sturmflut gerechnet werden.

Daß nicht nur die Höhe, sondern auch die Dauer eines Hochwassers für die Aufarbeitung der Schutthalde und für den anschließenden unmittelbaren Angriff auf den anstehenden Geschiebemergel eines Steilufers entscheidend sein kann, mag Abbildung 12 veranschaulichen. Das MW lag im Jahre 1898 am Pegel Staatswerft Lübeck auf -0,12 m NN. Der höchste Wasserstand reichte bis +1,72 m MW; bei einem Wasserstand von mehr als einem Meter über MW tobte die Brandung rund achtzehn Stunden lang gegen das Brodtener Steilufer. Der Wasserstand von +0,80 m MW dauerte rund 74 Stunden an. Dieses Beispiel ist besonders geeignet, die Bedeutung der nicht sehr hohen, aber lang andauernden Hochwasser zu veranschaulichen. Am 10./11. Dezember 1949 stand das Wasser dagegen nur rund 33 Stunden lang über +0,80 m MW, und am Ende war der Fuß des Steilufers restlos von Schuttmassen geräumt.

Nun ist der Verlauf der Wasserstandsganglinien bei jedem Hochwasser ein anderer; denn die Entwicklung der Sturmfluten erfolgt jeweils bei unterschiedlichen Wetterlagen. Die Zugbahnen der Tiefs sind nie genau gleich, wie auch der Luftdruckgradient von Fall zu Fall verschieden ist.

In der westlichen Ostsee sind es ausschließlich Stürme mit Windrichtungen aus N, NO, O, die die hohen Wasserstände an der Küste hervorrufen. Der überwiegende Anteil entfällt auf die Nordostrichtung.

Im Rahmen der Untersuchungen am Brodtener Ufer wurde unter anderem versucht, eine Beziehung zwischen dem Landverlust und den hohen Wasserständen abzuleiten. Die lückenlose Beobachtungsreihe von 1885 bis 1949 am Pegel Staatswerft Lübeck lieferte das erforder-
liche Material für eine umfangreiche statistische Bearbeitung aller Wasserstände über + 0,50 m MW). Diese wurden sämtlich auf die hochwasserverursachenden Wetterlagen hin überprüft [STARK (89)]. Abbildung 13 zeigt einerseits die Abbruchflächen der Parzelle Hochhorst an der Stirnseite des Brodtener Ufers für die Zeitabschnitte der Vermessungen (vgl. Tab. 4). Für dieselben Zeitabschnitte sind andererseits die Stunden summiert worden, welche die Dauer eines Hochwassers z. B. mit einem höheren Wasserstand als + 0,80 m MW angeben. Die Verschiebung des Ansatzpunktes im ersten Zeitabschnitt erklärt sich aus dem ungleichen Beginn der Vermessungen 1877 und der Wasserstandsbeobachtungen 1885. Aus dem ähnlichen Verlauf der Ganglinien kann gefolgert werden, daß eine Beziehung zwischen der Dauer der hohen Wasserstände und dem Maß des Uferabbruchs vorhanden ist [PETERSEN (65)]. Die Zusammenhänge sind vorläufig noch zu unübersichtlich, um dieses Ergebnis verallgemeinern zu können.

Die Wasserstandsganglinie eines Schreibpegels zeigt oft und vor allem bei Hochwasseralagen Steig- und Fallgeschwindigkeiten des Wasserspiegels an, die bei 10 bis 20 cm/Stunde und mehr liegen. Derartige vertikale Wasserbewegungen weisen auf den Transport großer Wassermassen im Seegebiet hin, d. h. sie sind mit Strömungsscheinungen verbunden.

c) Strömungs- und Brandungsverhältnisse vor der Küste

Eine Betrachtung der Strömungs- und Brandungsverhältnisse vor der Ostseeküste stößt insofern auf Schwierigkeiten, als im Vergleich zu Wasserstandsbeobachtungen überhaupt keine

1) Die Aufzeichnungen des Pegels Travemünde, der s. Z. vom Geodätischen Institut in Potsdam betrieben wurde, standen nicht zur Verfügung. Für unsere Untersuchung ist die Lage des Pegels Staatswerft an der Untertrave von nebengeordneter Bedeutung, da die Spiegelschwankungen der Ostsee hier mit unwesentlichen Zeit- und Höhenunterschieden registriert werden.
zusammenhängenden und langfristigen Beobachtungen durchgeführt worden sind. Diese Tat-
sache erklärt sich dadurch, daß ein großer Aufwand an Fahrzeugen, Geräten und Personal
erforderlich ist, diese Vorgänge zu messen. Es war bislang so gut wie gar nicht möglich, die
Verhältnisse bei Sturmfluten von Schiffen aus zahlenmäßig zu erfassen. Außerdem fehlte es
an den geeigneten Geräten. Die Aufzeichnungen, die an Bord der Feuerschiffe vorgenommen
werden (also an einzelnen festen Punkten), haben keine Gültigkeit für den Küstenbereich. Die
sehr unterschiedliche geographische Lage der Uferstrecken zur Hauptwindrichtung, die mehr
oder weniger zergliederte Küste, die ungleiche Form des Meeresgrundes, wechselnde Salz-
gehalte und Temperaturen usw. ließen erst in jüngerer Zeit die Forderung nach systematischen
Strommessungen in Verbindung mit anderen für die Deutung der Veränderungen an der
Küste geeignet erscheinenden Untersuchungen aufkommen.

Abgesehen von örtlich begrenzten Schwimmermessungen oder auch Flügelmessungen,
werden im Untersuchungsgebiet erstmalig im Jahre 1939 großräumige Strommessungen vor der
pommerschen Küste durchgeführt [WASMUND/WIRTZ (100)]. Da jeweils nur mit einem Gerät
im Seegebiet des Darß, der Kösliner Bucht und vor Leba gemessen wurde, war eine ver-
gleichende Darstellung der stündlichen, täglichen und langfristigen Stromverhältnisse im ein-
zellen Untersuchungsgebiet nicht zweckmäßig; denn jede Messung stellt einen Einzelwert an
einem bestimmten Ort und zu einer bestimmten Zeit dar. Infolgedessen genügt das Beobach-
tungsmaterial nicht, um über Stromverhältnisse bei verschiedenen Wetterlagen Aussagen
machen zu können. Die Aufgabenstellung zielte hier vielmehr auf die Erfassung meeresgeolo-
gischer Vorgänge auf dem Unterwasserstrand hin. Die dabei gewonnenen, teils sehr aufschluß-
reichen Erkenntnisse werden in den Abschnitten IV d und V besprochen.

Das Gebiet, das als nächstes im Jahre 1950 auf seine Stromverhältnisse hin bearbeitet
wurde, war die Lübecker Bucht. Es wurde hierbei von dem Gedanken ausgegangen, die
Strömungen in der geschlossenen Bucht möglichst unter gleichen Bedingungen zu erfassen. Zu
dem Zwecke fanden eintägige Terminrundfahrten über ein Netz von festen Stationen statt,
auf denen an der Oberfläche und in Stufen von 5 zu 5 m Wassertiefe bis etwa 1 m über Grund
Strommessungen vorgenommen, Temperaturen bestimmt und Wasserproben zur Ermittlung
des Salzgehalts entnommen wurden. Die Terminrundfahrten wurden mehrere Tage nach-
einander mit denselben Stationen wiederholt. Um jahreszeitliche Abweichungen und typische
Wetterlagen in die Auswertung einzubeziehen, wurden drei Meßperioden entsprechend über
das Jahr verteilt. Während der letzten Periode wurden an fünf Stationen Dauerstrommes-
sungen über je 48 Stunden durchgeführt, so daß auch die täglichen Schwankungen der Strö-
mung an den einzelnen Stationen berücksichtigt werden konnten [WEIDEMANN (102)].

Das Strommeßprogramm erfuhr ferner durch den Einsatz von drei photographisch selbst-
registrierenden Schaufelradstrommeßgeräten und einem Hochseepegel eine wertvolle Ergän-
zung. Letzterer lag etwa in der Mitte der offenen Lübecker Bucht auf der Linie Dameshöved—
Klein-Klützhöved. Die Verteilung der Meßstellen erfolgte nach den oben beschilderten Ge-
sichtspunkten. Die Schreibdauer eines Gerätes lag etwa bei vierzehn Tagen. Zum Teil wurden
die Messungen nach beiden Methoden miteinander gekoppelt [DIETRICH (10)].

Auf diese Weise ist ein reichhaltiges Beobachtungsmaterial über die Hydrographie der
Lübecker Bucht zusammengetragen worden, das zu folgenden Ergebnissen führte:

Die Strömungen in der Lübecker Bucht wechseln häufig; sie folgen im allgemeinen den
Windänderungen. Ein geschlossenes Strömungsbild stellt sich nur bei zeitigen Wetterlagen her-
aus. Es überwiegen die westlichen Winde, bei denen sich nach einer gewissen Dauer an der
Oberfläche eine auswärts gerichtete Strömung einstellt. Die bei westlichen Winden abtransport-
tierten Wassermassen werden zum Teil ergänzt durch Kompensationsbewegungen in der Tiefe.
Zeitweise starke Stromschichtung und der Auftrieb von kaltem, salzreichem Wasser sowie die
Dauerstrommessungen in der offenen Bucht beweisen dies. Die Stromgeschwindigkeiten in der
Lübecker Bucht erreichen nur in Ausnahmefällen, d. h. bei Sturmfluten, eine Größenordnung,
die ausreichend erscheint, um einen unmittelbaren Abtrag des Unterwasserstrandes zu ver-
ursachen. Die Stromgeschwindigkeiten werden bei Wassertiefen von mehr als 7 m so gering,
daß dort auch bei Stürmen kaum ein Sandtransport wird auftreten können. Die gemessenen Küstenströmungen haben im wesentlichen Einfluß auf die Verfrachtung von Schwebstoffen und nicht auf die Wanderung der Sedimente am Boden.

Abgesehen von dem Sonderfall in der Travemündung war im wesentlichen von dem meßbaren Küstenstrom die Rede. Die Vorgänge in der Brandungszone, d.h. im unmittelbaren Küstennähe, konnten mit den gegenwärtig verfügbaren Geräten nicht gemessen werden. In der Brandungszone spielt sich die für alle Küstenschutzmaßnahmen so entscheidende Sandwanderung ab. Die Verfrachtung des vor Steilufern gelösten Bodens wäre ohne das Vorhandensein einer hinreichend starken Strömung nicht zu erklären.

d) Abtragung des Unterwasserstrandes

Eine bemerkenswerte Beobachtung vom Unterwasserstrand vor einem Steilufer teilte BAENSCH (2) 1875 mit: „Jeder anhaltende Ostwind, welcher die Wellen über das Steinriff treibt, giebt dem Wasser im südwestlichen Theile der Bucht eine lehmgelbe Färbung, selbst wenn in Höhe des Fußes des Brodtener Ufers wenig oder gar kein Lehm weggewaschen wird, also ein Zeichen, daß die Wellen das Riff in See immer noch angreifen.“ REHDER veranlaßte dann im Jahre 1886 eine vorläufige Vermessung des Seegrundes auf dem Steinriff und im Travemünder Winkel. Die damals vereiste innere Lübecker Bucht ermöglichte eine engmaschige Messung (Quadratnetz der Peilung mit 20 m, z.T. sogar mit 10 m Abstand) unter Angabe der BezugsEbene (MW) zu NN. Die Untersuchungen an der Küste Pommerns über die Abrasion des Unterwasserstrandes

Rehder vertrat in einer Bürgerschaftsverhandlung die Hypothese, daß die Bodenmasse aus der Abrasion den Betrag der Bodenmasse aus dem Steiluferrückgang um ein mehrfaches übertrifft. Er stützte sich dabei auf einen Vergleich seiner Eispeilung 1886 mit der französischen Karte von 1811 (Beautemps-Beaupré) und rechnete mit einem gleichmäßigen Abtrag des gesamten Steinschiffs. In einer späteren Bürgerschaftsverhandlung sagte Rehder, "daß die Tiefen über 3 m hinaus sich in den letzten 100 Jahren nur wenig geändert haben". Nachdem sich gezeigt hatte, daß die Peilung von 1811 und die späteren Seekarten für einen Vergleich mit der Vermessung von 1949 nicht genau genug durchgeführt worden sind, schloß die Eispeilung von 1886 diese Lücke.

