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3. Finite-Element Models 

3.1 Introduction 

This chapter will be concerned with the finite-element approach to storm surges and 
tides. Compared with the finite-difference methods, the finite-element methods are more re- 
cent (they began to appear in the literature in the middle 1960s) but they are better suited for 
representing the topography realistically than are regular-grid finite-difference techniques. 

Following WANG and CONNOR (1975a), the literature on finite-element methods will be 
briefly reviewed. Unlike in the finite-difference method, in the finite element method the va- 
riables satisfying the governing equations and boundary conditions are approximated be 

piecewise polynomials. The main advantage of the finite-element method is the highly fle- 

xible grid so that real water bodies can be modeled more realistically. 
WANG and CONNOR (1975a) distinguished between the finite-element method and the 

discrete-element method as follows. The discrete-element method makes use of both the 
finite difference and finite-element methods. The discrete-element method, rather than using 
differential equations for the infinitesimal element, one can perform all the balances on the 
computational discrete element which can have an arbitrary shape. However, one generally 
uses square, rectangular, or triangular elements. In an element the variation of any given pa- 
rameter is represented by discrete nodal values. Usually, these nodes are located at the cen- 
ter of the sides of the elements. To satisfy conservation, the discrete equation must approxi- 
mate the differential equations as the control volume is reduced to zero. This may be diffi- 
cult to prove for odd-shaped elements. SIMON-Tov (1974) and ERASLAN (1974) gave some 
examples of the discrete-element method. WANG and CONNOR (1975a) pointed out that one 
drawback of the discrete-element method is that if one wants to refine the grid at one point, 
e. g. (xo, yo), then one must have the same value of Ax for all the elements along the line y= xo 
and the same value of Ay for all elements along the line x= yo. However, this is not a serious 
shortcoming, because either an interpolation technique or trapezoidally shaped elements can 
be developed to get around this problem. 

According to WANG and CONNOR (1975a) the finite-clement method was first used in 
1956 in aeronautics. Until the late 1960s its use was mainly confined to solid and structural 
mechanics (ZIENKEWICZ, 1971). In the early stages the success of the finite-element method 
dependent on the existence of a variational statement of the problem. However, FINLAYSON 

and SCRIVEN (1965) showed that Galerkin's method can be derived from the method of 
weighted residuals and there is no need for a variational statement. 
Consider the differential equation 

Lu = fo (3.1) 

where, L is a differential operator, u is an exact solution, and fo is the inhomogeneous term. 
Define the residual R as 

R= Lü - f0 (3.2) 

Application of a weighting function w to the residual and summation over the complete 
domain f gives 

WR =S Rwdw ý(Lü 
-f )wdco (3.3) 

0 

Die Küste, 63 Global Storm Surges (2001), 1-623



53 

where, WR is the weighted residual. The finite-clement solution is based on the condition 
that the weighted residual should vanish. 

For some application of the finite-element method to circulation in shallow water 
bodies, see GALLAGHER and CHAN (1973), who calculated the steady wind driven circulation 
in shallow lakes under the rigid lid approximation. TAYLOR and DAvis (1972) used a fourth- 

order predictor-corrector method for the time integration. They compared the trapezoidal 
rule and the finite elements in time. GROTKOP (1973) studied the same problem using linear 
finite elements in time. According to WANG and CONNOR (1975a) this method is less accu- 
rate than the trapezoidal rule. Consider the equation 

Mx=F (3.4) 

where the tilde denotes a matrix quantity. Applying the linear finite elements in time to this 
equation gives the following recurrence relation: 

Mx 
n+l 

M Kn+ot(3Fn+ 3 
Fn+l) 

On the other hand, the trapezoidal rule can be written as 

m xM x+4t 
(Fn+F 

n+I 11 2 n+I) 

(3.5) 

(3.6) 

Note that the trapezoidal form is centered around time n+ "2 and is better than the 
skewed form (eq. 3.5). TAYLOR and DAVIS (1972) made use of a cubic expansion in time 
based on trial runs. It should be noted that the predictor-corrector method and the cubic 
finite-element method give more accurate results than the trapezoidal rule; however, they re- 
quire much more computational effort. Because of asymmetric matrices, even the trapezoi- 
dal rule is not very efficient. 

NORTEN et al. (1973) used the Newton-Ralphson method including the nonlinear terms. 
WANG and CONNER (1975a, 1975b) gave some new concepts, which helped to solve trouble- 
some details encountered in an earlier studies. The boundary condition of nonzero slip in the 
tangential velocity field is conceptually difficult to apply when curved land boundaries are 
approximated by triangular elements. At the break points of the model boundary, the non- 
zero tangential velocity component gives rise to flow across the adjoining segments. Then, to 
satisfy the continuity equation at the break points, one is forced to equate both velocity com- 
ponents to zero. NORTON et al. (1973) suggested that one should keep as few break points as 
possible and these points both the velocity component must be prescribed equal to zero. 
Once one is forced to do this, the flexibility of the finite-element grid is sacrificed; also, near 
the break points one must use a fine grid. This will necessitate the use of the long and narrow 
triangles (distorted elements) WANG and CONNOR (1975a) resolved this problem by a pro- 
per definition of a normal direction at the break points, and this permits a nonzero tangen- 
tial component of the velocity without reducing the number of break points. 

For a detailed derivation of the equations involved in the finite-element method see 
WANG and CONNOR (1975a). They solved several simple problems to enable comparison 
with analytical solutions. Finally, they applied the technique to a study of tides in the Mas- 

sachusetts Bay. WANG and CONNOR (1975a) also formulated a two-layer model (for other 
details see CONNOR and WANG [1973] and WANG and CONNOR [1975b]). 
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WEARE (1976) compared the computational expenses for the shallow-water problems 
using finite-difference and finite-element methods and concluded that, at present, finite-ele- 

ment methods are less economical due to the use of band algorithms. However, the situation 
is changing now. GRAY and PINDER (1976) made a comprehensive comparison of finite-dif- 
ference and finite-element methods and showed that the finite-element representation of the 
differential equations is essentially a spatial average of standard finite-difference equations 
written for each mode of the grid. 

