Produktionsbiologische Untersuchungen auf eingedeichten Wattflächen

Von Erich Wohlenberg und Martin Plath †

A.	Vorbemerkung							5
B.	Die Salzpflanzengesellschaften nach der Eindeichung							6
C.	Die Entwicklung der Salzpflanzengesellschaften nach	der	Ein	deic	hung	, .		10
	I. Das Schlickwatt Padelack							11
	II. Das Sandwatt Padelack							11
	III. Das Schluffwatt Finkhaus							15
D.	Die Produktionsstärke der verschiedenen Watt-Typer	ı .						15
E.	Die Verteilung der Wattmuscheln							20
F.	Schriftenverzeichnis							23

A. Vorbemerkung

Bei einem Rückblick auf die Bedeichungsgeschichte unserer Marschen machen wir die allgemeine Beobachtung, daß sich sehr häufig die Notwendigkeit ergeben hat, kleinere Einbuchtungen mit unverlandetem Wattboden miteinzudeichen, um auf diese Weise eine möglichst zügig verlaufende Deichlinie zu erreichen. Bei der Bedeichung des Gebietes der Finkhausund Padelackhallig im Jahre 1935 bildeten die miteingedeichten, zum Teil noch vegetationslosen Wattböden sogar über ein Drittel der gesamten Koogsfläche. Somit ergaben sich bei der Erschließung dieses Kooges neue, von der großen Tradition der Marschenkultivierung abweichende Aufgaben (vgl. IWERSEN, dieses Heft S. 24 bis 142).

Als der Deich der Finkhaushallig geschlossen war, setzte sich der neue Koog aus drei verschiedenen Zonen zusammen, 1. aus altem, nach der überkommenen Auffassung deichreifem Anwachs (Festucetum rubrae litor.), 2. aus einem in der natürlichen Verlandung begriffenen Gebiet (Puccinellietum und Salicornietum) und 3. aus nacktem Wattboden. Der biologischen Arbeitsrichtung fiel die Aufgabe zu, angesichts der neuen Aufgaben der Wattkultivierung die eingedeichten Wattflächen nach biologisch-bodenkundlichen Gesichtspunkten zu kennzeichnen. Bei den im folgenden niedergelegten Untersuchungsergebnissen muß einschränkend bemerkt werden, daß die Aufgabe erst 1936, also ein Jahr nach erfolgtem Deichschluß erteilt wurde. Das Wattgebiet war dem Verfasser zwar seit vielen Jahren bekannt, aber es lagen keine quantitativen Analysen der Tier- und Pflanzenwelt vor. Wenn das Aussehen der Watten vor der Bedeichung trotzdem kurz erörtert wird, so handelt es sich lediglich um eine beschreibende Darstellung.

Es kamen folgende Untersuchungsmethoden zur Anwendung¹):

- a) die Pflanzenbestandsaufnahme (durch WOHLENBERG)
 - 1. Artenliste
 - 2. Zählungen und Wägungen
 - 3. Salzgehaltsbestimmungen
- b) die Muschelkartierung (durch Plath).

Die Muschelkartierung durch Plath (vgl. Absatz E, S. 20) stellt den Versuch dar, fast zwei Jahre nach dem Deichschluß die infolge der Schrumpfung der trockengelegten Watt-flächen beziehungsweise durch die 1936 bereits beginnende landwirtschaftliche Bodenbearbeitung sichtbar gewordenen Muschelschalen nach Art und Häufigkeit nachträglich zu kartieren. Dieses Verfahren ist also ein mit Einschränkung zu bewertender Ersatz für die

¹⁾ Diesem Aufsatz liegen die amtlichen Berichte der Verfasser von 1939 zugrunde.

6

biologische Gesamtkartierung, wie sie in anderen Wattgebieten mit Erfolg durchgeführt werden konnte [Wohlenberg (16), Plath (13) und König (8)].

B. Die Salzpflanzengesellschaften vor der Eindeichung

Die Abriegelung durch den neuen Seedeich (Abb. 5) war im Mai des Jahres 1935 durchgeführt. In der Abbildung 1 ist der derzeitige Stand der Verlandung eingetragen. Sie fußt sowohl auf die regelmäßigen Eintragungen des Marschenbauamts, als auch auf die Pflanzenkartierung von Kolumbe (1935) und zum Teil auf eigene Beobachtungen. Die drei entscheidenden Stufen, die den Grad der Verlandung in der Regel zu kennzeichnen pflegen, sind

1. die Quellergesellschaft (Salicornietum)

2. die Andelwiese (Puccinellietum)

3. die Strandschwingel - Grasnelkenwiese (Festucetum rubrae litor).

Die dritte Gesellschaft bewohnt die hohe Hallig. Die Andelwiese ist das Übergangsgebiet zwischen dieser und der Quellergesellschaft. Auf Grund dieser Dreigliederung ergibt sich die auf der Abbildung 1 dargestellte Verteilung zur Zeit der Bedeichung. Die Karte läßt erkennen, daß nur die eigentlichen Halligkörper die Strandschwingelwiese tragen. Fast das ganze Simonsberger Vorland dagegen ist eine jüngere Bildung und trägt noch einförmige Andelbestände. Desgleichen ist das Verbindungsstück zwischen der Padelackhallig und dem alten Seedeich der Südermarsch erst um die Jahrhundertwende erneut verlandet und hatte sich auf Grund zögernder Verlandung bis zur Eindeichung 1935 nur bis zur Andelgesellschaft (Puccinellietum) fortentwickelt. Die Charakterarten der hohen Hallig fehlten hier noch vollkommen. Die größten zusammenhängenden Quellergebiete befanden sich zwischen dem Simonsberger Vorland und dem Weißknie, ferner in randmäßiger Ausbildung zu beiden Seiten der Padelackhallig und an der Südseite der Finkhaushallig. Nach der Bestandskarte, Abbildung 1, setzte sich die Gesamtkoogsfläche von 465 ha wie folgt zusammen:

179 ha hohe Hallig

98 ha Andelwiese

56 ha Quellergebiet

132 ha pflanzenleeres Watt (einschl. Wasserflächen).