Das Ergebnis der Massenberechnung besagt, daß in der Zeit von 1886 bis 1949 vor dem Steilufer im Durchschnitt jährlich rund 13 500 m³ Boden abgetragen wurden. Der Jahresverlust an Boden aus dem Brodtener Steilufer betrug dagegen für die Zeit von 1877 bis 1949 durchschnittlich rund 24 100 m³, d. h. hier überwiegen die Bodenmassen aus dem Steilufer.

![Abb. 14. Ausschnitt aus einem Profilvergleich am Brodtener Ufer](image)

Aus der Betrachtung der Vergleichsprofile geht weiter hervor, wie es auch sinnvoll ist, daß die Mächtigkeit des Abtrags mit der Tiefe abnimmt (Abb. 14). Es gelang, die Hauptabrasionszone vor dem Steilufer abzugrenzen und die Gebiete geringer Abtragung anzudeuten (Abb. 15). Für eine Massenermittlung an den Flanken fehlten die Voraussetzungen. Das Hauptabrasionsgebiet reicht im allgemeinen bis zur 4,0-m-Tiefenlinie. Ferner konnte durch den Vergleich der mittleren Uferquerschnitte (aus sämtlichen Profilen berechnet, Abb. 16 und Tab. 8) ein beschleunigtes Vorrücken der Tiefenlinien gegenüber dem Rückgang des Steilufers aufgezeigt werden [Petersen (65)].
Abb. 17. Blockarmer Unterwasserstrand vor dem Brodtener Ufer bei — 1 m MW. Abbruchkante bis zu 0,5 m hoch („Tonbänke“), Fußspuren in durchweichter Geschiebemergeloberfläche. 24. Oktober 1949, 15 Uhr

Abb. 18. Blockarmer Unterwasserstrand vor dem Brodtener Ufer bei — 1 m MW. Blick auf die mecklenburgische Küste. Geschiebemergelbänke senkrecht zum Ufer ausstreichend. 24. Oktober 1949, 15 Uhr
Unterwasserstrand bei —1 m MW. Blick senkrecht zur Uferlinie auf seewärts ausstreichende Geschiebemergelbänke und mit Geröll angefüllte Klüfte

Blick vom Haus „Seeblick“ nach Niendorf. Das Sandriff liegt frei bei —0,75 m MW
Blick vom Leuchtturm auf den Priwall bei —0,85 m MW. Sandanreicherung

Abb. 22. Blockreicher Unterwasserstrand vor dem Brodtener Ufer bei —1 m MW.
Rechts im Bild „Tonbänke“ ohne Steinbedeckung. 24. Oktober 1949, 15 Uhr
Abb. 23. Der „Söhrmannsdamm“ bei Travemünde am 4. Juli 1950 bei +0,40 m MW

Tabelle 8
Vorrücken der Tiefe auf dem Steinriff im Verhältnis zum Vorrücken des Steilufers (1886–1949)

<table>
<thead>
<tr>
<th>Tiefe</th>
<th>Vorrücken des Steilufers</th>
<th>0,46 m/Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>der 1-m-Tiefe</td>
<td>0,51 m/Jahr</td>
<td></td>
</tr>
<tr>
<td>2-m-Tiefe</td>
<td>0,67 m/Jahr</td>
<td></td>
</tr>
<tr>
<td>3-m-Tiefe</td>
<td>0,83 m/Jahr</td>
<td></td>
</tr>
<tr>
<td>4-m-Tiefe</td>
<td>1,34 m/Jahr</td>
<td></td>
</tr>
<tr>
<td>5-m-Tiefe</td>
<td>0,61 m/Jahr</td>
<td></td>
</tr>
</tbody>
</table>

diese Schlammschicht alsbald aufgearbeitet. Das Wasser nimmt durch den gelösten Schlamm eine braungraue Färbung an, die sich als Trübung deutlich abhebt. Die Oberfläche des Geschiebemergels ist für neue Durchweichungen freigelegt.

Vordringen der Tiefe am Brodtener Ufer in 100 Jahren
nach einem Kartenvergleich 1886-1949

Abb. 16.

In der Hauptabrasionszone tritt noch eine verstärkte Erosionswirkung hinzu. Die Klüftungsspalten, die etwa senkrecht zum Ufer ausstreichen, werden von der Brandung ausgeräumt; in den Spalten bewegen sich die Gerölle hin und her und beschleunigen den Abtrag (Abb. 17—19).

Es wird an der Ostseeküste zur Zeit nur selten möglich sein, die Abrasion mengenmäßig zu bestimmen, da die dafür nötigen gleichwertigen Vermessungsunterlagen aus Zeitabschnitten mit jahrzehntelangen Abständen kaum vorhanden sein dürften. Deshalb wird die qualitative Methode mit Hilfe der Sedimentpetrographie auch künftig für weitere Forschungen nicht entbehrt werden können.

V. Verbleib des Abbruchmaterials

Das Geschehen in, an und vor dem Steilufer ist behandelt und erläutert worden. Nun steht noch eine Erörterung über den Verbleib des Abbruchmaterials aus.

a) Sedimentpetrologische Untersuchungen

Das sedimentpetrologische Verfahren ist an der Ostseeküste erst in jüngerer Zeit zur Anwendung gekommen. Die bisherigen Ergebnisse lassen erkennen, daß der Meeresgeologe in der Lage ist, dem Seebauingenieur damit wertvolle Angaben über die Materialbewegungen an und vor der Küste an die Hand zu geben. Die Arbeiten von Pratje (71) und von Wasmund (96) waren richtungweisend für die Wasserstraßendirektion Stettin, dieses Verfahren bei der Klärung der Sandwanderung an der Küste Pommerns zu erproben [Schumacher (83)].

Bei den Untersuchungen über die Ursachen des Abbruchs am Brodtener Ufer wurde der Ausbau der Arbeitsmethoden weiter gefördert [Petersen/Wetzel (69)].

1. Seegrundkartierung

PRATIE (71) unterteilt die Bodenbedeckung in der südlichen Ostsee in fünf Zonen:
1. die küstennahe Sandanhäufungszone,
2. die Abtragungszone mit den Restsedimenten,
3. die küstenferne Sandanhäufungszone,
4. die sedimentarme oder -freie Zone,
5. die Schlickgebiete.

Eine klare Abgrenzung der einzelnen Zonen ist nicht zu erwarten. Überschneidungen sind naturbedingt. An den Küstenabschnitten vor Leba [GEIB (16)] oder in der Kösliner Bucht [WIRTZ (103)], wo z. B. die 40-m-Tiefenlinie etwa 70 km, die 60-m-Tiefenlinie etwa 120 km vom Ufer entfernt liegen, verteilen sich die Zonen klarer als an der schleswig-holsteinischen Küste [JARKE (37)] oder speziell in der Lübecker Bucht [RUCK (79)].

Hier erreichen die Tiefen kaum 25 m; die ersten vier Zonen drängen sich auf einem verhältnismäßig schmalen Küstenstreifen zusammen und vermischen sich dort. Während die Schlickgebiete vor Leba und Köslin nicht angetroffen wurden, konnten sie in der Lübecker Bucht eindeutig nachgewiesen werden. Die Bodenuntersuchungen ergaben hier, daß die Korngröße von Sand über Feinsand zu Schluff und Schlick mit der Entfernung vom Ufer abnimmt, d. h. nur grobkörniges Material verbleibt auf dem Strand und wird dort im ganzen gesehen küstenparallel verfrachtet. Auf dem Steinriff vor dem Brodtener Ufer wurde bis über die 10-m-Tiefenlinie hinaus ein dünner Sandschleier über dem Geschiebemergel angetroffen, bei Stürmen ist mit einem Auswachsen der Feinkornanteile aus der durchweichten Oberfläche zu rechnen.

Das Schlickgebiet umfaßt den tiefen Mittelteil der Lübecker Bucht. Die Grenze gegen das Sandgebiet schwankt sowohl in der Breite als auch in der Tiefe. Die höchste Lage des Schlicks befindet sich in dem inneren Teil der Bucht vor Pelzerhaken bei nur 6,5 m Wassertiefe. Eine Sandwanderung über das Schlickgebiet hinweg, etwa quer über die Bucht, ist nicht möglich. Das lockere Material kommt ausschließlich vom Festland, d. h. vom Abbruch der Steilufer und von den vorgelagerten submarinen Abrasionsflächen.

2. Kartierung des Strandes

Über die Versuche, den Gerölltransport mit gefärbtem Gestein zu messen, liegen unter anderem folgende Ergebnisse vor:

TAUBER: „So sehen wir, daß es der marinen Geröllwandung möglich war, in einem Falle innerhalb eines Zeitraumes von weniger als 6 Monaten Gerölle etwa 10 km vom Auswurfpunkt zu entfernen, in einem zweiten Falle die Gerölle in etwa 3 Monaten nach beiden Richtungen auf eine Strecke von über 8 km zu verteilen.“ Somit müssen wir in der weitaus größten Teil der bei Darßerort anlandenden Gerölle Transportweiten von 15—19 km annehmen.“

GEIB: „Feuchte und regnerische Küstenström, so bringt die auflaufende Dünnung den Sand schubweise zum Lande. Ist dagegen der Küstenstrom stärker, so wandert der Farbsand nur auf dem Riff und nicht zum Lande hin. Der starke Strom vom 17. 7. 1939 hatte den Blausand in wenigen Stunden 2,1 km nach Osten wandern lassen. Daraus läßt sich folgern, daß der Strom küstenzerstörend wirkt und den Sand nach Osten verfrachtet, die Dünnung dagegen Sandbringer und damit küstenaufbautes Element ist.“

Beid den Untersuchungen in der Kösliner Bucht beobachtete WIRTZ durch kombinierte Strömungs- und Sandwanderungsmessungen (letztere mit der Sandfalle nach Lüders) das Werden eines Riffs und weist nach, daß „das Riff als Form bei stärkerer Brandung verschwunden ist.“ „Aus turbulenten Strömungen, die als Transportbänder des Sandes dienen, fallen bei nachlassen- der Stromgeschwindigkeit und Turbulenz die suspendierten Sandkörner nach ihrer Größe aus; es entsteht dann erst das Riff.“

Im Travemünder Winkel lassen die menschlichen Eingriffe in das Naturgeschehen eine scharfe petrographische Trennung des Sandes nach der Herkunft von Brodten oder Mecklenburg nicht zu. Nach den bisherigen Erkenntnissen wird der Travemünder Strand vom Brodtener Ufer her und der Priwall sowohl vom Brodtener Ufer als auch von der mecklenburgischen Seite her aufgebaut (Abb. 21).

b) Kartenvergleich

So wie das Maß des Steiluferrückgangs und der Abrasion des Unterwasserstrandes durch Vergleiche von verschieden datierten und auf Grund genau genauer Vermessungen angefertigten Karten ermittelt werden kann, läßt sich ebenfalls der Nachweis für die flächen- und mengenmäßige Ausdehnung von Abbruch- und Anwachsgebieten führen.

Da von anderen Küstenstrecken keine vergleichbaren Messungen zur Verfügung stehen, werden die Untersuchungen vom Abschnitt vom Priwall bis Timmendorfer Strand beispielsweise an Abbildung 3 erläutert. Hier tritt das Abbruchgebiet vor dem Steilufer deutlich hervor. Es wird von Anwachsflächen an beiden Flanken begrenzt. Der stärkste Anwachs wird vor dem Priwall vermerkt, wo die Mittelwasserlinie etwa um 1 m im Jahr vorverlegt wurde. Auch der Strand von Travemünde weist eine Verbreiterung gegenüber 1877 auf. Die Plate, die vor der Travemündung als Sandbarre quer vor der Travemündung lag, ist infolge des vermehrten Wasserzutritts fast völlig umgelagert worden. Dieser Sand dürfte entscheidend zu der seewärtigen Verschiebung des Priwall-Strandes beigetragen haben.

Der Sandvorrat an beiden Flanken des Brodtener Ufers verdankt seine Herkunft dem Abbruch des Hochufers und der Abtragung des Unterwasserstrandes. Die Bodenmassen vom Uferabbruch verhalten sich zu den Abrasionsbeträgen wie 24 100 m³/Jahr zu 13 500 m³/Jahr. Es entfallen von dem gesamten Abtrag (37 600 m³/Jahr) etwa 30 v. H. bis 35 v. H. = rund 11 000 bis 13 000 m³/Jahr auf Sand. Diese dürften sich an einem großen Teil des Aufbaus des westlichen und östlichen Strandbereiches beteiligen [Petersen (65—68)].

c) Berechnung der Transportkraft

Der dänische Wasserbauer Munch-Petersen (71) entwickelte eine Formel, welche die Berechnung der Transportkraft für jeden Punkt der Küste zuläßt. Aus der Windstärke, Richtung, Häufigkeit und Anlaufbahn des Windes kann man einen Vektor berechnen, der in eine Hauptangriffsrichtung (senkrecht zur Küste) und in eine Materialverfrachtungsgröße (unterparallell) zerlegt werden kann. Diese Berechnungsmethode erlaubt einen vorausschauenden Überblick über die möglichen Rückgangswerte bei einem Vergleich mit anderen Punkten eines Küstenabschnitts der Ostsee, so daß danach schon die Dringlichkeit oder Nutzlosigkeit von technischen Maßnahmen zur Küstenverteidigung erkannt werden kann.
Genauere Berechnungen jedoch werden die physikalischen Eigenschaften des Abbruchmaterials sowie die Neigung und Oberflächenform des Unterwasserstrandes berücksichtigen müssen.