KLEINSTREUER and HOLDEMAN (1980) developed an interactive triangular finite-ele- 

ment mesh generator for water bodies of the arbitrary geometry. NIEMEYER (1979a) applied 
a finite-element technique to study tidal flow in certain water bodies in Hawaii. ORLOB 
(1972) used triangular grids for studying circulation in the San Francisco Bay area, but he 

wrote the equation in finite-difference form. Fix (1975) used a finite-element model to study 
the circulation in a limited area of the mid-ocean. 

GROTKOP (1973) used a finite-element technique for studying waves in the North Sea. 
CHENG (1972,1974), CHENG et al. (1976), CHENG and TUNG (1970), GALLAGHER et al. 
(1973), GALLAGHER and CHAN (1973) and HUEBNER (1974) applied finite-element tech- 
niques to study wind-driven circulation in lakes. Other relevant works are those of CHENG 
(1978), WALTERS and CHENG (1980a, 1980b), JAMART and WINTER (1979), MEI and CHEN 
(1975), REICHARD and CELIKOL (1978), HAUGUEL (1978), LE PROVOST (1978), LEIMKUHLER 

et al. (1975), and TAYLOR and HooD (1973). 
JAMART and WINTER (1978) used the finite-element approach to study tidal propagation. 

One of their important assumptions is periodic motion. Because of this assumption, this mo- 
del cannot be used to study storm surges (which are not periodic). KAWAHARA et al. (1977) 

used a mixed approach of the finite element method and perturbation method, again with the 
assumption of periodic motion. THACKER (1977) studied the normal modes in a circular 
basin using an irregular-grid finite difference model (this will be considered in detail below). 
WANG (1977) criticized Thacker's work and pointed that Thacker's model is unstable and in- 

accurate. 
MEi and CHEN (1975) introduced a hybrid-element method for water problems in in- 

finite fluid domain. They introduced artificial boundaries and thus divided the fluid into a 
finite-element region, in the neighborhood of infinity or of singular points. In the finite ele- 
ment region polynomial interpolating functions are used to approximately represent the un- 
known functions. In the super-element region, infinite series solutions are used. Numerical 

computations involve only integrals in a finite domain and the inversion of a banded sym- 
metric matrix. Examples of shallow-water waves in a harbor are included. 

HOUSTON (1978) used a finite-element numerical model to study the interaction of tsu- 
namis with the Hawaiian Islands. This model solves the generalized Helmholtz equation: 

2 
V[D(x, Y)Vý(x, Y)]+ - $(x, y) =0 

g 

where, 4(x, y) is the velocity potential, w is the angular frequency, and D (x, y) is the water 
depth. This equation is not relevant for storm surge studies, at least in its present simple form. 
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3.2 Finite-Element Models for Tides and Storm Surges 

BREBBIA and PARTRIDGE (1976) studied the tides and storm surges in the North Sea using 
two finite-element models. In both models they used six-noded triangular elements. One 
model made use of an implicit integration scheme with curved sides, and the other utilized 
an explicit integration scheme. The models are vertically integrated and include tides, wind 
stress, atmosphere pressure gradients, bottom friction, Coriolis force, and advection terms. 

Following BREBBIA and PARTRIDGE (1976), a Cartesian coordinate system, with the ori- 
gin at the equilibrium water level and the z-axis pointing upwards, is used. Let D (x, y) be the 
deviation of the free surface from its equilibrium position. The horizontal momentum equa- 
tions can be written in the following form: 

au+ 
u 

au+ 
v 

au=B 

at ax ay 
av+ua+va=B 

at ax ay 

Bx=fv-gah - 
aýPa 

+ 
, 

Tti -iT ax ax ppxpBx 

B=fu -gah _a 
Pa 

+I ts - 
1T 

Y ay aY PPYPBy 

(3.7) 

(3.8) 

where, u and v the x and y components of the velocity field averaged in the vertical direction. 
The following expressions can be written for the surface stress, T5, and the bottom stress, T. 

W 
is =2 (W x+ Wy »2 i= x or y 

iPH 

ti =-2p 
vi 

(u2+v2) I/2 i=1.2 BiCH 

(3.9) 

If i=1, V; = u; if i=2, V; = v. Here, C is a Chezy coefficient, W. and WY are the x and y com- 
ponents of the wind, and y is a parameter related to the atmospheric density, pa (y = pa, con- 
stant). Finally, H=D+h. 
The vertically integrated from of the continuity equation is 

ýH+x(Hu)+ 
(Hv)=0 

Y 
(3.10) 

At closed boundaries, the velocity component perpendicular to the boundary is set to 
zero, while the tangential component is nonzero. At open boundaries, either the normal com- 
ponent of the velocity or the water level is prescribed. 

To develop the finite-element model, two momentum equations and the continuity 
equation (3.10) together with the influx type boundary condition must be written in the fol- 
lowing weighted residual manner: 
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if (at +u- Bx )8udA=0 
ax 

+uav+vav -B)svdA=0 at ah ay 
ffýall +a (IIu)+Dv (IIv)1SIIdA= f(11Vn -HVn)S11dS= fI1VnS11dS 

at ax ay 

(3.11) 

Where n denotes the normal and V� denotes the component of the velocity. It will be 

assumed that over an clement, the same interpolation for the unknown u, v, and H. Thus 

U=ýU" 

V= (pV" 

H=(ýH" 
(3.12) 

where, 4 is the interpolation function and u", v", and H" are the nodal of u, v, and H. A six- 
nodal triangular finite-clement grid was used. These elements were referred to as "isopara- 

metric" by BRERRIA and PAR'rknx, t: (1976). The advantage of using curved elements is the 

suppression of the spurious forces generated on the boundaries by straight-line segments joi- 

ning at an angle (CO NNO R and BRI. BBIA 1976). 
From eq. (3.11) and (3.12) 