Vom nackten Watt zeigt uns Abbildung 5 den westlichen Abschnitt des großen Priels (Heckels Loch), der im Süden vom Anwachs Simonsberg, im Norden von der alten Padelackhallig begrenzt wird. Die diesem Priel in seinem ganzen Lauf vom alten Seedeich der Südermarsch bis zum neuen Seedeich benachbarten Watten bilden den Hauptstandort unserer Untersuchungen.

Infolge der zögernden Verlandung dieses Gebietes entschloß sich die Preußische Domänenverwaltung, der damals die Landgewinnungsmaßnahmen unterstanden, in dem Wattgebiet vor "Weißknie" im Jahre 1927 ein Versuchsfeld von 4 ha Größe mit Spartina Townsendii anzulegen (vgl. Abb. 1 und 2). Die Abbildungen 2 bis 4 geben den Entwicklungsgang dieser Pflanzung von 1927 bis zur Eindeichung 1935 wieder. In Ergänzung zu diesen Bildern, die uns überdies eine gute Vorstellung von dem Charakter der später bedeichten Watten vermitteln, sei eine Tabelle aus den Akten der Domänenverwaltung aus dem Jahre 1930 auszugsweise wiedergegeben:

Spartina – Bestandskontrolle Feld I. Padelackhallig – Weißknie

Standort d. Pflanzen	Bodenart	Anpflanzung April 1927	nach der Pflanzung	Anzahl der lebenden Pflanzen			
Höhe zum MThw	Doubling	Stck.	zunächst angewachsen	1927 Stck.	1928 Stck.	1929 Stck.	
— 0.60 m	fetter Schlick	2400	2000	1600	86	70	

Die Tabelle zeigt, daß die Versuchspflanzung, wohl infolge der zu großen Tiefenlage von 60 cm unter MThw, mit 70 überlebenden (von 2400!) Pflanzen nicht den erwarteten

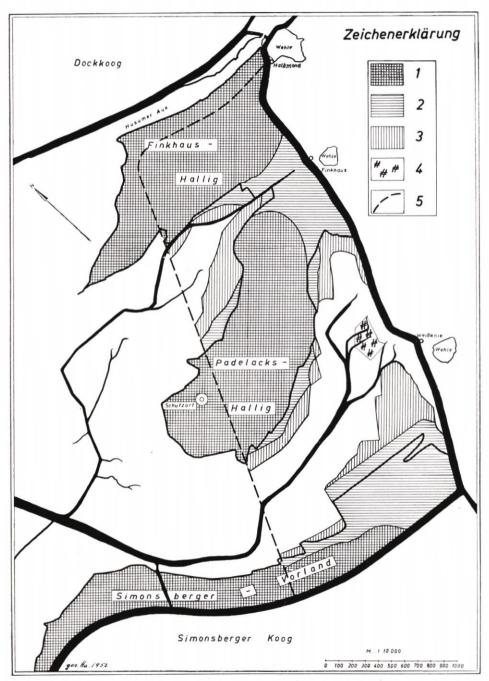



Abb. 1. Die Verteilung der Pflanzengesellschaften vor der Eindeichung 1 = Festucetum rubrae litor., 2 = Puccinellietum, 3 = Salicornietum, 4 = Spartina Townsendii (Pflanzfeld 1927), 5 = Seedeich 1935

Bildarchiv Marschenbauamt Aufn. Odefey

Abb. 3 Dasselbe Pflanzfeld im Jahre 1931. Von den 2400 Setzlingen haben sich etwa 70 sehr zögernd zu Horsten entwickelt

Bildarchiv Marschenbauamt Aufn. Odefey

Abb. 4
Dasselbe Pflanzfeld im Jahre
1935, vier Monate vor der
Eindeichung. Die inzwischen
in engerem Abstand errichteten Lahnungen haben die
Spartina-Horste im Wachstum gefördert. Vermehrung
durch Samen im Gebiet des
Pflanzfeldes nicht nachweis-

Bildarchiv Westküste B-522. 8. 2. 1935 Aufn. E. Wohlenberg

Abb. 5 Der Finkhausdeich im Bau. Links die vegetationslose Prielniederung. Im Hintergrund der Simonsberger Koog

Bildarchiv Westküste B-670. 2. 10. 1935 Aufn. E. Wohlenberg

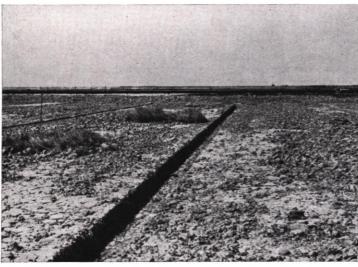


Abb. 6 Spartina-Horste nach der Eindeichung. Das sonst vegetationslose Watt wird von ersten Grüppen durchzogen. Im Hintergrund der neue Seedeich

Bildarchiv Westküste 5—19A. 20. 5. 1936 Aufn. E. Wohlenberg

Abb. 7 Derselbe Standort ein Jahr später. Spartina-Horst in Blüte. Die bis dahin nackten Wattflächen tragen üppig entwickelte Salicornien und Suaeden

Bildarchiv Westküste 19—23A. 14. 7. 1936 Aufn. E. Wohlenberg Erfolg hatte [KÖNIG (9)]. Die vorstehenden Abbildungen 4, 6 und 7 lassen jedoch erkennen, daß sich die überlebenden Pflanzen später zu zum Teil ansehnlichen Horsten entwickelten. Das geschah aber erst, nachdem die errichteten Landgewinnungswerke die Wasserberuhigung herbeigeführt hatten. Allerdings gelang es diesen Horsten trotz reichen Fruchtansatzes und intensiver Samenstreuung nicht, den Standort durch Eigenvermehrung zu begrünen und ihn damit einer schnelleren Verlandung zuzuführen. Somit war also zur Zeit der Bedeichung das Watt mit Ausnahme der Quellerzonen und der Siedlungen von einzelnen Spartina-Horsten ohne Pflanzenbedeckung. Blaualgen, Diatomeen und Zwergseegras mögen hier unberücksichtigt bleiben.