C. Der Schutz von Steilufern

In diesem Abschnitt soll eine Übersicht gegeben werden über die Art, wie der Schutz von Steilufern bisher behandelt wurde. Dazu wird zunächst festgestellt, daß es mit heute zur Verfügung stehenden technischen Mitteln durchaus möglich ist, den Abbruch eines Steilufers zu verhindern, wenn die erforderlichen Geldmittel zur Verfügung stehen. Aus der Vielzahl der Bauwerke, die zum Schutze der Ostseeküste erstellt worden sind und aus unserem heutigen Wissen um die Ursachen der Veränderungen im Küstengebiet wurden die Erfahrungen gesammelt.

Es kann nicht Gegenstand dieser Arbeit sein, sämtliche ausgeführten und geplanten Baumaßnahmen zu untersuchen. Die wesentlichsten Merkmale, die sich zum Teil widersprechen, werden herausgestellt, um für künftige Bauvorhaben verwertet werden zu können.

Eine Beschränkung auf den Schutz von Steilufern allein läßt sich nicht exakt verwirklichen, da die zur Sicherung von Flachküsten erforderlichen Bauten meist mit den Schutzmaßnahmen vor Steilufern in engem Zusammenhang stehen.

I. Bauformen

a) Dünenbau

Aufgabe des Dünenbaues ist es, die Küste durch Festlegung der Dünen zu sichern, die Erhaltung des Landes zu gewährleisten und die Häfen und Flußmündungen gegen Versandung zu schützen. „Der Wechsel der Windstärke und Windrichtung, die Änderung der Wellenbewegung führen dauernd zu Unregelmäßigkeiten in der Strandausbildung [GERHARDT (19)]. Durch planmäßige Bepflanzung und sorgfältige Pflege der Dünen, insbesondere der Vordünen, entsteht ein widerstandsfähiger Dünenkörper, dessen Außenböschungen sich im Laufe der Zeit so flach formen, daß die Wellen bei höheren Wasserständen verhältnismäßig unschädlich auflaufen. „Der große Vorzug, den die Vordünen vor allen anderen Uferschutzwerken besitzen, liegt darin, daß ihren Aufbau allein die Natur besorgt. Der Mensch muß sie nur darin der gegebenen Zeit in sachkundiger Weise unterstützen. Somit stellen die Dünen den billigsten Schutz der Küste dar“ [HEISER (32)]. Im Jahre 1864 wurde die Bewirtschaftung der Vordünen der Wasserbauverwaltung mit Ausnahme derjenigen Dünenstrecken übertragen, die Gemeinden oder Privaten gehören.

Als „Mittel zum Schutze der Küsten gegen die Angriffe der Ostsee und der atmosphärischen Kräfte“ werden nach SCHUMACHER (84) „nur die technischen Regeln des Dünenbaues an der Ostsee" anerkannt, im Gegensatz zu den anderen noch umstrittenen Mitteln. „Wenn die Sandzufuhr zur Küste längs dieser, vom Meeresgrund her, oder durch Sandstauben so günstig ist, daß sich ein 30—40 m breiter Strand oberhalb des Mittelwasserstandes hält, dann genügt dies, um landwärts eine Vordüne durch Sandgraspflanzungen aufzubauen. Der Fuß dieser durchlaufenden Vordünen liegt bei der natürlichen Neigung des trockenen Ostseeküstens von 1:15 bis 1:20 etwa 2 m über MW, d.h. über Sturmfluthöhe. Der Dünenfuß wird zwar durch Wellenschlag höchster Sturmfliuten angegriffen, der Verlust der Düne durch die Bildung einer Abbruchkante läßt sich aber bis zum Eintritt der nächsten hohen Sturmfliut durch Sandfang mittels Sandgraspflanzungen wieder ausgleichen."

Über den Dünenbau vor Steilufern berichtet HEISER (32): „Vor Hochufern, denen in der Regel ein ganz schmaler Strand vorlagert, ist die Heranziehung einer Vordüne erfahrungsgemäß über-
haupt ausgeschlossen. Hier kann sich der Sandflug überhaupt nicht wirkungsvoll und gleichmäßig entfalten. Der landwärts gerichtete Wind stößt sich an der steilen Wand des Hochufers und wirbelt den Sand hin und her, so daß er nicht zur Ruhe kommen und sich niederschlagen kann. An solchen gefährdeten Punkten müssen andere Mittel zur Sicherung der Küste angewendet werden. Sie bestehen in der Anlage künstlicher Uferschutzwerke.

Nachdem zur Sidierung des Steilufers von Jershöft zunächst kurze Buhnen, dann eine massive Schutzmauer gebaut (nicht fertiggestellt) und schließlich die Buhnen verlängert und das Buhnen system erweitert worden waren, rückte die Strandlinie seewärts vor. „Der Hochuferfuß ist seit 1929 zur Ruhe gekommen und vorwiegend im Ostteil der Hochuferstrecke eine kräftige Vordüne auf. Die Hochuferböschung ist durchweg bewachsen“ [SCHUMACHER (84)]. Dieser Erfolg verdient hervorgehoben zu werden.

b) Biologischer Uferschutz

Es ist des öfteren erwogen worden, Steilufer abzuschärfen und zu bepflanzen in der Annahme, auf der abgeflachten und biologisch befestigten Böschung die Energie der Brandung vernichten zu können [WOHLENBERG (104)]. Solange der Fuß des Kliffs aber nicht festliegt, bleibt die aufgewandte Mühe illusorisch. Eine natürliche oder am Klifffuß künstlich eingebrachte Vegetation vermag weder dem Anprall des Wassers noch der zerstörenden Art, der in der Brandung nagen der Geröll widerstand zu leisten [CHRISTIANSEN (5)].

c) Bedeutung der Steinentnahme

Da die Felsen vom Schiff mittels Zangen und Winden mitverhältnismäßig geringem Aufwand geworben werden können, hat die Steinischerei seit langer Zeit eine bedeutende wirtschaftliche Rolle gespielt. Ostseefindlinge wurden in großen Mengen für Wehranlagen, für den Bau von Hausfundamenten, Häfen und Straßen und seit etwa hundert Jahren auch für Zwecke des Uferschutzes an der Ostsee selbst, an der Nordsee und an Wasserläufen angeboten und angekauft. Allein für das Steinriff vor dem Brodten Ufer gab KANNENBERG (39) eine Entnahme von mindestens 100 000 m³ Steinen an. „Die Folge dieses schädlichen Gewerbes war eine beträchtliche Steigerung der Abrasionsmöglichkeit.“ Nach MEYER (53) sind an der Nordküste der Insel Poel viele Steine für den Straßenbau weggesucht worden. „Hierdurch verlor der Strand seinen natürlichen Wellenbrecher.“

Die Gefahr, die dadurch für die Erhaltung der Küste entstand, ist schon lange erkannt worden. Vor hundertfünfzig Jahren forderten die Brodtener Bauern bereits ein Unterbinden der Steinentnahme. Mehrfach sind Verbote ausgesprochen worden; Übertretungen waren jedoch keine Seltenheit.

Da ein beschleunigtes Vorrücken der Tiefenlinie gegen das Kliff vor Brodt en festgestellt werden konnte (vgl. S. 120), liegt der Schluß nahe, daß dieser Vorgang mit der Räumung der natürlichen Steinbedeckung vom Unterwasserstrande in Beziehung steht.

Verbote zur Verhinderung der Steinentnahme sind ferner vom Samland, von Hiddensee
und von der Tromper Wiek auf Rügen bekannt geworden. Alle Verbote sind unwirksam, solange sie nicht konsequent durchgeführt und überwacht werden.

d) Längswerke

1. Flechtwerke

2. Steindämme

Steindämme sollen als Wellenbrecher wirken. Zu dem Zwecke baute man sie in dem Bereich der Brandungszone, d. h. in etwa 20 bis 50 m Abstand vom Kliff. Sie wurden vornehmlich dort angelegt, wo reichlich Steine in der Nähe vorhanden sind: bei Brüsterort, bei Neufahrwasser, Oxhöft, Rixhöft, bei Rügenwaldermünde, am Ruden, an der Greifswalder Oie, vor Hiddensee, bei Saßnitz auf Rügen, bei Travemünde (Sührmannsdamm) und an anderen Orten.

Bei der ältesten Bauweise sind möglichst große Findlinge ohne Unterbau locker zu einem Steinwall aufgeworfen worden. Es wurde daran beobachtet, daß die Zwischenräume zwischen den Steinen zu weit waren. Die Wellen drangen durch den Steinwall, entwickelten so große Geschwindigkeiten, daß der Sand hinter dem Bauwerk aufgewirbelt und durch den Sog der Wellen seewärts mitgenommen wurde; folglich sackte die Steinpackung in sich zusammen. Man zog die Lehren daraus und verlegte die Felsen dicht neben und übereinander, nachdem die Sohle zunächst mit kleineren Steinen gegen Ausspülung abgedeckt worden war.

Es kam also nicht nur auf die Verwendung möglichst schwerer Steine und deren sorgfältige Lagerung, sondern auch auf die Sicherung der Sohle, d. h. auf das Fundament, an. Während bei festem Untergrund zum Teil auf eine spezielle Gründung verzichtet wurde, hat sich die Herstellung von Steinwällen auf Faschinenunterlage, die später als Senkmatten ausgebildet wurden, durchgesetzt.

Für die Entwicklung von durchlässigen Längswerken ist erwähnenswert, daß im Anfang einfache Pfahlreihen als Wellenbrecher ausgeführt worden sind. „Die Pfahlreihen bestanden aus 20 cm starken Pfählen, welche möglichst dicht gerammt wurden und ungefähr 1,5 bis 2 m über dem Mittelwasser der Ostsee hervorragten. Die Wellen haben die Vordünen beseitigt, die Pähle niedergedrückt und den dahinterliegenden Diluvialboden angegriffen“ [GERHARDT (19)]. Es handelte sich dabei meist um die Verbindung von Pfahlbühnen.

Ferner sind Steinkästen mit scharfgestellten Pfahlreihen, zwischen denen Steine auf Buschunterlagen verpackt wurden, als Längswerke zur Anwendung gekommen. Diese Bauweise hat nach GERHARDT Erfolg gehabt, da „der von den ankommenden Wellen mitgeführte Sand durch die geringen Zwischenräume der dicht verpackten Steine und die daraus sich ergebende Verlangsamung der Rückströmung zurückgehalten worden ist“.

verbreitert. Der Senkungsvorgang scheint noch nicht abgeschlossen zu sein, denn die geplante Höhe der Dammkrone von + 2,50 m MW hat sich auf das Maß von etwa + 1,0 m MW im Jahre 1950 verringert (Abb. 23). Bei dem Vergleich der Peilungen von 1886 und 1949 sind vor dem Damm Vertiefungen um 60 bis 120 cm festzustellen. Die Ursachen des Absenkens dürften zum Teil in der Durchströmung des Dammes, zum Teil in der laufenden Abtragung des Unterwasserstrandes zu suchen sein.

Für die günstige Wirkung des Söhmannsdammes sind folgende Gesichtspunkte zu nennen: Der Söhmannsdamm liegt an einer Übergangsstelle vom Abbruch- zum Anwachsgebiet (Abb. 3). Von Natur aus neigt der Strand hier (jedenfalls im südlichen Teil) zur Verbreiterung, eine Erkenntnis, die auch aus der Karte von Rehder, 1886, abzulesen ist. Ferner steht die Bewährungsprobe bei einem Hochwasser von + 1,80 m bis + 3,30 m MW noch aus.

Da keine Untersuchungen vor Steinwällen von anderen Küstenabschnitten vorliegen, muß ein Vergleich mit den Verhältnissen bei Travemünde unterbleiben.