Maun +Kun-fMvn+GxIn +Fx =O 
at 

av" + 
M+ Kvn - fMun +(FFln +Fy =0 

at 
all ný 

M 
at +Cx un -C'yy" + I: II =0 

with the following definitions (superscript T denotes the transpose): 
T2 1/2 

K =J( O T$)udA+J (0TO)vdA+ 4J (u +v`) 4KIA 
dx cry C= 

Gx =g1ax (0 TO)dA 

(0TO)vdA (y= gJ 
()Y 

M=J0T0 dA 

F'x = 10 "' 
a 

( )dA 
ap 

Fy = J0 T a(PP )dA 

ri T 

cX =1aX «' )110 dA 

cy=j ay (OT )HO dA 
T 

FH= fH Vn0WA 

ý7 rTT 
Wx 

p iw H 

+YJýT 
Wy 

pH 

H 

ýWx 

2 
ýW x 

+Wy )I/2 dA 

+Wy) 
1/2 dA 

(3.13) 
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M 

.M 
M 

r)u n 

fi 

en 
ot 

im n 

ýI t 

K -f'M Gx un Fx II 

+ IM KGx"+ FV = II 

Cx -C% 0 H° I: (1 
" II 

or in the abbreviated form 

MQ+KQ=F 

(3.14) 

(3.15) 

Then, all such elements must be assembled and the boundary conditions applied. Two 
different time integration procedures were used. The first one an implicit scheme involving 
the tapezoidal rule. Assume 

rý- 
QT -QO 

Y- 

Q= 

F= 

At 
Q-r + Qo 

7 

F0 +Ft 
2 

Then eq (3.15) becomes 

(QtM+KIQt=ýhO+F't)+(Jt 
h)ýl1 

This can be written in the abbreviated form as 

=F KQt 

Then, the recurrence relationship is given by 

I 
Q =(K )F 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

The K` matrix which must be inverted will generally be a large asymmetrical banded ma- 
trix of size approximately three times the number of nodes by six times the clement hand 
width (i. e. the maximum difference between element nodal point numbers plus one). The 
explicit time integration used here follows the fourth-order Runge-Kutta method. 

11AMNLIN (1976) and WILLIAMSON (1999) used finite-element techniques to study 
seiches, circulation and storm surges in Lake Winnipeg. His paper will he considered in some 
detail below. With reference to a Cartesian coordinate system (x, y) directed towards cast 
and north, respectively, for a homogeneous fluid, under the hydrostatic approximation, 
with the neglect of the nonlinear terms and assuming a uniform value for the Coriolis para- 
meter f: 
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at - fv+gaX =0 
=0 at 

+fu+gäY 
ah 

at 
+ 

ax 
(Du) + (Dv)=0 

Y 

(3.20) 

where u and v are the vertically averaged horizontal velocity components in the x and y di- 

rections, D (x, y) is the water depth, and h (x, y, t) is the deviation of the water level from its 
equilibrium position. 

Since we are concerned with periodic motion, the explicit time dependence can be eli- 
minated by using an exponential time factor in the investigation of seiches. Then, the mo- 
dified set of equations in (3.20) can be written using an elliptical operator (self-adjoint) for 

all boundary conditions (except when energy radiates through the openings). A variational 
formulation of the problem may be made and a numerical solution can be sought. For this, 
multiply the first equation of (3.20) by u' (u* is the complex conjugate of u) and add this to 
the product of the second equation (3.20) of with v". Then, use the continuity equation, in- 
tegrate over the volume of the lake, and use Green's theorem to give the total kinetic and 
potential energy in the lake: 

1 (h)= fA J gD 
t 2 

+62 

f 
16 

(an an * an an *1 ay ax ax ay 

I ax ax ay ay +i -+- I an an * an an * 
+- ax ax ay ay 

dxdy (3.21) 

Where i= -\/-1 and r is the frequency of oscillation (i. e. seiche). 
In deriving this equation, it is assumed that any of the following three boundary condi- 

tions can be used, noting that all of them permit zero energy flux across the boundaries: (a) 

vanishing depth at the shore line and finite values of h and its gradients, (b) finite depth at 
shoreline and zero velocity normal to the shoreline, and (c) finite depth and nonzero normal 
current but zero value of h across the boundary. HAMBLIN (1976) took zero depth at the 
coastline. 

It can be shown that the function that minimizes eq. (3.21) will be the solution of eq. 
(3.20). The parameters h and h` are expanded in a series of trial functions W and weighting 
coefficients q; ': 

## 

h=ýq, yr, and h =Y-qi yri 

Substituting into eq. (3.21) gives 

(9 '9 '*) =9 ý*T63 [L ]9' +9, 
*T6[M]4' 

+Q'* [N]9 (3.22) 

Here, [L], [M], and [N] are Hermitian matrices, q' is the vector of unknown coefficients, 
and q'*T is the transpose of q'*. 
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To determine the minimum of the approximating function: 

al 
aq 

=0 ,* 

which gives form eq. (3.22) 

a3[L]z+Q[M]z+[N]z=0 (3.23) 

where, z is the vector of weights minimizing I. The calculation of the approximating func- 
tion proceeds as follows. 

Lake Winnipeg is subdivided into triangular elements (Fig. 3.1a) giving a total of 144 ele- 
ments. In the interior, the sides of the elements are straight lines, whereas at the coast they 
are curved. In locations where details are not important, a coarser grid has been used. The 
trial function is chosen such that the weighting coefficients become the free surface displace- 

ments, h, at the vertices and the three middle points (left side of Fig. 3.1b). Six points are 
required to determine the six coefficients of the second order polynomial in x and y. The qua- 
dratic surface determined in this manner is continuous across the edges between the triangles, 
but the gradients may not be continuous. 

a) 

6--r/17)ý . 
ýý 

r>M.. 
" llkm 

ý: 7ýý1/1 
V\ /N 
Wýý 
'--<ý 1`k, I 

G-2w 

Uý 4-rf-ljý 

ý 
U' "I 

mli 
-A;. ý rTOa 

i, 779ftd Vi-d-"1 ] 

7v 
A7k, / 

ý 

'k-li 

VN 

zt2 

b) 
Y 

Cý 

YA 

Fig. 3.1: (a) Triangular finite-element grid for Lake Winnipeg (144 elements); (b) a typical triangular ele- 
ment in the interior of the lake (the six nodes defining the element arc numbered; (c) element adjacent 

to a boundary. (HAMBLIN, 1976) 
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Next, the depth D is expanded using an identical polynomial expression, in which the 
weighting coefficients become the specified depths at the six nodes of the triangle. If one ex- 
presses the Lagrangian interpolation functions in terms of the local triangular coordinates 
(rather than the global x and y coordinates), all the integrations in eq. (3.21) can be performed 
analytically for the interior elements. The matrices [L], [M], and [N] are formed by summing 
the contributions from each element I. Owing to the symmetry of the variational formula- 
tion, the computer storage requirements and the number of integrations required are halved. 