C. Die Entwicklung der Salzpflanzengesellschaften nach der Eindeichung

Nachdem der Deichschluß im Mai 1935 vollzogen war, änderte sich in der weiteren Wachstumszeit desselben Jahres zunächst nichts, was vom Bestandsbild der Abbildung 1 wesentlich abgewichen wäre. Nur das individuelle Gesicht der Einzelpflanze änderte sich, denn zwei ökologische Umstände machten sich nach dem Deichschluß für das Wuchsbild der einzelnen Pflanze entscheidend bemerkbar. Der eine davon war das Ausbleiben der regelmäßigen Überflutung durch Seewasser und die daran anschließende Austrocknung, der andere das Aufhören der Beweidung durch Schafe. Hierdurch kamen Pflanzen zur Entwicklung, die infolge der von unserem Außendeichsland bekannten Verbißerscheinungen bis dahin kaum in Erscheinung getreten waren und nur vegetieren konnten. In erster Linie wurden davon betroffen die Salzmelde oder Meerstrandsgänsefuß (Suaeda maritima) und die Salzaster (Aster tripolium). Beide entwickelten sich an ihren alten Standorten zu größerer Uppigkeit und entsprechend gesteigertem Fruchtansatz. Neu hinzu kamen jene Standorte, die schon immer mit Samen versorot wurden, wo diese aber erst jetzt, nachdem die Überflutung ausgeschaltet war, Lebens- und Entfaltungsmöglichkeiten fanden. So entstanden die ersten Einzelsiedlungen auf den tiefer gelegenen Watten. Zur Ausbildung geschlossener Bestände kam es jedoch noch nicht; wohl aber müssen wir in diesen augenblicklich aufgeschossenen Einzelpflanzen die Stammvegetation für die 1936 so bezeichnende Massenentwicklung sehen. Denn nach erfolgter Samenreife (im August: Aster, im Oktober: Meerstrandsgänsefuß) wurden die offen daliegenden, noch salzhaltigen Wattgebiete in einem Maße mit Samen versorgt, das in seinem wirklichen Umfange erst ein Jahr später nach dem Heranwachsen der Sämlinge eingeschätzt werden konnte. War 1935 das Jahr der ausgesprochenen Einzelsiedlungen, so 1936 das der Massenentwicklung. Mit Hilfe der im Jahre 1936 heranwachsenden Bestände ließen sich die verschiedenartigen Wattgebiete durch Bestandszählungen und Wägungen gegeneinander abgrenzen. Die schweren Böden (Schlickwatten) trugen üppige Astern- und Gänsefußbestände, die leichten (Sandwatten) dagegen dürftige Queller- und Gänsefußvegetation.

Im Hinblick auf die landwirtschaftlichen Ziele der Wattbedeichung ist die biologische Untersuchung nicht mit der Aufstellung einer Artenliste für 1936 erledigt. Vielmehr legt sich der Schwerpunkt der biologischen Fragestellung im vorliegenden Rahmen auf das Problem der Produktionskraft des Bodens. Darum ist versucht worden, das eigenartige Vegetationsbild der Finkhaushallig für das Jahr 1936 außer im Bild auch in Zahlen und Gewichten festzuhalten.

Vom Blickpunkt der Gesellschaftsfolge ist für die bisher nachten Wattflächen keine ökologisch bedingte Aufeinanderfolge mehr zu erwarten. Der Boden ist nach dem Deichschluß für alle Arten der Küstenflora gleichzeitig offen. Für die Art und Intensität der Besiedlung war zunächst der verbreitungsbiologische Faktor ausschlaggebend. Die verschiedenen Bodeneigenschaften kamen im Artenbild (Artenzusammensetzung) weniger zum Ausdruck. Dagegen ließ die Physiognomie der einzelnen Pflanzen eine außerordentlich starke Abstufung und damit den Einfluß der Güte der Wattböden deutlich erkennen. Daher seien die verschiedenen Vegetationsgebiete der Wattländereien einander gegenübergestellt. Die Vermutung, daß die

"wilden", ohne jeden Einfluß des Menschen im Laufe des Jahres 1936 heranwachsenden halophilen Bestände einen natürlichen Anzeiger für Wuchsfreudigkeit und Produktionskraft dieser Böden darstellen, wurde voll erfüllt. Der Vergleich dieser verschiedenen Produktionsstärken untereinander ermöglichte eine aufschlußreiche indirekte Abstufung der Bodenqualitäten.

I. Das Schlickwatt Padelack

Die schwereren Böden liegen ausschließlich im oberen Einzugsgebiet des großen Padelack-Priels, und zwar vorwiegend vor dem alten Seedeich der Südermarsch ("Weißknie") und in südlicher und südwestlicher Richtung vor dem Simonsberger Anwachs. Diese von Plath durch die Muschelkartierung abgegrenzte Zone wird besiedelt von Scrobicularia plana und Macoma

baltica (vgl. S. 20 und Abb. 18).