3. Ufermauern

Während Steinwälle in einiger Entfernung vom Ufer auf dem Strand stehen, wurden Ufermauern sowohl eben oberhalb der Mittelwasserlinie als auch unmittelbar am Fuße des Steilufers angeordnet.

Abb. 25. Ufermauer vor Marienleuchte auf Fehmarn (aus Heiser 1927)

Im ersten Fall soll die Mauer, wie bei Jerschöft, die Schlamm- und Abbruchmassen auffangen und die Füllung des zu diesem Zwecke geschaffenen Raumes bewerkstelligen. Die Anlage soll zugleich die Aufgabe eines Wellenbrechers erfüllen, deshalb ist sie besonders kräftig und standsicher herzustellen.
Die Querschnitte der Ufermauern sind recht vielgestaltig entwickelt worden (Abb. 25 u. 26). Nach der einfachen senkrechten Wand entstanden Schwergewichtsmauern ohne Fußsicherung, dann Mauern mit geneigter und mit konkav bzw. konvex gekrümmter Vorderfläche mit mehr oder weniger kräftiger Fußsicherung [GERHARDT (19), HEISER (32) u. a.]. Für alle Küstenabschnitte hat der Kampf mit den hohen Wasserständen und der ungebändigten Kraft der Brandung neue, aber teuer erkaufte Erfahrungen gebracht. Die Mauern wurden immer schwerer und damit in der Herstellung kostspieliger. Die senkrechten und leicht geneigten Werke erhielten Konstruktionshöhen von + 3,5 m bis über + 5,0 m MW. Die vorderseitig gekrümmten Ufermauern wurden sogar bis zu + 6,0 m MW hinaufgeführt.

Aus den Querschnitten der Ufermauern ist nicht zu erkennen, daß das HHW an den einzelnen Küstenstrecken für die Abmessungen bestimmend war, denn dieses fällt von Westen nach Osten. Vielmehr haben die an den steilen Bauwerken hinaufschwingenden Wellen die Höhe und Stärke einer Ufermauer maßgebend beeinflußt, wobei die durch die geographische Lage bedingten Unterschiede im HHW an Bedeutung zurücktreten.

4. Deckwerke

Als die Buhnen vor dem Streckelsberg auf der Insel Usedom keinen befriedigenden Erfolg gezeitigt hatten, versuchte man, das Steilufer durch ein Deckwerk zu schützen. Nach HAGEN (25) ist dieses im Jahre 1858 als erstes Deckwerk an der Ostseeküste gebaut worden. Es war 7,5 m breit und reichte von — 1 Fuß bis + 5 Fuß MW. Als Unterlage diente eine Strauchpackung, die mit kleinen Steinen bedeckt war. Darüber befand sich ein Pflaster aus schweren Findlingen. „Gleich im ersten Winter zeigte sich, daß diese Art der Befestigung nicht genügte."

Die Deckwerke entstanden in Neigungen zwischen 1 : 0,5 (Samland) bis 1 : 2,5. Für die steilen Decken waren feste Fußsicherungen nötig. Wo das Unterbett aus Sand bestand, wurden
die Fugen mit Zementmörtel verstrichen. Bei Beanspruchung durch Wellenschlag bröckelte der Mörtel bald ab und die Sandbettung wurde herausgesaugt. Unterhöh lung und Zusammenbruch waren die Folge.

Über die zweckmäßigste Oberflächengestaltung von Deckwerken gab es die verschiedensten Ansichten. Sie spiegelten sich in der Querschnittausbildung der Bauwerke wider. Bei Heiligendamm wurde ein glattes Pflaster auf Kalkkies in der Neigung 1:2,5 gebaut (Abb. 27). Einen gewagten Schritt stellte die erste Betondecke im Jahre 1884 im Ostsee bad Heringsdorf (1:1,5) dar; sie war 0,4 bis 0,3 m stark (Abb. 28). Die Versuchsstrecke am Streckelsberg westlich Swinemünde enthielt ein „beachtliches Gemisch von Bauwerken nahezu aller Arten, die zur Deckung eines unter Abbruch stehenden Steilufers in Frage kommen können“ [HEISER (32)]. Neben kräftigen Ufermauern mit fast senkrechten oder gekrümmten Vorderflächen standen schräge Deckwerke aus ganz glattem oder auch rauhem Böschungspflaster (Stachelpflaster). Die Bewährungsprobe fand in der Sturmflut um die Jahreswende 1913/14 statt. Das Ergebnis wurde von Heiser dahin zusammengefaßt, daß bei so starkem Seegang allein kräftige Ufermauern standsicher seien, und zwar müsse die Strandlinie „durch eine gekrümme Vorderfläche der Mauer allmählich in die senkrechte Ebene übergeleitet werden“. Auf eine möglichst glatte Außenfläche, auf eine schlanke Linienführung und auf die sorgfältige Ausbildung der beiden Enden wurde besonders hingewiesen. Die Form der Mauer mit steiler Vorderfläche und die schrägen Deckwerke hätten sich als wenig vorteilhaft gezeigt. Letztere hätten am wenigsten dem Angriff der Wellen standgehalten. „Sie waren hinterspult und dann vollständig zerstört worden.“

Die Ablehnung der Deckwerke dürfte auf ihre damals noch unvollständige Ausbildung zurückzuführen sein.

Nördlich der Schleimündung vor dem Gut Oehe befindet sich eine weitere Versuchs-

strecke. Es sind hier ebenfalls verschiedene Bauausführungen nebeneinander angeordnet wor-

den. Wenn auch dieser Versuchsstrasse keine überörtliche Bedeutung beigemessen werden kann,

so ist hier doch offensichtlich, daß flache, rauhe Böschungen den Vorzug gegenüber den steilen

Mauern haben. Sie gestatten eine Verbreiterung und Erhöhung des trockenen Strandes. Vor

steilen Wänden dagegen bleibt der Strand niedrig.

Als neuartige Bauweise für ein Deckwerk sei die Asphalt eingußdecke vor der Probstei

erwähnt, die den Abbruch eines zum Seedeich ausgebauten Strandwalls verhindern soll. Beton-

mauern ohne Fußsicherung hatten den Angriffen des Meeres nicht standgehalten. Die Asphalt-

eingußdecke erhielt die Neigung 1:2. Sie sollte unbedingt dicht und wasserundurchlässig sein.

Auf die Decke hat man ein rauhes Steinpackwerk gelegt, das die Energie der auflaufenden

Wellen brechen und vernichten soll (Abb. 29). Versuchsweise wurde auf einer Strecke die kost-

spielige Granitspaltsteindecke eingespart und die Asphalt eingußdecke dafür stärker bemessen

mit der Neigung 1:3. „Einer Bewährungsprobe sind die neuen Werke bei einem Flutangriff

der an der schleswig-holsteinischen Ostseeküste so gefürchteten Nord-Ost-Hochwasser noch

nicht ausgesetzt gewesen“ [FINK (12)]. Die guten chemischen und physikalischen Eigenschaften

des Asphalt deuten eine Weiterentwicklung dieser Bauweise für den Küstenschutz und für

andere Gebiete des Wasserbaues an [SCHUSTER (85)].

An der Nordseeküste wurden Längswerke neuerdings mit gutem Erfolg als flache, schwere

Deckwerke hergestellt. Das durchgehende Basaltstein-Pflaster liegt in der Böschung 1:4; es

wird von eisernen Spundwänden eingefasst. Die Fußsicherung schließt seewärts mit der Nei-
gung 1:10 an [LÜPKE und SIEMENS (50) u. (51)]. Das Deckwerk bestand seine Probe in

mehreren Sturmfluten, ohne Schaden zu erleiden. Auf der flachen Böschung läuft die Welle

sich schnell aus; dabei wirken die Spalten zwischen den Basaltsteinen bremsend. Dies sind

Eigenschaften, die auch für den Uferschutz an der Ostseeküste richtungweisend sein können

[SCHUMACHER (84)].

In den Niederlanden hat sich nach SCHAGEN und DWARS (80) die Deckwerksneigung 1:4

ebenfalls durchgesetzt. Bei Betondeckwerken wurden dort zahlreiche Versuche zur Erzielung

unebener, energieschluckender Böschungen ausgeführt. Auch Asphaltbauweisen gewinnen an

Bedeutung, denn Steine müssen mit hohen Kosten nach den Niederlanden eingeführt werden.

In dem Kostenanschlag für die Herstellung eines Uferschutzwerkes bei Travemünde

[PEITRSEN (68)] liegt ein Entwurf vor, der nach den bisherigen Erfahrungen bei Küstenschutz-

werken und auf Grund der neuen Untersuchungsergebnisse bearbeitet wurde. Das projektierte

Deckwerk (Abb. 30) ist dem Verlauf des Strandes weitgehend angepaßt. Es bietet dem Kliff-

fuß einen kräftigen Halt. Die Höhe der Deckwerksoberkante wurde aus Beobachtungen in der

Abb. 29. Uferdeckwerk zur Sicherung des Ostseedeiches vor der Probstei (aus FINK 1951)

Abb. 30. Entwurf eines Deckwerks für die Sicherung des Brodtener Ufers bei Travemünde 1950

Die Neigung der Bauwerksböschung nach See zu setzt bei — 0,50 m NN mit 1:10 an und reicht bis + 0,50 m NN, von dort ab sind weitere zwei Meter der Höhe in der Neigung 1:4 auszubilden. Die zahlreichen niederen Hochwasser werden dann bereits in der Böschung 1:10 gewendet. Dieser Bereich erhält deshalb eine widerstandsfähige Oberfläche in Form eines Steinpflasters. Frostschäden sind nicht zu erwarten. Für den oberen Teil des Deckwerks (1:4) ist eine Packlage auf 15 cm starkem Schotterbett vorgesehen. Diese Bauweise hat bei sacht-kindigem Setzen den Vorteil der guten Schluckfähigkeit bei auflaufender Welle. Die mittlere Spundwand im Böschungsknick ist notwendig zur Trennung der beiden Bauweisen, zur Begrenzung möglicherweise eintretender Schäden bei Sturmfluten und zur Sicherung des ersten Bauabschnitts während der Bauzeit.

5. Kosten

Um die Kosten der einzelnen Längswerke miteinander vergleichen zu können, wurden sie auf den Preisindex des Jahres 1950 umgerechnet. Die Herstellung eines lfdm Steinwalls (Krone auf + 2,5 m MW, Sohle auf — 1,0 m MW, Gründung auf einer Buschmatte von 0,5 m Stärke) kostet demnach bei Verwendung von Ostseefindlingen rund 600,— DM, bei Verwendung ortsfremder Steine rund 1800,— DM.

Für die am Brodtenener Ufer entworfenen Bauart belaufen sich die Kosten für die Herstellung eines lfdm Deckwerks auf rund 2000,— DM.

c) Querwerke (Bühnen)

1. Anordnung der Bühnengruppen

An der Ostseeküste wurden die ersten Bühnen etwa um 1845 auf der Insel Ruden zum Schutze der Lotsenstation gebaut. HAGEN (25): „Die hier ausgeführten Werke sind sehr einfach construirt. Sie sind von verschiedener Länge nach der Gestaltung des Ufers, auch treten ihre Köpfe keineswegs in eine vorher bestimmte Streichlinie, vielmehr sind sie jedesmal bis zu einer gewissen Wassertiefe, nämlich von etwa 3 Fuß, herausgebracht. Ihre Wurzeln lagen am Fuße der Düne etwa auf + 1,8 m MW. Die Längen wechselten zwischen 20 und 40 m. Der Bühnenabstand betrug etwa 25 m. „Bei dieser sehr leichten Construktion, deren Wahl nur darauf beruhte, daß die erforderlichen Baumaterialien mit den geringsten Kosten beschafft und in der einfachsten Weise verbunden werden sollten, konnten vielfache Beschädigungen nicht ausbleiben."

Diese ersten Steinkistenbühnen sind nach dem Muster der älteren Dämme, die zur Einfassung der Mündungsufer von Hafeneinfahrten an Wasserläufen dienten, in verkleinerter Form entstanden.

Für die Anlage einer Buhnengruppe wurde die im Flußbau — zur Lenkung des Stromes — gebräuchliche „Streichlinie“ übernommen; sie verbindet die seeseitigen Enden der Buhnen. Die Streichlinie soll vorhandene Unregelmäßigkeiten des Strandes ausgleichen und eine gleichmäßige Entwicklung des Strandabschnitts herbeiführen. Die Länge der Buhnen richtet sich nach dem Abstand der Streichlinie vom Ufer. Anfangs beschränkte man sich wegen der wachsenden Kosten für längere Buhnen auf 20 bis 30 m [GERHARD (19)].