In general, the side of a triangle along the coastline will not coincide with the boundary 
(right side of Fig. 3.1b) and one must transform the curved shoreline into a straight line by 
means of a coordinate transformation. Define a coordinate system such that 

X=X(P, g) 

y= y(p, q) 

Then, a boundary integration of the form 

ff *i (x, Y) *, (x, y) hk dxdy 

becomes 

ff Wi[x(P, 9), Y(P, 9)W, 
][x(P, 

q), Y(P, 9)Jhk J(P, 9)dpd9 

where, j is the Jacobian of the coordinate transformation: 

J= 
ax ay ax ay 
ap aq aq ap 
For the boundary elements, numerical integration is necessary (unlike analytical inte- 

gration for interior elements). 
Next, HAMBLIN (1976) considered the problem of steady wind driven circulation and 

setup in Lake Winnipeg, while retaining the vertical friction term. The relevant equations 
are 

2 
- fv=-gýax 

)+ a2 

aZ 
fu=-g(ahj+v a2v 

lay az2 
au +av+aW o ax ay az 

/ 

(3.24) 

where, is the vertical eddy viscosity and w is the vertical component of the velocity (here, u 
and v are not vertically averaged). 
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The boundary conditions are the following: 

V au = 
ZSX 

and v( 
av )Z=O Sy 

az)Z=O P az p 
where, T,, and T, 

y 
are the wind stress components at the surface and 

uz = -D =0 and vEz = _U = -D =0 

In the vertically integrated form the continuity equation is 

au av 
-+-=o ax ay 

where 

(3.25) 

(3.26) 

(3.27) 

(u, v)= 
-D 

(u, v)dz 

is the horizontal transport vector. At the lateral boundaries the normal transport is taken as 
zero. 

Making use of the Galerkin method, HAMBLIN (1976) developed a technique, which 
enables one to determine the free surface and transport variables with a single solution of the 
equations, which is applicable for multiple-connected regions. The variational formulation 

used earlier is not applicable because the self-adjointness condition is not satisfied owing to 
the presence of the surface wind stress terms. Hence, a somewhat weaker formulation, 

namely the Galerkin method, is used. In this method, a stationary point (rather than a mini- 
mum) of an expression related to the function will be determined. 

Multiply eq. (3.27) by a weighting function W(x, t) and integrate over the area of the 
whole lake to give 

jw ý 
aX + av dxay =o 

(3.28) 

Using Galerkin's method, W must be chosen such that eq. (3.27) is satisfied at all the 
nodes. As above, expand the variables U, V, and h in a series of trial functions i and the 
weighting coefficient qi': 

hg1Vi 

Partial integration of eq. (3.28) gives 

w(vdd)- JJ( Uw+v aw dxdy =o ay 
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Note that the line integral is zero in the case where there is no river input or outflow. 
Using eq. (3.26) one can eliminate U and V and write 

ff an ayn )aW ý an ah )aW gDý E 
ax ý 

y -F ax 
dxdy +fJ gD F 

ax +E- dxd 

ff 
LCtisx - DtiSY 

J pax 
dxdy -f JI Atisx +CiSY 

J pax 
dxdy 

(3.29) 

(For details on the parameters C, A, E and F, see WELANDER (1957). In this section, Welan- 
der's parameter D has been replaced by A. ) 

For evaluating eq. (3.29) the parameters D, C, A, E, F, -r,, and r are expanded in a se- 
ries of the same trial functions, i. e.: 

X} 

6 
ýSx Z CSxi Wi 

Then, eq. (3.29) gives a system of six equations for each element: 

6 aw . ayr 
. aw 

. aW . aW . aý 
. E ff gD E ý- Fýý dxdy +ff gD F ý+ Eýý dxdy 

j=l ax ay ax ax ay j ay 

ff I Cis - ATSY 
Ja 

az 
dxdy - lx JP 

aý. 11ATS - CTS h. dxdy for i= l to 6 
xy Pax i 

(3.30) 

For the whole water body, the equations are obtained by successive integrations of each 
element and by adding all these, which assumes continuity of h; at each node. The matrix 

[M]h =B 

is solved by Gaussian elimination. 
Finally, HAMBLIN (1976) considered storm surges in Lake Winnipeg by beginning with 

the following time-dependent equations: 

au 
- fv +g 

ah TSx 
+ 

tf3x 

at g ax Dp Dp 

iSy iBy ýt 
- fu +g äy = DP + DP 

ah 
+a(Du)+ 

a (Dv)=O 
at ax ay 

(3.31) 

where, TB is the bottom stress. 
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HAMBLIN used a semianalytic technique (spectral method) in which the time variable is 
treated analytically and the space variables are treated numerically. Equations (3.31) can be 

written as in the finite element method as 

dQ 
dt =L ivi j t-ý +I kt ) 

[c]-i 

where, the vector Q consists of the individual components of the current and h, the vector T 
consists of the wind stress components at each node, and the matrix [M] consists of coeffi- 
cients which include f, g, D and the bottom friction. 
For the initial condition, Q(0), the general solution of eq. (3.32) can be written as 

Q(t)= [x(t)]Q(o)+ f [X (t 
- t')]T (t')d t' 

0 
where, 

[X(t)1=1d1 
e 

6I t 

e6nt 

[C]-' K+ [C] 

Here, a are the eigenvalues and [C] is the matrix of eigenvectors of 

I[M] - KID (Ci) =0 

If the water body is initially at rest, Q(O) =0 and a suddenly imposed wind stress can be 

written as T(t) = K. Integrating of eq. (3.33) gives 

[c] 

I 

al 

i 
On 

(3.32) 

(3.33) 

ßI t 
C 

aI 

Icl-'h (3.34) 

C 
6I1 t 

6n 

The first term in this equation can be shown to be [M]-'K, which is the solution to the 
steady-state problem 

[M]Q=K 

The second term is a weighted sum of the free modes of oscillation of the discrete pro- 
blem of order n: 

n 

' 
Y W. 