Die Ausbreitung der Halophyten im Jahre nach der Eindeichung ließ keine zonale Gliederung, wohl aber eine Zusammenballung einzelner Arten erkennen. So befanden sich zum Beispiel die das Pflanzenbild ganz beherrschenden Bestände von Aster tripolium zur Hauptsache zwischen "Weißknie" und dem Simonsberger Anwachs. Wo die Salzaster keinen geschlossenen Bestand bildete, war der stark zur Klüftung neigende Boden mehr oder weniger vollständig durch die Salzmelde (Suaeda maritima) und den Queller (Salicornia herbacea) bedeckt. Vom Queller kamen zwei verschiedene Formen, beide in außerordentlich üppiger Entwicklung, nebeneinander vor, sowohl die Wattform Salicornia stricta Dum. emend. König, als auch die kurzährige Form des höheren Anwachses Salicornia patula Duvel.-J. emend. KÖNIG. Alle Salzpflanzen nahmen 1936 luxurierende Formen an. Blütenreichtum, Samenansatz und blattgrüne Substanz stellten jede überlieferte Größe und Uppigkeit in den Schatten (Abb. 8 bis 15). Nicht anders verhielten sich die eingewanderten Arten wie Matricaria inodora mar., Atriplex hastatum, Cirsium spec. und andere mehr. Von allen wurde in gleicher Weise die große Fruchtbarkeit der Schlickwatten am Padelackpriel zur Schau gestellt. Der junge Boden wurde in idealer Weise durch den üppigen Pflanzenbestand gegen Austrocknung abgeschirmt und erlangte auf diese Weise Voraussetzungen für den Beginn der so wünschenswerten Entwicklung der bodenbildenden Mikroorganismen. Da es außerdem bei künftigen Eindeichungen von Wattgebieten durchaus nicht ohne Belang sein dürfte, ob ohne Kosten große Mengen organischer Substanz dem Wattboden zur Struktur- und Nährstoffanreicherung einverleibt werden können, sollen die folgenden Darlegungen unter Hinweis auf die den Standort jeweils kennzeichnenden Abbildungen und Listen eine Vorstellung von der Wachstumsfreudigkeit dieser Wattböden vermitteln.

Zunächst sei das im Sommer 1936 festgestellte Artenbild besprochen. In der Tabelle 1 sind 24 höhere Arten aufgeführt (Kieselalgen, Blaualgen und Moose sind nicht berücksichtigt). Die Liste ist aufgeteilt in eine Spalte mit a) salzliebenden, standortgemäßen Arten und b) eingewanderten Binnendeichsarten. Unter den sechzehn Frischwasserarten befindet sich eine ganze Anzahl stickstoffliebender Pflanzen. Die Abbildungen 9, 13 und 15 lassen den voll gedeckten Standort erkennen. Die Tabelle 2 zeigt die zahlenmäßige Verteilung der Pflanzen auf einer

Fläche von 25 m² an drei verschiedenen Stationen.

Die vorwiegend mit Suaeda bestandenen Flächen nehmen gegenüber dem Asterngebiet einen weit größeren Umfang an. Im Schlickwatt von "Weißknie" deckte Suaeda den Boden weithin vollständig. Die Bestände hatten die ungewöhnliche durchschnittliche Höhe von rund 50 cm (Abb. 15). Dort wo der Wattgrund nur zur Hälfte gedeckt war, bildeten sich tiefe Schwundspalten. Die in dieser Zone vorhandenen Spartina-Horste grünten und blühten auch nach der Eindeichung weiter (Abb. 7). Die nach dem Deichschluß durchgeführte erstmalige Begrüppelung dieser Flächen ließ noch keinen Einfluß auf das Wuchsbild der Pflanzen erkennen.

II. Das Sandwatt Padelack

Während sich auf den tonigen Schlickwatten sogleich eine üppige Salzflora entwickelte, geschah dies auf den Sandwatten etwas zögernder. Das lag jedoch nicht allein an der Bodenzusammensetzung, sondern war auch auf die Höhenlage zurückzuführen. Die Sandwatten

Abb. 8
Schlick watt
Padelack
In der ehemaligen Verlandungszone (Puccinellietum
= Andelwiese) entwickeln
sich spontan hohe Bestände
von Aster tripolium. Im
Hintergrund Haferfeld auf
dem Simonsberger Anwachs

Bildarchiv Westküste 19—26. 14. 8. 1936 Aufn. E. Wohlenberg

Abb. 9
Schlickwatt
Padelack
Mannshohe dichte Bestände
von Aster tripolium auf
dem Schlickwatt vor Weißknie

Bildarchiv Westküste 19—34A. 18. 8. 1936 Aufn. E. Wohlenberg

Abb. 10 Der untere Teil einer einzelnen Aster tripolium mit Maßstab (70 cm)

> Bildarchiv Westküste 19—25A. 14. 8. 1936 Aufn. E. Wohlenberg

Abb. 11 Alte Lahnung im Padelackwatt in der Nähe des Hauptpriels. Der aufgeworfene Wall entlang der Lahnung trägt eine besonders üppig entwickelte Salzflora (Salicornia u. Suaeda)

Bildarchiv Westküste 19—41A. 18. 8. 1936 Aufn. E. Wohlenberg

Abb. 12 Ein einzelnes Exemplar Atriplex hastatum im ehemaligen Puccinellietum. Maßstab 1,00 m. Diese Pflanze bedeckt 1¹/₂ m² Wattboden

Bildarchiv Westküste 19—11A. 14. 8. 1936 Aufn. E. Wohlenberg

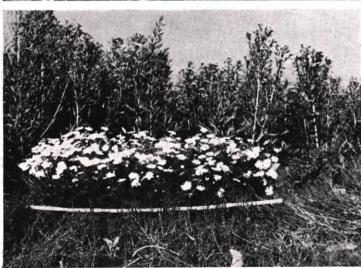


Abb. 13
Eine einzelne Pflanze von
Matricaria maritima im
ehemaligen Puccinellietum.
Maßstab 1,00 m

Bildarchiv Westküste 19—29A. 14. 8. 1936 Aufn. E. Wohlenberg liegen vornehmlich in der Nähe des neuen Seedeichs. Das Prielbett hat hier eine muldenartige Verbreiterung erfahren und kann wegen der tiefen Lage nie ganz entwässern. Die Ausdehnung dieser Restwasserfläche ist außerordentlich wechselnd. Im Winter sind breite Uferränder monatelang überflutet, was sich natürlich sehr ungünstig auf die Entwicklung der annuellen Pflanzen auswirkt. Der Boden besteht fast ganz aus Feinsand und ist auffallend stark angereichert mit Muschelschalen. Vor der Eindeichung lag hier nämlich ein Ausräumungsgebiet des

Tabelle 1

Im August 1936 - 15 Monate nach der Eindeichung - wurden auf dem Finkhaus- und Padelackwatt 26 Blütenpflanzen festgestellt.