Nachdem HARTNACK 1926 (29) auf die Bedeutung der Sandriffe hingewiesen hatte, ordnete HEISER 1927 (32) die Streichlinie einer Buhnengruppe nach der Lage der Sandriffe an. KRESSNER (43) führte 1928 einen grundlegenden Modellversuch durch. Man hatte in diesen Jahren also begonnen, die Vorgänge auf dem Unterwasserstrand sorgfältiger zu beobachten und sie bei der Planung von Schutzmaßnahmen zu berücksichtigen. Die Streichlinie fiel nun etwa mit der 2-m-Tiefenlinie zusammen. Daraus ergab sich die Länge der Buhnen an der pommerschen Küste zu 70 bis 80 m (von der MW-Linie am Strand gerechnet). Die Buhnen durchschneiden somit das erste Sand riff und reichen bis auf das zweite Riff hinaus.

Die Sicherung des Strandes in Lee des Buhnenfeldes auf Hiddensee durch leichte Strandbuhnen und ein Längswerk am Fuße der Vordüne wurde von POPPE (70) beschrieben. Bald nach Fertigstellung der Buhnen gruppe setzte am südlichen Ende der Abbruch des Strandes und der ungeschützten Vordüne auf 400 m ein. Zur Wiederherstellung der früheren Strandbreite „wurden nach und nach 12 kurze, leichte Buhnen in Abständen von 20—25 m vom Fuß der Vordüne bis zur früheren Strandlinie gebaut, die nicht senkrecht unter 90° zum Strand, sondern leicht geneigt gegen die vorherrschende Nord-Südströmung hergestellt wurden“ (Abb. 31). „Die Oberkante steigt wie..."

Abb. 31. Sicherung des Strandes in Lee eines Buhnenfeldes (aus POPPE 1942)

bei den Landanschlüssen von 0,50 m an der Seeseite bis 1,75 m über MW am Fuß der Vordüne... Bei hohen Wasserständen wurde die Küstenströmung durch die Buhnen und das in ihren Feldern gehaltene Wasserpolster ferngehalten und durch Wellenschlag wurden Sandbänke zur Ablagerung gebracht, die dann sehr bald bei höheren Wasserständen den Fuß der Vordüne erreichten, überlagerten und vor weiterem Seeangriff Schutz boten. Nach einigen Wochen bereits war festzustellen, daß der
Strand nicht weiter abgebaut, sondern zwischen den Strandbuhnen völlig wieder bis zur früheren Höhe und darüber hinaus aufgefüllt wurde, was dann auch der Wiederaufhöhung der Vordüne zugute gekommen ist. Im Anschluß an die letzte, südliche Strandbuhne ist der Fuß der Vordüne noch auf 130 m Länge durch ein Längsprofil gleicher Bauart wie die Strandbuhnen gesichert, um den südlich der letzten Strandbuhne noch herumhulenden Küstenstrom und Seeangriff abzuwehren.“

Hier scheint der Abschluß einer Buhngruppe mit Erfolg unter der Voraussetzung einer starken Sandwanderung gelungen zu sein.

2. Bauweisen

Längsschnitte

Seit Beginn des Buhnenbaues an der Ostseeküste sind die Längsschnitte der Buhnen ohne größere Abwandlungen geblieben; das gilt vor allem für den längeren seeseitigen Teil. Die Höhe des Buhnenrückens dürfte sich aus rammtechnischen Gründen auf + 0,50 m bis etwa ± 0,0 m MW gehalten haben (Abb. 32). Vor Kopf der Buhne entsteht am steilen Abschluß infolge des hier erzeugten Wirbelstroms ein Kolk. Der Buhnenkopf wurde deshalb zur Abschwächung der Kolkbildung auf 6 m um 1 m geneigt. HANSEN (26) legte den Rücken der Großbuhne sogar auf + 1,0 m MW und behielt diese Höhe bis zum Ende der Buhne bei, so daß hier eine senkrechte Wand von 3,0 m und mehr die natürliche Wasserbewegung erheblich stören müßte.
Der landseitige Teil paßt sich dem Gefälle des Strandes an, d. h. die Buhne ragt zweckmäßig um wenige Dezimeter über die Oberfläche des Strandes hinaus. Mehr als 0,50 m überstehende Wände beeinflussen den Sandflug bereits nachteilig. Die Bauweise auf dem trockenen Strand, dessen Breite zu 30 bis 40 m mit der Neigung 1:15 bis 1:20 angestrebt wird, soll möglichst beweglich gehalten werden, um den naturbedingten Veränderungen gegebenenfalls folgen zu können. In der Praxis ist die Richtigkeit dieser Bedingungen schon bestätigt worden mit den Landanschlüssen nach ostpreußischer Bauart (Abb. 33). Auf dem trockenen Strand werden Buschmatten etwa 0,50 m tief in den Sand eingebaut und mit Natur- oder Betonsteinen belastet. Die Buschmatten sind mit Rücksicht auf das nachträgliche Anheben der Landanschlüsse bei fortschreitender Versandung etwa 2 bis 3 m breit und 0,30 bis 0,50 m stark herzustellen. „Bei zu schmalem Unterbau neigt sonst der Landanschluß zum Kippen, besonders wenn bei stärkerem Seegang der Strand von neuem in Abbruch gerät und damit der Landanschluß wieder mehr freigespült wird“ [v. Zyhlinski (106)]. Betonsteine wurden 0,50 m hoch, 1 m breit und 1 m lang mit einem eisernen Tragbügel gefertigt, um das Versetzen zu erleichtern. Die Vorteile dieser Bauweise gegenüber den Pfahlanschlüssen bestehen

a) in der kurzen Bauzeit,
b) in der größeren Dichtigkeit gegen auflaufende Wellen,
c) in der größeren Rauhtigkeit des Buschunterbaues bei auflaufenden Wellen,
d) in der geringen Höhe, die den Sandflug begünstigt,
e) in der Möglichkeit, den Landanschluß den Veränderungen des Strandprofils anzupassen.

Besondere Sorgen bereitete von jeher der Anschluß der Buhne an das Steilufer bzw. an die Vordüne. Auch hier hat sich das starre, bis zur erstrebten Strandhöhe fertiggestellte Bauwerk im weichen Dünenkörper nicht durchzusetzen vermocht. Unversandet gebliebene hohe Anschlusse sind auf + 0,50 m bis + 1,50 m MW abgeschnitten worden. An anderen Stellen wurden die Pfähle beseitigt und durch „im Grundriß keilförmige oder geradlinige Strauchpackungen“ ersetzt, die sich mit wachsendem Strande unschwer aufhöhen lassen. „Auch hier gestattet die Natur nur ein schrittweises Vorgehen“ [Poppe (70)].

Es ist auch versucht worden, den leeseitigen Abschluß von Buhngruppen durch Unterwasserbuhnen herzustellen [Hoech (35)]. Die letzte Buhne erhielt durchgehend das Ge-
Abb. 33. Landanschluss (aus v. Zychlinski 1931)

Abb. 34. Stahlbetonbühne bei Eckernförde, 12. Oktober 1951
Abb. 35. Timmendorfer Strand, Abbruch an der Leeseite einer Findlingsbuhne am 11. Juli 1950 bei −20 m MW

Abb. 36. Wie vor

Abb. 39. Die gleiche Bühne wie auf Abb. 38. Seeseitiger Teil, Mittelstück abgebaut

Grundrisse

Der am häufigsten vorkommende Grundriß einer Buhne stellt die Senkrechte auf die Uferlinie dar. Davon abweichend sind Buhnen auch mit Querwinden versehen worden, um die unmittelbar auf die Küste auflaufende Welle vorzeitig abzufangen und den für die Stand- sicherheit der Buhne gefährlichen Längstrom (an der Buhne entlang) auszuschalten. Nach den Erprobungen in der Versuchsanstalt für Wasserbau und Schiffbau in Berlin hat die Kreuzform die beste Wirkung der untersuchten Formen ergeben. Die Flügel, 40 m hinter den Buhnenkopf zurückgelegt, parallel zur Strandlinie und je 20 m lang, sind den Angriffen der Brandung allerdings ganz besonders ausgesetzt; der Rücken des Flügels war waagerecht und in Höhe seines Anschlusses an die Hauptbuhne angeordnet, d. h. er lag über MW [v. ZYCHLINSKI (106)]. Die Versuche in der Natur erstreckten sich darüber hinaus auch auf die T-Form.

Querschnitte

Die Darstellung der Querschnitte soll sich auf die Besprechung einiger oft verwendeter Typen beschränken (Abb. 32). Die einreihigen und doppelreihigen Pfahlbuhnen haben sich vom Beginn des Buhnenbaues an bis auf den heutigen Tag gehalten. Dasselbe gilt für Stein- kistenbuhnen, die als ostpreußische oder pommersche Bauart mit etlichen Abarten vertreten sind.

Bei der ostpreußischen Bauart werden die Pfähle in der Neigung 4:1 gerammt. Die obere Breite beträgt 1,00—1,20 m, die untere Breite kurz vor Kopf etwa 1,90 m. Die Fa- schinenlage von 0,30 m bis 0,50 m dient als Unterbau für die Steinpackung. Nach mündlicher Mitteilung von Oberregierungsbaurat RIEDER erforderte die Unterhaltung der Buhne erhebliche Mittel, weil die Gurtung bei starkem Seegang oft brach und die Stärke der Anker laufend wegen der intensiven Rostbildung geschwächt wurde. Die Folge war, daß die Steine von der Brandung herausgeworfen wurden.

Aus Mangel an Findlingen erhält die ostpommersche Buhne eine Faschinenpackung, die von Betonsteinen 1,0 × 1,0 × 0,5 m abgedeckt wurde. Mit der Neigung der Pfähle 10 : 1 wurde erreicht, daß die Betonblöcke beim Setzen der Faschinen von den Pfählen gehalten wurden und daß sie sich nicht zu sehr verkanteten.

Beide Buhnen, vor allem die ostpreußische, sind wasserdurchlässig. Den Angriffen durch Eis haben sie verhältnismäßig gut zu widerstehen vermocht [Poppe (70)]. Sie haben sich in ihrer Wirkung bisher am besten bewährt.

Eine bemerkenswerte Bauart liegt bei der Straußbuhne von Zingst vor (Abb. 32). Auf eine Faschinenpackung von 3 bis 4 m Breite werden bis zu 0,5 m³ große Bruchsteine gepackt. Der Kopf liegt etwa auf 1,3 m Wassertiefe und ist durch ein abgetrepptes Sinkstück gesichert. Nach Möglichkeit sollen nur lange, über drei bis vier Faschinen reichende Steine zur Verwendung kommen. Da der Rücken dieser Buhne meist auf + 0,50 m MW lag, war dieser Faschinendamm wenig widerstandsfähig gegen Brandung und Eisgang.

An der schleswig-holsteinischen Ostseeküste befinden sich neben ein- und zweireihigen Pfahlbuhnen und der ostpreußischen Bauart zum Teil schwerere Werke. Die in die Kieler Bucht vorspringende Landzunge von Büll wird von 8 m breiten und 1,5 m hohen und ähn-

Auf der Leeseite dagegen sind die Auswaschungen entsprechend stark ausgeprägt. Letztere wurde noch unangenehmer in Erscheinung getreten sein, wenn die Buhnen weiter seewärts vorgetrieben worden wären. Ähnliche Bauwerke stellen die Möwensteinbuhne bei Travemünde und die Abschlußbuhne vor Dohme dar.

Im letzten Jahre ist bei Eckernförde und vor der Probstei mit der Herstellung von Stahlbetonpflahlbuhnen begonnen worden. Der Planung lagen die Erfahrungen mit Betonspundwandbuhnen am Weststrand von Sylt zu Grunde. Die Pfähle werden fabrikmäßig in Längen von 1,50 m bis 4,00 m und mit Querschnitten von 18×33 cm bzw. 23×50 cm hergestellt (Abb. 34).

Der Baustoff Eisen hat sich im Buhnenbau nicht behaupten können. Die Eigenschaft des Rostens ergibt bald eine Schwächung des Profils. Spundwandbuhnen an Küsten mit starker Sandbewegung vermögen auch dem Sandschiff auf die Dauer nicht zu widerstehen. Der Querschnitt wird in Höhe des Unterwasserstandes infolge der anhaltenden Sandbewegung (landwärts und seewärts) so stark vermindert, daß die Buhne in der Brandung schließlich zerbricht und umfällt (Erfahrungen von Sylt).