'(C. 

1c6iI 
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The transient response of the lake interpreted in this manner shows the connection bet- 

ween the general time-dependent problem and the steady-state seiche problems considered 
earlier. 

Let the vector of the free surface displacements be denoted by S and let the eigenvectors, 
C;, consist only of h; then, eq. (3.34) can be approximated: 

h(t)-S+ 
n 

Wi1Cileat 

Where the limit n' is a subset of the total n eigenvectors of [M]. Since the water body is 

at rest initially, h(O) = 0. Then 

[C]W=S 

noting that the imaginary part of S is zero. Since initially, u and v are zero, then 

an 
at 

=0 and 
a2h 

t=0 at 2 
t=o 

=o 

Hence, 

[C]crW=Oand[C]a2W=0 

From these equations the weighting coefficients may be determined by minimizing the 
square of the free surface deviation, h, at each node in the water body. 

After obtaining the step function response, h may be calculated for a general time hi- 

story of wind forcing using the convolution integral. The unit impulse response can be ob- 
tained by differentiation of the step function response. The free surface displacement, h, can 
be calculated by convoluting the wind input, T(t), with himp 

h(t)= fh 
imp 

(t 
- t')T(t')dt' 

In the discrete form, this can be written as 

ii 
hK =0t' Ohimp TK-i 

3.3 Development in the late 1970s and early 1980s 

PLATZMAN (1979) paid particular attention to proper treatment of the multiconnected 
regions in finite-element models and applied these concepts to a study of the normal modes 
of the world ocean. PLATZMAN (1981) discussed the response characteristics of finite-element 

tidal models. 
LYNCH and GRAY (1980b) developed a variable size triangular-grid finite-element model 

in which the boundary is permitted to deform. This technique is especially suitable for si- 
mulating the penetration of storm surges over land. Certain details of their earlier works lea- 
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ding to this model are contained in GRAY and LYNCH (1977,1979), LYNCH (1980) and LYNCI I 

and GRAY (1978,1979,1980a). Here, mainly the moving boundary model will be considered. 

LYNCH and GRAY (1980b) used the Galerkin finite-element approach (for fixed boun- 
daries) with certain modifications to the moving boundary problem. First, consider the fixed 
boundary problem. In their notation, the problem may be stated as 

Lu =f (3.35) 

where, L is a differential operator with derivatives in space and time, u(X, t) is the unknown 
function, f(X, t) is the known forcing function, X is the set of independent space variables, 
and t is time. One can use an approximate solution (x, t) as 

j_I JJ 

where, 4 (X) are known basic functions. 
Substituting eq. (3.36) into eq. (3.35) produces a nonzero residual r(X, t): 

(3.36) 

L"-f=r(X, t) (3.37) 

The basic requirement in the Galerkin procedure is that the residual must be orthogo- 
nal to each of the basis functions (ýj, i. e.: 

(r(X, 
t) 0i)= 0i=1...... N (3.38) 

where, angle brackets denote the inner product. It can be seen that eq. (3.38) forms a set of 
ordinary differential equations for the function u, (t). 

For the moving boundary problem, the following modifications must be made to this 
procedure. The basis function (ýj now becomes an implicit function of time because its value 
at any point depends on the location of the nodes (of a grid which is deforming): 

(ýj = (ýj[X, Xb(t)] = (ýj(X, t) (3.39) 

where, the node coordinates are denoted by Xh(t). In eq. 3.38, the integration domain of the 
inner product changes in time. Thus, the equations becomes nonstationary and nonlinear, as 
can be seen, for example, from the fact that the mass matrix, <4j, 4j>, which multiples the 
time derivative terms, duj/dt, changes with time. 
Next, an additional relation must be added for the node motion: 

dt 
xb 

`t)= 
Vb (t) (3.40) 

where, Vb is the velocity of node b. Generally, for the interior nodes Vb =0 and for the 
boundary nodes Vh = vb where Vh is the velocity of the node and vi, is the fluid velocity at 
node b. Finally, eq. (3.36) must be replaced with 

(X, t)= E u. (t)o. (X, t) (3.41) 
J= JJ 

where, u1(t) is the value of " at node j (i. e. at the moving joint, Xj(t)). 
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The time derivatives of (X, t) will have, as expected, additional terms (underlined) not 
contained in a fixed boundary model: 

aü N du N do 

at 
= IJ 4J+Iui (3.42) 

J=I dt 1=1 J dt 

and 

atü 
at 2 

N d2u. N du. ao. N a20 
=E 0 . +2ý, 

J J+ýu J 
j=l dt 2J J=1 dt at j=I J at 2 (3.43) 

Since the spatial domain is changing with time, the terms a(ýj/at and a24 /ate must be de- 
fined throughout the domain. Since these terms depend exclusively on the node locations 
Xb(t) and their derivatives, in principle one can write expressions for aq)i/at and 3 2(ý 

j/at2. 
However, since this is a tedious procedure, LYNCH and GRAY (1980b) developed an alternate 
procedure, which is applicable to any isoparametric element. For any two-dimensional iso- 
parametric element, let x and y represent the global coordinates and k and Ti represent the lo- 
cal coordinates. It is convenient to transform this element from the global domain (in which 
it may have an irregular shape) to the local domain in which it will always have the shape of 
a square (in the ý, q) domain the basis functions depend only on k and Ti). Since the (k, i) 
space does not deform, a basis function 4(C, , q) at a location &, '%) will not change with time. 
The corresponding location to (o, -q0) in the (x, y) domain, however, may change with time 
and it depends on the isoparametric transformation: 

X(t)=, EXi(4i(ý't1) 
1=1 

From this at a given point (ý, Ti): 

dX M dX .M 
_ Oi ((, n)= v. (t)q. ((, T1)=Ve (3.44) 

dt i=l dt i=1 

Where VC is the elemental velocity (i. e. the velocity with which the element is moving). In a 
reference frame, which is moving with the elemental velocity, there is no change in 4j, and 
one can write 

oi 
='+VeV =0 

, it at 
ýi 

dt at (3.45) 

Similarly, one can write 

2O. 
MdV. 