eingewanderte Binnendeichs-Arten				
Atriplex hastatum				
Matricaria inodora mar.				
Sonchus arvensis				
Cirsium arvense				
Cirsium lanceolatum				
Lolium perenne				
Polygonum aviculare				
Achillea millefolium				
Chenopodium				
Epilobium hirsutum				
Cerastium arvense				
Leontodon autumnalis				
Myosotis caespitosa				
Plantago major				
Tussilago Farfara				

Tabelle 2

Artenbild und -häufigkeit im Gebiet der Salzaster (Aster tripolium) auf dem Schlickwatt Padelack im August 1936 (vgl. Abb. 8 bis 10 und 13)

An	zahl auf 25 m²	Wattbe	oden:	
	Station: 1	2	3	
Aster tripolium (groß)	21	45	53	
Puccinellia mar. (Polster)	18	8	29	
Suaeda maritima	16	44	74	
Salicornia herbacea ^a)	c	1080	c	
Tussilago	1	1	_	
Epilobium	1	_	1	
Cirsium arvense	10	_		
Cirsium lanceolatum	2	_		
Plantago major	1	_	_	
Agrostis stolonifera	_	_	1	
Sonchus arvensis	_	_	1	
Polygonum aviculare	_	_	1	
Moose	c	С	С	

a) Die Zahlen für Salicornia beziehen sich auf 1 m²
 c = ungezählt häufig.

großen Priels. Nach der Trockenlegung bedeckten ausgesprochene Muschelpflaster den trockengelegten Boden. Die im Jahre 1936 auf diesem Sandwatt heranwachsenden Halophyten siedelten im Gegensatz zu der flächenhaft dichten Begrünung der Schlickwatten nur in Streulage. Die Einzelpflanzen zeigten jedoch trotz des sandigen Bodens eine ziemlich üppige Entwicklung (Abb. 21). Im Bereich der alten Lahnungen erreichte der Stand der Suaeden sogar dieselbe Größe und Dichte wie auf den tonigen Watten am alten Seedeich bei "Weißknie". Jede Lahnung erhält nämlich beim Bau einen Bodenanwurf als Fußsicherung. Dadurch entsteht entlang einer schmalen Zone an der Lahnung eine andere Bodenstruktur. Höhenlage und Bodengefüge machen sich im Wuchsbild der Pflanzen sogleich bemerkbar (Abb. 11).

III. Das Schluffwatt Finkhaus

Das Finkhauswatt wird im Süden von der alten Padelackhallig und im Norden von der alten Finkhaushallig begrenzt (siehe Vegetationskarte Abb. 1). Der größte Teil dieses miteingedeichten Wattgebietes befand sich zur Zeit der Eindeichung bereits im Stadium der Verlandung. Abbildung 16 gibt den größeren Teil dieser Watten wieder. Man erkennt links die alte Abbruchkante der Padelackhallig und zwischen dieser und dem im Hintergrund liegenden neuen Seedeich das Finkhauswatt. Es war zur Zeit der Bedeichung ziemlich gleichförmig mit Queller bestanden. Im Gegensatz zu den Feststellungen an den Halophyten des Schlickwatts Padelack änderte sich an dem Wuchsbild dieser Salicornien auch nach der Eindeichung nichts. Auch die unterhalb der Verlandungszone liegenden, bis dahin nackten Watten trugen 1936 nur eine sehr lockere Pflanzendecke von Salicornia patula und Suaeda maritima (Abb. 17). Die Produktionsstärke dieses Wattbodens war derjenigen der Padelackwatten weit unterlegen. Während des ganzen Jahres machte der nur zu 60 v. H. gedeckte Boden einen verschlämmten Eindruck. Schwundspalten traten nicht auf. Offenbar liegt in der Korngrößenzusammensetzung, die dem Verhältnis

20 : 30 : 50 (wobei a = unter 0,020 mm (a) (b) (c) b = 0,020-0,050 mm $c = \ddot{u}ber 0,050 \text{ mm bedeutet}$

entspricht oder sich diesen Zahlen nähert, die Ursache für diese das Wachstum hemmende Bodenstruktur. Zum weiteren Unterschied vom Padelackwatt gewinnen die einwandernden Frischwasserpflanzen im Finkhauswatt keine Bedeutung. Entweder ist der "abwehrende" Charakter der verschlämmten Oberfläche die Ursache dafür, oder auch ein verbreitungsbiologischer Mangelfaktor in der Samenzufuhr.

D. Die Produktionsstärke der verschiedenen Watt-Typen

Zum Abschluß der Erörterungen über die Vegetationsverhältnisse der eingedeichten Watten seien die den verschiedenen Wattböden eigenen biologischen Produktionsstärken einander gegenübergestellt. Die in den Tabellen 3 und 4 wiedergegebenen Werte beziehen sich auf Zählungen und Wägungen längs einem Schnitt über das Padelackwatt, beginnend mit den tonigen Watten vor dem alten Seedeich ("Weißknie") westwärts übergehend zu den feinsandigen Watten in der Nähe des neuen Seedeichs. Die Lage der bezifferten Stationen ist aus dem Stationsplan der Abbildung 18 zu entnehmen.

Zur Ermittlung der Produktionsstärke wurden nur die oberirdischen Teile der Pflanzen gewogen. Die Wägung geschah gleich nach dem Abschneiden an Ort und Stelle. Leider konnte sie im üppigen Asterngebiet (Abb. 8 bis 10 und 13) nicht durchgeführt werden, weil die vorhandene Waage das Wägen der riesigen Asternstauden im Gelände nicht gestattete. Die in der vierten und fünften Spalte der Tabelle 3 angegebenen Gewichte stellen somit durchaus keine Höchstwerte dar. In der dritten Spalte ist die Anzahl Pflanzen je Quadratmeter angegeben, in der fünften das Gesamtgewicht und in der sechsten der Salzgehalt des Bodens in 10 cm Tiefe.