3. Kosten

Eine Zusammenstellung der Kosten für die Herstellung und Unterhaltung von verschiedenartigen Seebuhnen hat POPPE (70) gegeben. Seitdem sind die Preise im allgemeinen auf den doppelten Betrag angestiegen. Nach dem Preisindex von 1950 belaufen sich die überschläglichen Baukosten für einen Pfahl Buhne mit 6,15 m Pfahl- bzw. Spundbohlenlänge, einer Wassertiefe von 1,55 m und einer Höhenlage von + 0,50 m MW auf:

a) einreihige, hölzerne Pfahlbuhne 220.— bis 290.— DM
b) ostpommersche Bauart, zweireihig 300.— bis 350.— DM
c) Strauchbuhne am Zingst 160.— DM
d) Stahlspundwandbuhne 300.— bis 360.— DM;
ebenfalls überschläglich ermittelt sind die Kosten für
e) Findlingsbuhne bei Niendorf*) 300.— bis 400.— DM
f) Stahlbetonbuhne 100.— bis 400.— DM.

*) aus ortsfremdem Steinmaterial.
Über die Unterhaltungskosten sind vergleichende Angaben nicht zugänglich. Erfahrungsgemäß betragen sie jährlich im Durchschnitt rund 5 v. H. der Herstellungskosten.

f) Dränung

9) Wirkung der Schutzmaßnahmen

Aus den Schäden an den Schutzbauten wurde die Erkenntnis gewonnen, daß schwere Längswerke und kräftigere Bühnen den Abbruch zum Halten bringen müßten. Längswerke wuchsen zu schweren Steinwällen bis nahezu 3 m über Mittelwasser, zu massiven Ufermauern und stabilen Deckwerken mit mehr oder weniger flach geneigten, glatten und rauen Böschungen bis zu 6 m über Mittelwasser an. Auf dem Wege dahin wurden zahlreiche Zwischenstufen überwunden.

Steinwälle brechen die Brandung bereits in einiger Entfernung vor dem Kliff. An sandreichen Küstenabschnitten füllt sich der Raum zwischen Steinwall und Kliff mit Abbruch-

An flach geneigten Deckwerken, die sich etwa der natürlichen Form des Strandes anpassen, wird die Brandungenergie zum Teil verzehrt. Sie verdienen deshalb im allgemeinen vor Steinwällen und Ufermauern den Vorzug. Auch Deckwerke müssen so kräftig gebaut werden, daß sie bei stärkster Beanspruchung nicht zerschlagen werden können.

Die Entwicklung der Längswerke scheint vorläufig zum Abschluß gekommen zu sein. Der Brandung wird einerseits mit der Masse in Form von Steinwällen und Ufermauern entgegengetreten, andererseits verzehrt die flache Neigung einer Deckwerksböschung einen wesentlichen Teil der Brandungenergie. Die Kosten für die Herstellung der einzelnen Längswerk-Typen unterscheiden sich nur wenig voneinander.

Im Buhnenbau dagegen sind noch Fragen von grundsätzlicher Bedeutung offen. Weder die Anordnung von Buhngruppen oder die Länge der Buhne, der Längsschnitt oder die Grundrißgestaltung, noch die Ausbildung der Querschnitte können als eindeutig geklärt angesehen werden. Lediglich der landseitige Teil der Buhne, der auf dem trockenen Strand als beweglicher Landanschluß gebaut wird, ist hinreichend erprobt.

Neben der Steinkistenbuhne findet man heute hölzerne Pfahlbuhnen, Strauchbuhnen, gemauerte Findlingsbuhnen, Stahl- und Stahlbetonpfahlbuhnen. Eine eingehende Beurteilung über die Bewährung der verschiedenen Buhnenarten teilte POPPE (70) auf Grund eigener Beobachtungen mit. Die Darstellung verdient wegen der Erfahrungen im schweren Eiswinter 1939/40 besonders herausgestellt zu werden. Den größten Widerstand gegen Eisschub bietet danach die zweireihige, hölzerne Pfahlbuhne mit Fascinen und Steinbeschwerung infolge ihres breiten Querschnitts. Die Unterhaltungskosten sind zwar beträchtlich, weil die Fascinen-
Abb. 40. Luftbildaufnahme von Niendorf bis Timmendorfer Strand (1938)
packung teils durch den Seeangriff in sich selbst, teils durch die Steinauflast so stark zusammensackt, daß die Steine meist schon nach 2 bis 3 Jahren gehoben werden mußten. „Dieses Spiel wiederholt sich dann in regelmäßigen Abständen von 3 Jahren."

Von kurzer Dauer war die Buhne am Nordabschluß der Strandpromenade von Travemünde. Dem Gedanken von REHDER ([74], [75] u. [76]) folgend, hier einen Seedamm von 350 m Länge und 70 m Breite herzustellen, wurde im Jahre 1933 auf 100 m eine verholmte Holzpundwand (Abb. 38) und auf weitere 80 m eine Stahlpundwand gebaut (Abb. 39). Die Spundwand reichte etwa 1,80 m über den Unterwasserstrand hinaus (+ 0,70 m MW) und wies damit den Strom und die Sandwanderung seewärts ab. Auf der Südseite machte sich sehr bald eine unangenehme Wirkung bemerkbar: Der Travemünder Badestrand nahm an Breite und Güte ab. Um nun den Strandverlust südlich der Buhne zu beheben, wurde in den Jahren 1949/50 eine Verkürzung der im Mittelteil beschädigten Buhne auf rund 85 m vorgenommen. Die in die Holzpundwand eingeschnittenen neun Fenster hatten für den Sandaustrausch zwischen der Nord- und Südseite keine Bedeutung. Der stehengebliebene hölzerne Teil der Buhne wurde Ende 1950 in gleichmäßigem Gefälle bis auf den Strand auslaufend abgeschnitten und neu verholmt. Seitdem der Rest der eisernen Spundwand im Jahre 1951 beseitigt worden ist, sind nun die Voraussetzungen für eine gleichmäßige Strandbildung wieder geschaffen. Die gewünschte Strandbreite kann hier allerdings erst wieder erreicht werden, wenn auch die Einbußstrecken zwischen der Möwensteinbadeanstalt und dem Abschluß der Strandpromenade aufgefüllt sein wird [PETERSEN (67)]. Dieses Beispiel läßt erkennen, daß gelegentlich durch Beseitigung einer nachteilig wirkenden Anlage weitere Schäden behoben werden können.

Was war dagegen zu tun? Die Schäden mußten beseitigt werden, d. h. die Längswerke und noch mehr die Buhnsysteme nahmen an Ausdehnung in Richtung des wandernden Sandes zu. Schäden entstanden aber auch noch, als die Anlagen bereits bis in die natürlichen Anwachsgebiete vorgetrieben worden waren. So wurden Anwachsstrecken gegen alle Erwartungen zu Abbruchstrecken.

LEPPIK (46) wie auch der XVII. Internationale Schifffahrtskongreß [ABECECIS (1)] bekennen offen, daß man zur Zeit noch nicht viel darüber weiß, „wie sich eigentlich die Küstenerosion vollzieht“. SCHUMACHER (84) erklärt dazu: „Die Praxis verleitet zu der entmutigenden Auf-
fassung, daß die Lee-Erosion erst aufhört, wenn die gesamte in Abbruch liegende Küste künstlich befestigt ist. Daher entsteht der Forschung hier eine wichtige Aufgabe.

Wir befinden uns also in einer Lage, die für Planungen von Küstenschutzmaßnahmen an der Ostsee zur intensivsten Vorarbeit mahnt. Auf gründliche Untersuchungen kann nicht mehr verzichtet werden.

II. Wirtschaftliche Betrachtungen für die Planung von Uferschutzmaßnahmen vor Steilufern

Über den Nachweis der Wirtschaftlichkeit von künstlichen Uferschutzanlagen schreibt HEISER (32), daß sie sich rechnerisch nicht so gut erbringen läßt, „wie solches bei anderen Bauwerken möglich ist. Es kommt mehr auf die genaue Untersuchung der Folgen an, die zu erwarten sind, wenn eine gefährdete Küstenstrecke nicht unter wirksamen Schutz gebracht wird und sich weiter überlassen bleibt."

Die Kostenberechnung für Längswerke hat ergeben, daß bei dem Preisindex vom Jahre 1950 für die Herstellung eines lfdm Längswerk im Durchschnitt ein Betrag von 1900.— DM, d. h. für einen Küstenkilometer 1900 000.— DM benötigt werden. Dabei wurden die einzelnen Bauarten so bemessen, daß sie bei schweren Sturmfluten ihre Standsicherheit zu bewahren und ihre eigentliche Aufgabe zum Schutze eines Steilufer zu erfüllen in der Lage sind. Die Erfahrungen haben gelehrt, daß wesentliche Einsparungen bei dem Bau von Längswerken fast in jedem Falle entsprechend höhere Unterhaltungskosten zur Folge hatten.

Soll statt eines Längswerks oder als Ergänzung zu einem Längswerk eine Buhnengruppe geschaffen werden, dann müssen Beträge von etwa 200 000.— DM für einen Küstenkilometer (ebenfalls bei dem Preisindex von 1950) in die Rechnung eingeführt werden (bei 10 Buhnen je km von je 80 m Länge und einem Baupreis von 250.— DM je lfdm Buhne). An Uferstrecken mit längeren Buhnen wird der Abstand von Buhne zu Buhne vergrößert, die Anzahl der Buhnen wird kleiner. Bei kürzeren Buhnen ist das Verhältnis umgekehrt. Die gesamte Buhnenlänge auf 1000 m Ufer beträgt bei der bisherigen Bauweise etwa 770 bis 800 m. Die Anzahl der Buhnen, die an der Küste gebaut worden sind, und deren Länge ließen sich für Schleswig-Holstein einwandfrei ermitteln; für die übrigen Küstenstrecken war nur eine über-
schlägliche Erfassung an Hand der einschlägigen Literatur möglich. Danach verteilen sich die Buhnen auf die Küstenabschnitte wie folgt:

<table>
<thead>
<tr>
<th>Küstenabschnitt</th>
<th>Anzahl Buhnen</th>
<th>Länge (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein</td>
<td>270</td>
<td>40</td>
</tr>
<tr>
<td>Mecklenburg</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>Pommern</td>
<td>1.000</td>
<td>70</td>
</tr>
<tr>
<td>Samland und Nehrung</td>
<td>75</td>
<td>70</td>
</tr>
</tbody>
</table>

Der Bauwert der Buhnen an der Ostseeküste kann auf Grund der vorstehenden Angaben zu rund 24 Millionen DM angegeben werden.

Eine ähnliche Erfassung der durch Längswerke gesicherten Uferstrecken war leider nicht möglich. Aus der Gegenüberstellung der Kosten für die Herstellung eines Küstenkilometers Längswerk und Querwerk geht hervor, daß der Schutz mit Buhnen am preiswertesten durchzuführen ist. Andererseits werden Ufer, die mit Buhnen allein nicht zu halten sind, mit 2 Millionen DM je Küstenkilometer zu veranschlagen sein, wobei der leeseitige Abschluß der zu schützenden Strecke erfahrungsgemäß meist eine Erweiterung der Buhngruppe, zum Teil auch des Längswerks, nach sich zieht und die Kosten erhöht.

Die lautende Unterhaltung der Küstenschutzwerke, die zeitweise oder dauernd den Angriffen des Meeres ausgesetzt sind, ist mit weiteren Kosten verbunden. Im Seebau haben sich diese im Durchschnitt etwa zu 5 v. H. der Bausumme je Jahr ergeben. Für einen Küstenkilometer Buhnen belaufen sich die Unterhaltungskosten etwa auf 10.000.— DM. Für die Längswerke mit kräftiger Dimensionierung, die der Berechnung zugrunde gelegt ist, können günstigenfalls 2 v. H. jährliche Unterhaltungskosten in Ansatz gebracht werden. Dies entspricht einer jährlichen Summe von etwa 38.000.— DM.