2ý =-F, -'O VOi + 2Ve(VVe)Voi + Ve(VVoi)Ve (3.46) 
)t i=1 dt J 

LYNCH and GRAY (1979) showed that, for the shallow-water problem, rather than using 
the continuity equation in its ordinary form, a computationally superior way is to use the fol- 
lowing wave equation, which can be derived form the momentum and continuity equations: 

)22 
+T- 

aH 
= V(gHVý)+ HV(VT)+ V[V(HVV)+ fXHV - W] (3.47) 

at 
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This has to be integrated in time together with the horizontal momentum equation 

ýt 
=-VVV -fXV - gVc-'tV+ 

H 
(3.48) 

where, H(X, t) is the total depth, gX, t) is the free surface perturbation, h(X) is the equili- 
brium water depth, V(X, t) is the horizontal velocity vector (vertically averaged), f is the Co- 
riolis parameter, g is gravity, and W(X, t) is the wind stress. The bottom stress is written as 

VV 
ZV (x, O= gII (3.49) 

C2H 

where, C(X, t) is the Chezy coefficient. 
The boundary condition is 

t 
H=0onX=X�+ fVdt 

v 0 
(3.50) 

Where X(t) is the location of the boundary at time t, Xo is the initial time position of the boun- 
dary, V is the velocity of the boundary, and v is the velocity of the fluid. 
Solutions of eq. (3.47) and (3.48) can be written in the finite-element form as follows: 

H(X, t)- 
E 

H(X, t) 
J=1 

V(X, t)- V. (t)ý 
. (X, t) (3.51) 

J=1 JJ 

T(X, t) - Y, T t0 (X, t) 
J=l JJ 

Substituting eq. (3.51) into eq. (3.47) and (3.48) and equating the weighted residuals to zero 
gives the following set of ordinary differential equations: 

N d2H 
E(2 
j=l dt 

and 

au 

ý+2 
dt, 

(Lo 
ý+H 

at 
i 2j 'ýi 

dH. / \l 
+ 

dtJ 
`'10j, 0i )+Hj n 

at 
oi _ \RW"ýi/ 

(3.52) 

Ni ýoj, 
oi 

)+Vj( 
EI 

d 

aýý 
RM, $ii=1,....... N (3.53) 

Jý 

a2 0. 

Here Rte, ( X, t) and RM(x, t) are the right sides of eq. (3.47) and (3.48), respectively. 
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For the time derivative terms, a standard three-level finite-difference scheme has been 

used. For a stationary grid and one-dimensional case the C-F-L stability criterion reduces to 

2 

gH( 
At 

<3 (3.54) 

The boundary condition v=v (i. e. fluid velocity equals the velocity of boundary mo- 
vement) may lead to significant shearing of the boundary elements. To avoid this, LYNCH and 
GRAY (1980b) satisfied the mass conservation by requiring that 

t 
H=0 or X=XO+fVdt (V-v)n=0 

0 
(3.55) 

Where n is a unit vector normal to the boundary. Rather than attempting to satisfy this rela- 
tion at every boundary grid point, one can satisfy it in an average sense by requiring that 

f(V-v)ndS=0 
S 
Using the finite-element solution forms for V and v: 

V V1 

v- Y, vý 
i ii 

(3.56) 

(3.57) 

Substituting eq. 3.57 into 3.56 gives 

Y, 
S 

(Vi - vi)n4idS =0 (3.58) 

To obtain an expression for the local normal direction that each term of eq. (3.58) be zero, 
i. e.: 

(Vi - vý )f noidS =0 (3.59) 
s 

From this one can define the modal normal direction, n;, as follows: 

(3.60) 

where, node i represent the junction of two moving segments of the boundary. Using the di- 

vergence theorem: 

f no, dS = jjA VOjdA (3.61) 

where, A is the total domain. The moving boundary condition becomes, finally, 
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tl 
H1 =O on Xi =X i0 +f Vi dt, (Vi-vi )ni =0 

0 
vX =0 

(3.62) 

where, i represent all moving boundary nodes. Here, is the tangential direction at node X j. 
The second relation in eq. (3.62) is invoked to reduce element shearing. 
A typical time step proceeds as follows. 
1) Using eq. (3.60) and based on the existing grid, the nodal normal directions are determined. 
2) The nodal velocities at the boundary are determined eq. (3.62). The locations of the nodes 

are calculated from the following finite-difference from of the first relation in eq. (3.62). 

ý Xi, 
t+Ot i, t-At +` tI 

't 

3) The term dVi/dt (which is required to evaluate i)2k, / it2 is calculated from 

dV d2X. Xi, 
t+Ot -2Xi, t +Xi, t-Ot 

dt dt2 (At)2 

(3.63) 

(3.64) 

4) From eq. (3.52) and (3.53) H; and Vi are calculated at t+ At. Then steps are repeated by 
begining with the determination of the nodal normals. 

3.4 The Corps of Engineers Models 

In a series of reports and papers (BI. AIN, 1997; CIA! ONE, 1991; LUETTICH et al., 1991, 
1992; MARK and SCHEFFNER, 1993; SCHEFFNER et al., 1994; WESTERINK et al., 1992,1993a, 
1993b) the so-called "ADCIRC" model of the U. S. Army Corps of Engineers has been 
described. The following material is based on (WESTERINK et al., 1993b). "ADCIRC" stands 
for "An advanced three-dimensional circulation model for shelves, coasts and estuaries". The 
ADCIRC - 2DDI is a depth-integrated option of a system of two and three-dimensional 
hydrodynamic codes of "ADCIRC". 