Tabelle 3

I	II	III	IV	V	VI
Station	Art	Anzahl/m²	Gewicht g/m²	Gesamtgewicht g/m²	Salzgehalt des Bodens
1	Sal.	600	2 240	2 240	9 0/00
2	Sua. Sal.	1 507	60 2 120	2 180	
3	Pucc.		2 700	2 700	
4	Sua. Sal.	375 73	1 280 60	1 340	
5	Sua. Sal.	53 360	870 930	1 800	12 0/00
6	Sua. Sal.	62 33	1 145 930	2 075	
7	Sua. Sal.	10 345	835 2 200	3 035	
8	Sua. Sal.	309 67	1 505 180	1 685	
9	Sua. Sal.	19 318	520 1 625	2 145	
10	Sua. Sal.	39 195	835 880	1 715	20 %
11	Sua. Sal.	41 108	1 280 530	1 810	
12	Sua. Sal.	107 14	1 710 70	1 780	
13	Sua. Sal.	42 14	1 750 165	1 915	
14	Sua. Sal.	480 5	1 580 10	1 590	

Pucc. = Puccinellia maritima; Sua. = Suaeda maritima; Sal. = Salicornia herbacea.

Besiedlungsdichte und Frischgewichte je Quadratmeter Wattboden auf einem Schnitt von den schwereren zu den leichteren Böden im August 1936 (vgl. Stationskarte Abb. 18)

Die Salzgehaltswerte beziehen sich auf eine Tiefe von 10 cm

Auf den ersten Blick ist ein allmähliches Absinken der Gesamtgewichte nach Westen, also von den schlickigen zu den sandigen Böden, festzustellen. Der Salzgehalt steigt mit fallender Geländehöhe zum neuen Seedeich hin an. Während das Schlickwatt bei "Weißknie" im August 1936 nur noch 9% Salz enthielt, war der sandige Wattboden im Westen mit über 20% noch ziemlich salzreich. Dieser Anstieg hat weniger mit dem korngrößenmäßigen Aufbau der Sedimente zu tun, als vorwiegend mit der absoluten Höhenlage der Standorte. Die im Westen gelegenen Sandwatten liegen nämlich etwa 1,00 m tiefer als die Schlickwatten bei "Weißknie". Sie sind also dem salzigen Grundwasser enger benachbart und zeigen infolge kapillaren Aufstiegs des Grundwassers einen höheren Salzgehalt.

Abb. 15 Schlickwatt Padelack mit üppigem Suaeda-Reinbestand (Höhe 50 cm)

Bildarchiv Westküste 19—16A. 14. 8. 1936 Aufn. E. Wohlenberg

Abb. 16
Das nördlich gelegene Finkhauswatt trug zur Zeit der Bedeichung auf der schluffigfeinsandigen Verlandungszone ein mageres Salicornie-

Bildarchiv Westküste 5—18A. 20. 5. 1936 Aufn. E. Wohlenberg

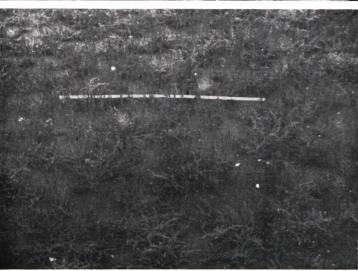


Abb. 17 Finkhauswatt Die bei der Bedeichung noch nackten Wattflächen (schluffig, feinsandig, verschlemmt) trugen im folgenden Jahr eine dürftige Besiedlung von Salicornia und Suaeda

Bildarchiv Westküste 19—21A. 14. 8. 1936 Aufn. E. Wohlenberg

Sal.

Tabelle 4

a) Bei der Bedeichung: nackte Sandwatten

		a) bei de	r bedelchung: n	ackte Sand watten
Station	Art	Anzahl/m²	Gewicht g/m²	
15	Sua.	4	85	
	Sal.	63	960	
16	Sua.	9	40	
	Sal.	116	530	
17	Sua.	74	355	
	Sal.	71	355	Durchschnittsgewicht/m²: 768 g
		b) Bei der	Bedeichung: nac	kte Schlick watten
Station	Art	Anzahl/m²	Gewicht g/m²	
18	Sua.	19	1 015	
	Sal.	9	295	
19	Sua.	39	1 155	
	Sal.	14	105	
20	Sua.	15	970	Durchschnittsgewicht/m²: 1 180
		c) Bei der Be	deichung: Salico	rnietum/Puccinellietum
Station	Art	Anzahl/m²	Gewicht g/m²	
21	Sua.	28	885	
	Sal.	180	1 930	
22	Sua.	34	1 275	
	Sal.	137	1 165	
23	Sua.	4	245	
	Sal.	246	1 785	
24	Sua.	8	770	
	Sal.	94	2 460	
25	Sua.	27	2 010	

Die Produktionsstärken der Watt- und Verlandungsböden a) der Sandwatten, b) der Schlickwatten und c) der ehemaligen Verlandungszone der Padelackhallig

1 005

(vgl. Stationskarte Abb. 18)
Sua. = Suaeda maritima; Sal. = Salicornia herbacea.

Durchschnittsgewicht/m²: 2 706 g

In Tabelle 4 sind die gemessenen Produktionsstärken aus den drei hauptsächlichen Watt-Typen zum Vergleich zusammengestellt, und zwar die Erzeugung grüner Pflanzensubstanz:

1. auf nackten Sandwatten (Spalte a)
2. auf nackten Schlickwatten (Spalte b)
3. auf der ehemaligen Verlandungszone (Spalte c).