An Küstenstrecken, wo der Landverlust allein die Veranlassung für den Bau von Uferschutzwerken gab, wird der Wert der abbrechenden landwirtschaftlichen Nutzfläche bei wirtschaftlichen Überlegungen in Ansatz zu bringen sein. Auf einen Küstenkilometer beträgt der jährliche Landverlust im Durchschnitt für

<table>
<thead>
<tr>
<th>Küstenabschnitt</th>
<th>Landverlust (ha)</th>
<th>DM pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein</td>
<td>rund 250</td>
<td>100.—</td>
</tr>
<tr>
<td>Mecklenburg</td>
<td>320</td>
<td>130.—</td>
</tr>
<tr>
<td>Pommern</td>
<td>800</td>
<td>320.—</td>
</tr>
<tr>
<td>Samland und Nehrung</td>
<td>500</td>
<td>200.—</td>
</tr>
</tbody>
</table>

Bei einem Wert von 4.000.— DM je ha Bodenfläche beläßt sich der jährliche Verlust in DM für einen Küstenkilometer in

<table>
<thead>
<tr>
<th>Küstenabschnitt</th>
<th>DM pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein</td>
<td>100.—</td>
</tr>
<tr>
<td>Mecklenburg</td>
<td>130.—</td>
</tr>
<tr>
<td>Pommern</td>
<td>320.—</td>
</tr>
<tr>
<td>Samland und Nehrung</td>
<td>200.—</td>
</tr>
</tbody>
</table>

III. Vorschläge für flächenhafte Küstenschutzmaßnahmen

Staat hinweisen zu müssen.“ „Was das Mittel gegen den festgestellten Überstand anbetrifft, d. h. das Verhalten und die Wirkung eines bestimmten Bauwerkes zum Schutze der Küsten, so konnte der Kongreß nur mit Bedauern von unserem heutigen mangelhaften Wissen auf diesem Gebiet sprechen.“

Dieses und die wirtschaftlichen Betrachtungen veranlassen bei einer Abwägung mit dem tatsächlich Erreichten zu der Überlegung, ob es nicht noch andere Möglichkeiten gibt, den Landverlust an besonders gefährdeten Stellen aufzuhalten. Wasmund (99) hat einen Weg angedeutet: „Längswerke und Querwerke bleiben lineare starre Schutzlinien, obwohl es gar nicht darauf ankommt, feste Linien sondern Flächen zu erhalten oder das Küstenvorfeld bestenfalls zu verbreitern und auszuflachen.“

Das Ziel des Uferschutzes besteht in einer örtlichen Verbreiterung und Erhöhung des trockenen Strandes und Ablachung des unteren Unterwasserstandes. Wasmund (99) bezeichnete als „besten Lehrmeister die Natur“ und stellte als Meeresgeologe drei Vorschläge zur Diskussion:

a) „Der Flächenschutz des Unterwasserstandes oder eines strandnahen Streifens des Küstenvorfeldes
könnte durch Belegung mit natürlichen Steinen (Findlinge und Kopfsteine genügender Größe) erreicht werden. Günstiger und billiger noch erscheint die Möglichkeit, mit sperrigen Betonbruchsteinen zu arbeiten" (Abb. 41).

b) „Man könnte daran denken, Längswerke in Form von Steinwällen oder küstenparallelen Unterwasserbuhnen zu bauen“ (Abb. 42).

c) „Schließlich ist auch an punktweise Versteinung (Silifizierung) des Unterwasserstrandes zu denken.“ Eine technische Verarbeitung und Erprobung dieser Vorschläge hat noch nicht stattgefunden.

Aus den Überlegungen und Versuchen mit Buhnen in der Natur und im Modell und aus der bisherigen Kenntnis über die Vorgänge auf dem trockenen Strand wie auf dem ufernahen Unterwasserstrand werden folgende Vorschläge abgeleitet:

Um das Naturgeschehen am Meeresstrand möglichst wenig zu stören und die aufbauenden Kräfte in ihrer Tätigkeit zu fördern, sollte natürähnlich gebaut werden.

Die zweckmäßigste Form eines Längswerks ist ein möglichst flach geneigtes, schweres Deckwerk.

Unter naturähnlichen Querwerken sind Buhnen zu verstehen, die sich im Längsprofil der Neigung des Strandes anpassen, d. h. sie werden im seeseitigen Teil vornehmlich als Schwellen unter Wasser liegen müssen (Abb. 43).

Die Länge der Buhne wird durch die Lage der Sandriffen bestimmt. Die Buhne soll auf der seeseitigen Böschung eines Riffes enden.
Zwei Buhnen sollen jeweils durch Längsbuhnen verbunden werden, die in die Mulden zwischen Uferlinie und Riff bzw. zwischen zwei Riffe zu legen sind.

Die Buhnen sind aus etwa 4 m breiten und 0,30 m starken Senkmatten mit Belastung durch spezifisch möglichst schwere Spaltsteine 30×50 cm herzustellen.

Die Bauweise ist eine bewegliche, d. h. nach teilweiser oder vollständiger Versandung des Buhnensystems kann dieses in derselben Weise erhöht und seewärts vorverlegt werden. Bei Sturmfluten soll das angelegte Bunnennetz die Abtragung des Strandes verzögern.

Eisschäden können nur an den nicht versandeten Buhntenenteilen entstehen.

Es wird empfohlen, den kostspieligen Versuchen in der Natur eine eingehende Untersuchung im Modell voraufgehen zu lassen.

Das Buhnensystem ähnelt dem im Dünenbau erfolgreich angewandten Verfahren, den Sand mit Strauchzäunen zu fangen. Das Transportmittel "Wasser" entspricht etwa dem Transportmittel "Wind".

Der Abstand zweier Querbuhnen dürfte gleich der Entfernung des Riffs von der Uferlinie sein.

Zweck des Buhnensystems soll sein:

a) den trockenen Strand allmählich zu verbreitern und zu erhöhen, sowie günstige Voraussetzungen für den Dünenbau zu schaffen,

b) den unfernen Unterwasserstrand allmählich möglichst flach und gleichmäßig auszubilden.

Von einem im Abbruch liegenden Steilufer, an dem keine gleichgerichtete Sandwanderung stattfindet, dürfte eine Erhöhung und Verbreiterung des Strandes auch mit derartigen Buhnensystemen kaum möglich sein.
Buhnen, die zerstörende Strömungen ablenken sollen, müssen dicht sein, dagegen müssen Auffangbuhnen durchlässig sein.

Im allgemeinen ist bisher die Frage verneint worden, ob Steilufer mit vertretbaren Mitteln gegen Abbruch geschützt werden können [XV. u. XVII. Interm. Schifffahrtskongress: COEN CAGLI (4) und ABECCEIS (1)]. Vor dem Brodtener Ufer speziell halten DALMANN (7), GERHARDT (19), REHDER [(74), (75) u. (76)], HEISER (32) und PETERSEN (68) den Bau von Buhnen für zwecklos, da die Voraussetzungen für einen Erfolg fehlen. Der flächenhafte Ufer- schutz liegt hier in der Erhaltung der natürlichen Steinlage durch Unterbindung der Stein- fischerei.

IV. Besiedlung von Steilufern

Seitdem der Fremdenverkehr mit Erholungsuchenden in die Küstenorte strömt, rücken diese mehr und mehr an die Ufer heran. In Verkennung der möglichen Naturereignisse hat sich damit eine verständliche, aber ebenso bedenkliche Entwicklung abgeleitet. Für Abbruch- ufer wird zu erwägen sein, ob nicht ein besonders festzulegender Uferstreifen aus Gründen der Sicherheit und der wachsenden Verpflichtungen von der Besiedlung ausgeschlossen werden soll.

An der schleswig-holsteinischen Ostseeküste nimmt vor allem die Besiedlung der anschließen- den Strandwälle Ausmaße an, die eine grundlegende Überprüfung als erforderlich erscheinen lassen, denn der Strandwall stellt eine natürliche, aber veränderliche Form auf der Grenze zwischen Land und Meer dar. Seine Höhe liegt von Natur aus nicht hochwasserfrei, dies bedeutet, daß die Besiedlung eines Strandwalls bei schweren Sturmfluten zu Überschwemmungskatastrophen führen kann oder muß.

D. Zusammenfassung

Die Form der Ostseeküste ist das Ergebnis eines fortlaufenden Kampfes zwischen Meer und Land. Daß die zerstörende Tätigkeit des Meeres die aufbauende überwiegt, zeigt der Abbruch an den Steilufern. Auf den Küstenstreken vom Samland bis Schleswig-Holstein kann im Jahresdurchschnitt mit einem Landverlust bis etwa 24 ha gerechnet werden, der örtlich und zeitlich sehr verschieden auftritt. Die mittleren Uferrückgangswerte liegen etwa bei 0,25 bis 0,80 m.

Am Fuß des Steilufers bildet sich während der Wintermonate eine Schutthalde aus ab- gestürzten Mergelbrocken und aus Mergelbrei. Bei Sturmfluten wird das Material aufgearbeitet und der Anschnittwinkel ausgeräumt. Der Vorgang wiederholt sich je nach der Dauer und der Häufigkeit der Wiederkehr von Sturmfluten mit Wasserständen von mehr als etwa + 0,80 m MW. Die höchsten Wasserstände erreichten in Memel etwa + 1,50 m MW, in der westlichen Ostsee dagegen + 3,40 m MW. Die entscheidenden Materialverfrachtungen an der Küste geschehen bei Sturmfluten. Vorstehende Naturerscheinungen wie auch die Lage eines Küsten- abschnitts zur hochwassererzeugenden Windrichtung und die Stärke der Brandung an Steil-
ufern sind bestimmend für den Landverlust. Darüber hinaus trägt die anhaltende säkulare Niveauverschiebung zur Aktivierung des Uferrückgangs bei.

Die Abrasion des Unterwasserstrandes vor Steilufern konnte qualitativ und vor dem Brodtener Ufer quantitativ nachgewiesen werden; hier reicht die Hauptabrasion bis etwa zur Wassertiefe von vier Metern.

Die Vorgänge in der Brandungszone (Strömungsverhältnisse und Wanderung des Sandes im einzelnen) sind bis heute, von einigen Ansätzen abgesehen, noch wenig geklärt. Wenn Längs- und Querwerke zum Schutz von Steilufern in die Brandungszone hineingebaut werden müssen und wenn kostspielige Fehlinvestitionen erspart werden sollen, werden Untersuchungen hier vordringlich fortzusetzen sein.

Bei der Planung von künftigen Küstenschutzmaßnahmen wird dem Sandfang mittels niedriger, schwellenartiger Unterwasserbuhnen, die je nach Verlandung erhöht und verlängert, bzw. ergänzt werden können, größere Bedeutung zuzumessen sein. Flächenhaft angelegte Schutzbewerke werden die gefährliche Lee-Erosion vermindern oder ganz ausschalten können.

Die meisten Naturerscheinungen an der Küste, wie die hochwasserverursachenden Stürme, die Häufigkeit ihrer Wiederkehr, die Wasserstände, der Seegang, die Brandung, die Meeresströmungen, die sääkulare Niveauverschiebung und andere sind unveränderlich. Der menschliche Einfluß wird sich deshalb auf die Befestigung des Kliffußes und die Nutzbarmachung der Sandwanderung beschränken müssen.

E. Schriftenverzeichnis und Quellen

8. **DALSTEIN:** Schutz des Brodtener Ufers. Unveröff. 1947 (WSA. Lübeck).
19. **GERHARDT, P.:** Handbuch des deutschen Dünengebietes, Berlin 1900.
20. **GERLACH:** Gefährdetes Brodtener Ufer — ein Vorschlag zur Erhaltung. Lübecker Freie Presse 1948.

11) WSA. = Wasser- und Schifffahrtsamt.
43. KRESSNER, B.: Modellversuche über die Wirkung der Strömungen und Brandungswellen auf einem sandigen Meeresstrand und die zweckmäßige Anlage von Strandbuhnen. Die Bautechnik 1928.
68. Petersen, M.: Kostenanschlag für die Herstellung eines Uferschutzwerkes am Brodtener Ufer bei Travemünde. Unveröff. 1951 (d) (WSA. Lübeck).