ADCIRC - 2DDI uses the depth-integrated equations of mass and momentum conser- 
vation, subject to the incompressibility, Boussinesq, and hydrostatic pressure approximati- 
ons. Using the standard quadratic parameterization for bottom stress and neglecting ba- 

roclinic terms and lateral diffusion/dispersion effects leads to the following set of conserva- 
tion statements in primitive non-conservative form expressed in a spherical coordinate 
system (FEATHER, 1988; KOLAR et al., 1994): 

KI auH a(yH coscp) 

at +R cos cp 
l 

aa, + aýD 

au 1U au 1V au tan cp 
-+ -+- at R cos cp ak R acp R 

)U 1 au 1 aU tan cp 1 
-+ u-+v- u+f V. at R cos cp aý, R a(p lR 

Ia 
R cos (p A 

ps +g(ý-n) +T sx +-T*U Po poH 

(3.65) 

(3.66) 
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aV 1U aV I aV 
+ý 

tan cp ý 

-+ -+-V- U+f U= 
at R cos T ax R ay R 

1a PS 
a(p PC 

(3.67) 

-R al 
PS+g(ý-ý)I+P'H+-i, 

KV 
00 

where 
t= time 
X, cp = degrees longitude (east of Greenwich positive) and degrees latitude (north of 
the equator positive) 
ý= free surface elevation relative to the geoid 
U, V= depth-averaged horizontal velocities 
R= radius of the earth 
H=ý+h= total water column 
h= bathymetric depth relative to the geoid 
f=2 11 sin (p = Coriolis parameter 
ft = angular speed of the earth 
p, = atmospheric pressure at the free surface 
g= acceleration due to gravity 
Tl = effective Newtonian equilibrium tide potential 
po = reference density of water 
T5), Tsw = applied free surface stress 

i* =Cf 
Uz +Va 

H 

T- 

l2 

Cf = bottom friction coefficient 

A practical expression for the effective Newtonian equilibrium tide potential as given by 
RF1I (1990) is: 

1 2m(t-t0) 
r)(X, p, t)= Y, a. CC. 

)L 
. 
(y)cos (3.68) 

nj Jn Jn tjn 0J Tjn + jx+Vjn I0 

where 
Gin = constant characterizing the amplitude of tidal constituent n of species 
ai� = effective earth elasticity factor for tidal constituent n of species j 
fi-n = time-dependent nodal factor 
Vin = time-dependent astronomical argument 
j=0,1,2 = tidal species (j = 0, declinational; j =1, diurnal; j=2, semidiurnal) 
Lo=3sin2(p-1 
L, = sin (2cp) 
L2 = cos' ('p) 
K, cp = degrees longitude and latitude, respectively 
to = reference time 
T; 

n = period of constituent n of species j 
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Values for Ci� are presented by REID (1990). The value for the effective earth elasticity 
factor is typically taken as 0.69 for all tidal constituents (SCHWIDERSKI, 1980; HENDERSHOTT, 
1981) although its value has been shown to be slightly constituent dependent. 

To facilitate an FE solution to equations (3.65)-(3.67), these equations are mapped from 

spherical form into a rectilinear coordinate system using a Carte Parallelogrammitque (CP) 

projection (PEARSON, 1990): 

x' =R (X-X0) cos (p0 (3.69) 

y' = Rcp (3.70) 

where, X0 cpo = center point of the projection. Applying the CP projection to equations 
(3.65)-(3.67) gives the shallow-water equations in primitive non-conservative form expres- 
sed in the CP coordinate system: 

ac + 
coscpO a(UH) 

+1 
a(VHcoscpý_ 

0 
at coscp ax' coscp ay' 

COS 

aU + 
cosPcp 

ou 
ax, +V 

ay. 
- 

taR ý U+ f 

CoscpO a ps 

, -+A --Q) cos (p dx I p0 

av cos 9(1 
.. av .. au -+ U -+ V --I aXý ay, at Cos (p 

-a, 
PS 

+ýýý-T1' + 
PiSH -i*V 

00 

(3.71) 

(3.72) 

(3.73) 

Utilizing the FE method to resolve the spatial dependence in the shallow-water equati- 
ons in their primitive form gives inaccurate solutions with severe artificial near 2. A How- 

ever, reformulating the primitive equations into a GWCE (Generalized Wave Continuity 
Equation) form gives highly accurate, noise free, FE-based solutions to the shallow-water 
equations (LYNCH AND GRAY, 1979; KINNMARK, 1984). The GWCE is derived by combining 
a time-differentiated form of the primitive continuity equation and a spatially differentiated 
form of the primitive momentum equations recast into conservative form, reformulating the 
convective terms into non-conservative form and adding the primitive form of the continuity 
equation multiplied by a constant in time and space, To (LYNCH and GRAY, 1979; LUETrICH 

et al., 1992). The GWCE in the CP coordinate system is: 

+ 
T0 

- T-U 
pOH fi 

N= 

tan cpU+fU= 
IIl R JJ R 
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a2( 
+T ac + 

coscp0 a aý 
at2 0 at coscp ax' at 

I 
iu - IH 

COS (pp 
UH 

au 
- VF[ 

aU 
+rtancp U+f VFi - 

cos(p x' ay, R 

rý 
Cos (QO aI PS 

ý �(Y �ll 
ý 

,. 
Irru ý 

'Sk 

coscp ax'I Po 

va 
Y 

-COS 
O 

uHav - vHav at Cos (p X' ay' 
tan(pU+f UH - ay' R 

II 

aý 
atý 

a 
ay' 

P0 

PS 
+¬ýý-rýý -ýT* TO)VH+ 

T S<P 
Po Po 

taRncp V11 
J+t[taRncp 

VH 
ý= 

0 

(3.74) 

The GWCE (equation 3.74) is solved in conjunction with the primitive momentum 
equations in non-conservative form (equations 3.72 and 3.73). 