Die Wuchsfreudigkeit der drei Watt-Typen läßt sich an Hand dieser Tabelle deutlich gegeneinander abstufen. Während die Sandwatten am großen Priel ein Frischgewicht von nur 770 g je Quadratmeter geliefert haben, ergaben die tonigen Wattsedimente (oder die Schlickwatten) 1180 g und das Gebiet der ehemaligen Andel-Quellerwiese 2700 g. Es konnte also vom Sandwatt bis zur Verlandungszone eine Steigerung der Erzeugungsmenge um das Mehrfache nachgewiesen werden. Da im physikalischen Korngrößenaufbau der Verlandungszone keine Bevorzugung gegenüber den schweren Schlickwatten zu erkennen war, sind wir berechtigt, die höhere Produktionsstärke der Verlandungszone bodenbiologischen Faktoren zuzuschreiben. Dieser Bodentyp hatte nämlich bei der Eindeichung infolge der

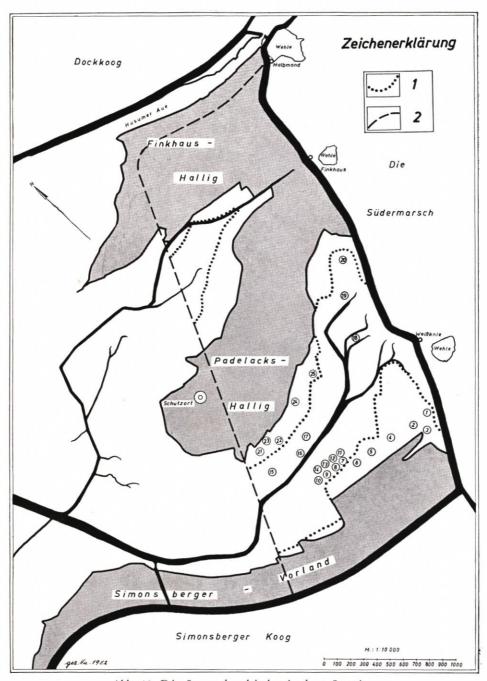


Abb. 18. Die Lage der biologischen Stationen

1 = Grenze der Verlandungszone (Puccinellietum — Salicornietum)

2 = Seedeich 1935

Durchwurzelung durch Queller und Andel die ersten Stufen der Bodenbildung bereits durchlaufen. Aus dem Sediment war ein Boden geworden. Seine Überlegenheit dürfte hierauf zurückzuführen sein.

E. Die Verteilung der Wattmuscheln2)

Die Wattgebiete der Finkhaushallig bieten als erste die Möglichkeit, die ehemalige Besiedlung durch Wattorganismen zu den späteren landwirtschaftlichen Ergebnissen auf diesen Wattflächen in Beziehung zu setzen. Leider mußte sich die biologische Analyse den Umständen entsprechend auf die Art und Menge der 1937 noch auf der Bodenoberfläche erkennbaren Muschelschalen beschränken, da alle anderen Vertreter der Besiedlung nach zwei Jahren nach der Eindeichung natürlich keinerlei Spuren mehr erkennen ließen. Es handelt sich also lediglich um eine Restkartierung, die naturgemäß mit mancherlei Fehlerquellen von vornherein belastet ist. So haben z. B. die jetzige Bodenbearbeitung, Bodenaufwurf, Verwehung, Abspülung usw. den natürlichen Zustand des ehemaligen Schalenbildes in verschiedener Weise beeinflußt. Obwohl diese Fehlerquellen so weit wie möglich berücksichtigt wurden, kann die vorliegende Kartierung also keinen Anspruch auf eine naturgetreue Wiedergabe des früheren, lebenden Muschelbestandes machen. Sie vermittelt lediglich einen großzügigen Überblick über die Verteilung der Wattgebiete im Koog, die eine relativ dichte Besiedlung durch bestimmte, die Bodenart charakterisierende Muschelarten aufwiesen.

Es wurden im Abstand von 250 m durch das Padelackwatt vierzehn Profile und durch das Finkhauswatt sieben Profile gelegt. Nach je 100 Metern fand eine Bestandsschätzung statt. Anhand von Dichteklassen wurden die Gebiete ermittelt und aufgetragen, deren Schalendichte (jede Art für sich) eine bestimmte Höhe erreichte. Unter Beachtung der unteren Grenze der Besiedlungsdichte jeder Art ist das anliegende Kartenbild entstanden (Abb. 22).

Folgende Arten wurden über größere Flächen verteilt gefunden:

Herzmuschel (Cardium edule)
Sand. Lebt meistens im Sand oder in vorwiegend sandhaltigen Sedimenten. In
Optimalgebieten ist die Oberfläche fast immer mit einer dünnen Schlickschicht bedeckt.

Klaffmuschel (Mya arenaria)
Schlickiger Sand. Gedeiht optimal in sandigen Sedimenten, deren Oberfläche durch schlickige Beimengungen gebunden ist.

Plattmuschel (Macoma baltica) Sandiger Schlick. Gedeiht optimal in sandigem Schlick oder Schluff nahe der Verlandungszone.

Pfeffermuschel (Scrobicularia plana)
Schlick. Gedeiht optimal in reinem bis leicht sandigem Schlick.

Die Muschelkartierung hatte folgendes Ergebnis.

a) Padelackwatt

Die Verteilung der sand- und schlickliebenden Muscheln ergibt sich aus der Karte der Abbildung 22. Herzmuschel und Klaffmuschel gediehen hauptsächlich um den ost-west-verlaufenden Padelack-Priel, dessen Bett sandig war und nur im Oberlauf einige Miesmuschelbänke enthielt. Die Herzmuschel beschränkte sich auf die Randgebiete des Priels, während die Klaffmuschel im Süden und Osten in ein Schlickgebiet mit starker Pfeffermuschelbesiedlung vorstieß. Dieser Schlick reichte bis an die Vorlandkante und wurde im Osten vor allem in der Verlandungszone auch von der Plattmuschel besiedelt. Im Norden des Padelackpriels grenzte das sandige Bett ziemlich unvermittelt an ein Plattmuschelgebiet. Zwischen beide schob sich ein schmales Pfeffermuschelwatt. Gegen den Außendeich zu weist das Nordufer des Priels eine "leere" Strecke auf, die nur mit zusammengeschwemmten Schalen belegt war und offenbar zur Zeit der Eindeichung keinen Bestand an lebenden Muscheln aufwies.

²) Diese Kartierung konnte erst im April 1937, knapp zwei Jahre nach Deichschluß, von Plath durchgeführt werden.