Weitere Quellen wurden eingesehen in folgenden Behörden und Instituten:

- Wasser- und Schifffahrtscdirektion Kiel
- Wasser- und Schifffahrtsämter Lübeck, Ostsee Kiel und Norden
- Staatarchiv Lübeck
- Ministerium für Ernährung, Landwirtschaft und Forsten, Kiel — Wasserwirtschaftsverwaltung — Wasserwirtschaftsamt Lübeck
- Landesvermessungsamt Kiel
- Katasterämter Lübeck und Eutin
- Deutsches Hydrographisches Institut, Hamburg
- Meteorologisches Amt für Nordwest-Deutschland, Hamburg
- Küstenausschuß Nord- und Ostsee, Kiel
- Marschenbaumaat Husum
- Forschungsstelle Westküste Husum
- Technische Hochschule Hannover
Die Veränderungen im Steilufer und in der Strandterrasse des Naturschutzgebietes Stoltera bei Warnemünde

Von Erhard Köster

Die Strandzone

Die Stoltera (Abb. 1) leidet unter starker Küstenversetzung, deren Stärke und Richtung vom Wind abhängt. Die Küste der Stoltera verläuft teils N75°W und teils N65°O (alter Teilung). Die auf sie einwirkenden Winde verteilen sich wie folgt:

Nach Hartnack [(8), S. 60]
und Zander [(15), S. 12]

<table>
<thead>
<tr>
<th>Wind</th>
<th>%</th>
<th>Zusammen</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>18,3</td>
<td>28,5</td>
</tr>
<tr>
<td>NW</td>
<td>10,2</td>
<td>28,5</td>
</tr>
<tr>
<td>N</td>
<td>6,2</td>
<td>19,0</td>
</tr>
<tr>
<td>NO</td>
<td>10,0</td>
<td>19,0</td>
</tr>
<tr>
<td>O</td>
<td>9,0</td>
<td>19,0</td>
</tr>
</tbody>
</table>
| Zusammen | 19,0

Nach Kannenberg [(9), S. 10]

<table>
<thead>
<tr>
<th>Wind</th>
<th>%</th>
<th>Zusammen</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>19,8</td>
<td>32,8</td>
</tr>
<tr>
<td>NW</td>
<td>13,0</td>
<td>32,8</td>
</tr>
<tr>
<td>N</td>
<td>6,1</td>
<td>20,2</td>
</tr>
<tr>
<td>NO</td>
<td>7,2</td>
<td>20,2</td>
</tr>
<tr>
<td>O</td>
<td>13,0</td>
<td>20,2</td>
</tr>
</tbody>
</table>
| Zusammen | 20,2

Durch die mehr aus W als aus O kommenden Winde muß also eine Versetzung nach O erfolgen. Diese Sandwanderung findet sowohl an der Küste als auch in den ihr vortretenden Sandriffen statt [Köster (10)].

Die Veränderungen des Strandes zwischen 1907 und 1947 zeigt Tabelle 1.

<table>
<thead>
<tr>
<th>Strandbreite bei Buhne</th>
<th>1907</th>
<th>1947a)</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>32,5 m</td>
<td>20,0 m</td>
<td>- 12,5 m</td>
</tr>
<tr>
<td>29</td>
<td>47,0</td>
<td>18,0</td>
<td>- 29,0</td>
</tr>
<tr>
<td>30</td>
<td>32,0</td>
<td>16,0</td>
<td>- 16,0</td>
</tr>
<tr>
<td>31</td>
<td>24,0</td>
<td>12,0</td>
<td>- 12,0</td>
</tr>
<tr>
<td>32</td>
<td>14,5</td>
<td>11,0</td>
<td>- 3,5</td>
</tr>
<tr>
<td>34</td>
<td>10,5</td>
<td>4,0</td>
<td>- 6,5</td>
</tr>
<tr>
<td>35</td>
<td>16,0</td>
<td>6,0</td>
<td>- 10,0</td>
</tr>
<tr>
<td>36</td>
<td>2,5</td>
<td>3,0</td>
<td>+ 0,5</td>
</tr>
<tr>
<td>Stein 0</td>
<td>19,0</td>
<td>26,0</td>
<td>+ 7,0</td>
</tr>
<tr>
<td>Buhne 39</td>
<td>14,0</td>
<td>12,0</td>
<td>- 2,0</td>
</tr>
<tr>
<td>40</td>
<td>14,0</td>
<td>8,0</td>
<td>- 6,0</td>
</tr>
<tr>
<td>41</td>
<td>10,0</td>
<td>8,0</td>
<td>- 2,0</td>
</tr>
<tr>
<td>42</td>
<td>7,0</td>
<td>13,0</td>
<td>+ 6,0</td>
</tr>
<tr>
<td>Stein V</td>
<td>13,0</td>
<td>15,0</td>
<td>+ 2,0</td>
</tr>
<tr>
<td>Buhne 46</td>
<td>13,0</td>
<td>18,0</td>
<td>+ 5,0</td>
</tr>
</tbody>
</table>

Durchschnitt: 17,93 m 12,67 m - 5,2 m

Der Strand ist von der Durchschnittsbreite von 17,9 Metern auf 12,7 Meter gefallen, während GEINITZ [(4) 1907, S. 4] glaubte, eine Verbreiterung feststellen zu können.

Die Uferabbrüche

Uferabbrüche an Steilufern diluvialen und alluvialen Ursprungs werden durch verschiedene Faktoren verursacht. Diese sind:

- Klima und Grundwasser,
- Pflanze, Tier und Mensch und
- Einwirkung des Meeres.

Das Klima beeinflusst das Kliff in seiner äußeren Schicht durch Temperaturveränderungen, die im Sommer durch Austrocknen (Trockenrisse, Aufblätterungen), im Winter durch Gefrieren verschieden durchfeuchter Schichten Änderungen und Lockerungen im Gefüge herverrufen.

1) Die Messung vom Jahre 1947 erfolgte im August bei Normalwasser. Über die Wasserverhältnisse gelegentlich der Messung vom Jahre 1907 war nichts zu ermitteln.
Abb. 2. Profil, Ufer- und Strandveränderungen der Stoltera bei Warnemünde

Die Gefahr des Bodenwassers wird im größten Teil der Stoltera herabgemindert durch den vorhandenen Wald, der einen Teil des Wassers bindet.

Diese Vorgänge, soweit der Mensch sie nicht verursacht, sind von WASMUND als „innerer Küstenzerfall“ bezeichnet worden [WASMUND (14), S. 260, GROSCHOFF (7), S. 339]. Da bei diesem Zerfall das Niederschlags- und Bodenwasser der Hauptfaktor ist, glaubt VON BÜLOW [(1), S. 77], daß er in den Kulturländern eine Folge der Entwaldung ist.

Diese Veränderungen, soweit der Mensch daran unbeteiligt ist, bilden einen normalen Vorgang, dem jedes Steilufer mit zu steilem Böschungswinkel unterworfen ist. Der Vorgang würde sich fortsetzen, bis sein Endzustand, nämlich der Bewuchs einer naturgemäßen Böschung erreicht ist. Damit würde auch der Küstenzerfall aufhören [v. BÜLOW (1), S. 77].

Dieser Zustand kann jedoch nicht erreicht werden, weil das Hochwasser
1. durch Wegräumen der Schutthalde den Böschungswinkel verändert,
2. an den durch den inneren Küstenzerfall zerrütteten Stellen das Ufer immer wieder von neuem zerstört.

1. Strecke von Buhne 27—32 Geschiebemergel
 Oberkante 0,04 m
 Fuß 0,05 m

2. Strecke von Buhne 32—38 Schichtenstörungszone
 Oberkante 0,32 m
 Fuß 0,25 m

3. Strecke von Buhne 38—46 Geschiebemergel
 Oberkante keine Ermittlung
 Fuß 0,19 m

*) Mit Schichtenstörungszone wurde der Abschnitt bezeichnet, der infolge diluvialer Stauchungsvorgänge in seiner Struktur von der gleichmäßigen Ablagerung der Grundmoräne abweicht!
Die Zusammenstellung zeigt, daß die Abbrüche in der Störungszone besonders groß sind. Sie werden aber nicht verursacht durch Stürme aus dem Westen; gegen diese Winde liegt die Zone verhältnismäßig geschützt. Hauptzerstörer des Ufers sind die Nord- und Nordoststürme, denen West- und Nordwestwinde vorangingen. Die letzteren treiben Wasser aus dem Skagerrak in die Ostsee, die ersteren stauen dieses Wasser und werfen es gegen die Süd- und Südwestküste [HARTNACK (8), S. 69, KRÜGER (11), S. 35]. Diese Sturmfluten greifen die Küste frontal an und zerstören das Ufer vorwiegend dort, wo es infolge ungleicher Bodenzusammensetzung und Lagerungssituationen dazu prädestiniert ist.

Tabelle 2

<table>
<thead>
<tr>
<th>Zeitspanne</th>
<th>Jahre</th>
<th>Wilhelmshöhe (östl.)</th>
<th>Ecke bei 100 m</th>
<th>Ecke bei 0 m</th>
<th>Waldgrenze (westl.)</th>
<th>Ecke 400 m</th>
<th>V</th>
<th>Durchschnitt im Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1778–1932</td>
<td>154</td>
<td>0,10 0,50</td>
<td>0,42</td>
<td>—</td>
<td>0,59 0,50</td>
<td>—</td>
<td>—</td>
<td>0,38</td>
</tr>
<tr>
<td>1778–1874</td>
<td>96</td>
<td>0,02 0,65</td>
<td>0,37</td>
<td>—</td>
<td>0,31 0,34</td>
<td>—</td>
<td>—</td>
<td>0,36</td>
</tr>
<tr>
<td>1874–1907</td>
<td>33</td>
<td>0,30 0,70</td>
<td>—</td>
<td>1,70 1,03</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,60</td>
</tr>
<tr>
<td>1907–1932</td>
<td>25</td>
<td>0,12 0,60</td>
<td>0,24</td>
<td>—</td>
<td>0,24 0,40</td>
<td>—</td>
<td>—</td>
<td>0,23</td>
</tr>
<tr>
<td>?</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>?</td>
<td>29</td>
<td>—</td>
<td>—</td>
<td>0,10 0,18</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,10</td>
</tr>
<tr>
<td>1907–1947</td>
<td>40</td>
<td>0,00 0,39</td>
<td>0,18 0,04</td>
<td>0,09 0,26</td>
<td>0,15 0,21</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Der Gesamtdurchschnitt beträgt nach ZANDER 0,31 m. Die durchgeführte letzte Messung hat ergeben, daß der durchschnittliche Jahresrückgang im Gebiet des östlichen Geschiebemergels 0,05 m, im Gebiet der Schichtenstörung 0,29 m und im Gebiet des westlichen Geschiebemergels 0,19 m beträgt.

Einzelergebnisse

Der Gesamtdurchschnitt aller in der Tabelle 3 aufgeführten Abbrüche beträgt im Jahr 0,21 m, sowohl für die Oberkanten als auch für die Fußpunkte.

Die in Tabelle 3 angewandten Abkürzungen haben folgende Bedeutung: aS = alluvialer Flugsand, dS = diluvialer, geschichteter Sand, Mg = Geschiebemergel. Untereinander geschriebene \(\frac{M}{S} \) bedeuten sie das Vorkommen dieser Bodenarten in vertikaler Richtung, nebeneinander geschriebene S/Mg bedeuten sie das Vorkommen dieser Bodenarten horizontal auf engem Raum.

Der errechnete Jahresdurchschnitt ist insofern unzuverlässig, als der Küstenverlust hauptsächlich durch aperiodische Vorgänge verursacht wird. Die sturmflutarmen Perioden erbringen ein anderes Bild. Diese Zahlen haben also nur einen Wert, wenn sie auf längere Zeiträume angewandt werden.
Punkt	bei Buhne	Höhe	Bodenzusammen-	Veränderungen der	Jahres-	
-------	-----------	------	setzung	Oberkante	Unterkante	durchschnitt
			m	m	m	m
D1	27	—	aS Mg	unverändert	—	0,00
		13,5	Mg	unverändert	+ 10	—
	29	—	dS Mg	+ 20	—	—
F	29/30	16,0	aS dS Mg	— 6,0	0,15	
	30/31	15,0	aS dS Mg	— 1,25	0,03	
F1	31	16,5	aS dS/Mg	— 2,0	0,05	
	31/32	—	aS dS Mg	unverändert	0,00	
G1	32	17,0	aS Mg	— 11,5	0,29	
				11,5	0,29	
H1	32/33	17,0	aS dS Mg	— 14,2	0,36	
J	33/34	17,0	aS Mg	— 25,0	0,63	
	34	17,0	aS Mg	— 12,2	0,31	
K	34/35	17,0	aS dS/Mg	— 5,5	0,14	
	35	—	aS dS Mg	— 5,2	0,13	
L	35a	—	dS Mg	— 2,4	0,06	
M	35a	15,0	dS Mg	— 13,8	0,34	
	36	17,0	aS dS Mg	— 12,6	0,31	
M1	36/37	16,0	aS dS/Mg	— 15,5	0,39	
N	37	15,5	aS Mg	— 4,8	0,12	
O	38	15,0	aS Mg	— 7,0	0,18	
	39	14,0	aS Mg	— 8,4	0,21	
R	40	13,6	aS Mg	— 1,8	0,04	
	41	13,0	aS Mg	— 5,9	0,15	
	42	12,0	aS Mg	— 10,4	0,26	
V	45/46	8,5	aS Mg	— 6,0	0,15	
	46	8,0	aS Mg	— 11,5	0,29	
Schriftenverzeichnis