Abb. 19 Schlickwatt Padelack Muschelsiedlung: Scrobicularia plana (Pfeffermuschel)

Bildarchiv Westküste 19—15A. 14. 8. 1936 Aufn. E. Wohlenberg



Abb. 20 Feinsandiges Schlickwatt Padelack Muschelsiedlung: *Macoma* baltica (Plattmuschel)

Bildarchiv Westküste 19—22A. 14. 8. 1936 Aufn. E. Wohlenberg

Abb. 21 Sandwatt Padelack Muschelsiedlung: *Mya are-naria* (Klaffmuschel)

Bildarchiv Westküste 19—38A. 18. 8. 1936 Aufn. E. Wohlenberg

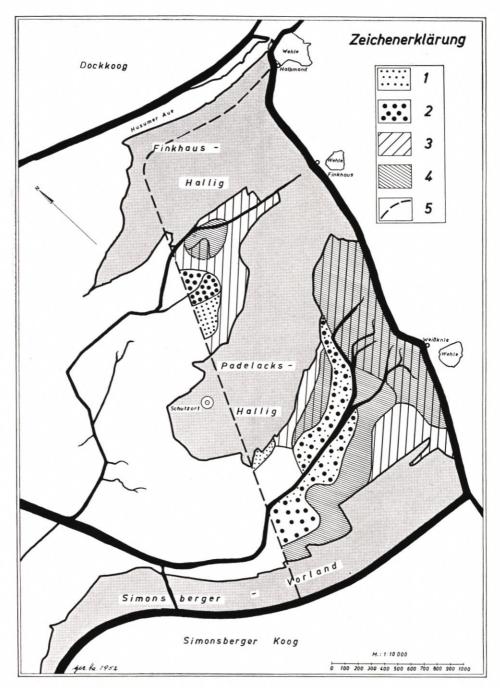


Abb. 22. Die Verteilung der Muschelarten (nach PLATH)

1 = Herzmuschel (Cardium edule), 2 = Klaffmuschel (Mya arenaria), 3 = Plattmuschel (Macoma baltica),

4 = Pfeffermuschel (Scrobicularia plana), 5 = Seedeich 1935

b) Finkhauswatt

Das Finkhauswatt wurde von einem Plattmuschelwatt eingenommen, das nach Westen am Deich entlang eine stärkere Herzmuschel-Klaffmuschel-Besiedlung und nach Norden gegen einen kleinen Priel zu ein Pfeffermuschelwatt umschloß.

Auf Grund des Schalenbefundes kann man also Gebiete mit leichtem, stark sandigem Boden und solche mit schwererem, wenig sandigem Boden unterscheiden und gegeneinander abgrenzen.

Zusammenfassung

Zusammenfassend darf hervorgehoben werden, daß mit den vorangegangenen Erörterungen

a) über die biologische Produktionsstärke und

b) über die Verteilung der Wattorganismen zwei für die bodengütemäßige Einschätzung von Wattböden vom Menschen nicht beeinflußbare Kriterien zur Anwendung gekommen sind. Es wurde kein von den natürlichen Gegebenheiten losgelöstes theoretisches System entwickelt, sondern die Natur selber erhielt das Wort, ihr selber wurde die Gliederung und damit die bodengütemäßige Abstufung überlassen. Die Erfahrungen der Zukunft werden über die Berechtigung und den Wert dieser biologisch begründeten Methoden zu befinden haben.

Schriftenverzeichnis

- Christiansen, W.: Die Außendeichsvegetation von Schleswig-Holstein mit besonderer Berücksichtigung von Föhr. Föhrer Heimatbücher, 16, 1927.
- FEEKES, W.: De Pioniervegetatie van de eerste groote Zuiderzeedrooglegging "De Wieringermeerpolder". Naturw. Tijdschr. XVIII, 1936.
- 3. FEEKES, W.: De Ontwikkeling van de natuurlijke Vegetatie in de Wieringermeerpolder, de eerste groote droogmakerij van de Zuiderzee. Amsterdam, 1936.
- 4. HEDEMANN, H. v.: Landgewinnung. Die Heimat, 5, 1934.
- 5. Kolumbe, E.: Spartina Townsendii-Anpflanzungen im schleswig-holsteinischen Wattenmeer. Wiss. Meeresunters., Abt. Kiel, N.F. 21, 67, 1931.
- 6. KOLUMBE, E.: Finkhaus- und Padelackhallig. Unveröff. Bericht im Marschenbauamt Husum.
- 7. König, D.: Die Chromosomenverhältnisse der deutschen Salicornien. Planta, Bd. 29, 1939.
- König, D.: Vergleichende Bestandsaufnahmen an bodenbewohnenden Watt-Tieren im Gebiet des Sicherungsdammes vor dem Friedrichskoog (Süderdithmarschen) in den Jahren 1935 bis 1939. Westküste, 1943.
- 9. KÖNIG, D.: Spartina Townsendii an der Westküste von Schleswig-Holstein. Planta, Bd. 36, 1948.
- König, D.: Standortuntersuchungen auf einem Vorlandrasen an der schleswig-holsteinischen Westküste bei Husum. Biolog. Zentralbl. Bd. 68, 1949.
- 11. LORENZEN, J. M.: Planung und Forschung im Gebiet der schleswig-holsteinischen Westküste. Westküste Bd. I, 1938.
- 12. Pfeiffer, H.: Die Arbeiten an der schleswig-holsteinischen Westküste seit 1933. Westküste Bd. I, 1938.
- 13. Plath, M.: Die biologische Bestandsaufnahme als Verfahren zur Kennzeichnung der Wattsedimente und der Kartierung der nordfriesischen Watten. Westküste, 1943.
- 14. Wohlenberg, E.: Das Andelpolster und die Entstehung einer charakteristischen Abrasionsform im Wattenmeer. Wiss. Meeresunters. N.F. Helgoland XIX, 1933.
- 15. Wohlenberg, E.: Über die tatsächliche Leistung von Salicornia herbacea L. im Haushalt der Watten. Wiss. Meeresunters. N.F. Helgoland XIX, 1933.
- 16. Wohlenberg, E.: Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgoländer Wiss. Meeresunters. I, 1, 1937.