The high accuracy of GWCE-based FE solutions is a result of their excellent numerical 
amplitude and phase propagation characteristics. In fact, Fourier analysis indicates that in 

constant depth water and using linear interpolation, a linear tidal wave resolved with 25 nodes 
per wavelength is more than adequately resolved over the range of Courant numbers (C = 
V/ghOt/Ox <_ 1.0 (LUET'HCH et al., 1992)). Furthermore, the monotonic dispersion behavior 

of GWCE-based FE solutions avoids generating artificial near 2. Ox modes, which plague 
primitive-based FE solutions (PLATZMAN, 1981; FOREMAN, 1983). The monotonic dispersion 
behavior of GWCE-based FE solutions are very similar to that associated with staggered 
finite difference solutions to the primitive shallow-water equations (WESTERINK and GRAY, 
1991). GWCE-based FE solutions to the shallow-water equations allow for extremely 
flexible spatial discretizations, which result in a highly effective minimization of the discrete 

size of any problem, (FOREMAN, 1988). 
The details of ADCIRC, the implementation of the GWCE-based solution to the shal- 

low-water equations, are described by LuETTICH et al. (1992). As most GWCE-based FE 

codes, ADCIRC applies three-noded linear triangles for surface elevation, velocity and 
depth. Furthermore, the decoupling of the time and space discrete form of the GWCE and 
momentum equations, time-independent and/or tri-diagonal system matrices, elimination of 
spatial integration procedures during time-stepping, and full vectorization of all major loops 

results in a highly efficient code. 
SCHEFFNER et al. (1994) used ADCIRC to simulate storm surges from hurricanes on the 

Gulf of Mexico and east coasts of U. S. A. Fig. 3.2 shows the finite element grid used in these 
simulations. 

Tý`S-Ii)I-{1*-It))VIIT 
^ 
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Fig. 3.2: The cast coast, Gulf of Mexico, and Caribbean Sea computational domain. 

(SCI IEFFNE'r et al., 1994). 

Bi. AIN (1997) simulated hurricane generated storm surges on the coast of Florida and 

also for the coast of Northeast Asia. These model domains are respectively shown in Fig. 3.3 

and 3.4. 

Fig. 3.3: Three domain sizes evaluated in the prediction of storm surge on the US Florida coast 
from hurricane Kate, 1985. (BLAIN, 1997). 
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Fig. 3.4: Two domain sizes for the Yellow and East China Seas region, together with the paths of tropi- 
cal storm Janis (August, 1995) and typhoon Ryan (September, 1995) and four hydrograph station loca- 

tions. (BLAIN, 1997) 

3.5 Other f-e Models 

LuicK et al. (1997) studied storm surges in the Pacific forum region. The South Pacific 

region consists of the following island nations: Cook Islands, Federated States of Microne- 

sia, Fiji, Kingdom of Tonga, Marshall Islands, Nine, Papua New Guinea, Republic of Kiri- 
bati, Republic of Nauru, Solomon Islands, Tuvalu, Vanuatu, Western Samoa. 

The nations mainly in the western part e. g. Federated States of Micronesia (FSM) and 
Fiji, are subject at periodic intervals to tropical cyclones and the storm surges that are pro- 
duced by them (Fig. 3.5-3.6). Even though the lack of extensive continental shelves preclu- 
des the development of large amplitude surges such as those that occur in the Bay of Bengal 

and the Gulf of Mexico, nevertheless, moderate surges are generated. The inundation from 

such surges could cause problems in small islands with increased coastal erosion and salt-wa- 
ter intrusion into coastal aquifers. 

Because of the complex topography (several small islands interspersed over a large area), 
traditional finite-difference models are not very applicable. Fig. 3.7 shows the irregular tri- 
angular Forum Area Region model grid, while fig. 3.8 gives a close up view of irregular tri- 
angular grid for the Fiji area. 

HENRY et al. (1997) used an f-e model to study the storm surges in Bangladesh. Fig. 3.9 

shows the irregular triangular grid used in their model. Fig. 3.10 shows a zoom-in-view for 

the Meghna Estuary region. Fig. 3.11 and 3.12 respectively compare the computed and ob- 
served surges at Cox's Bazaar, Khepupara (April 1991 event). The discrepancies between the 
observed and computed surges could be mostly attributed to deficiencies in the prescribed 
meteorological input data. 
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Fig. 3.5: Track of Hurricane Bebe October 1972 (from New Zealand Meteorological Service) 
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Pig. 3.6: Tracks of severe Hurricanes in Fiji area between 1940 and 1979 (from Fiji Meteorological 
Service) 
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Fig. 3.7: Irregular triangular Forum Area Region model grid. (LUICK et al., 1997) 

T, E''rý+. 
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Fig. 3.8: Close up view of irregular triangular grid for the Fiji area. (Lvicx et al., 1997) 

Die Küste, 63 Global Storm Surges (2001), 1-623



77 

Fig. 3.9: Irregular triangular grid used for Head Bay of Bengal. (HENRY et al., 1997) 

Fig. 3.10: Close up of part of grid covering Meghna Estuary. (HENRY et al., 1997) 
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Fig. 3.11: Modelled and observed elevation at Cox's Bazaar during April 1991 surge. 
(HENRY et al., 1997) 
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Fig. 3.12: Modelled and observed elevation at Khepupara during April 1991 surge. (HENRY et al., 1997) 
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3.6 A Robust f-e Model 

WALTERS and CASULLI (1998) developed a robust f-e model using a somewhat different 

approach according to them; a considerable amount of research has focused on the wave 
equation approach to solving the shallow water equations. To derive these equations, the con- 
tinuity equation is differentiated with respect to time, and the divergence term replaced with 
the momentum equation. The resultant equations are generalized wave equation in time 
space or a Helmholtz equation in frequency space. This form of equations has been used ex- 
tensively and successfully to solve a variety of problems in estuarine, coastal and oceanic 
flows. 

However, recent work in simulating the effects of tropical cyclones and examining river 
hydraulics has led to computational problems with the wave equation formulation when the 
advective terms in the momentum equation are moderately important (about 1 to 5 per cent 
of the force balance). Attempts to stabilize the equations through a variety of methods have 

not been successful. 
As a result, they have embarked on a different course to develop a robust and computa- 

tionally efficient model that can deal with extreme hydraulic events with extensive flooding 

and drying. Their goal is to be able to simulate large flood events over floodplains of varia- 
ble extent. 

The method adopted here is to use the primitive shallow water equations and form a 
wave equation at the discrete level. This procedure carries through the properties of the ori- 
ginal discretized equations so that the use of elements without computational modes is es- 
sential. To that end, low-order elements without modes are used such that continuity is sa- 
tisfied both globally and locally, and wetting and drying are greatly simplified. 

The basic equations are the 2-dimensional shallow water equations. Using both the hy- 
drostatic assumption and the Boussinesq approximation, these equations are derived by a 
vertical integration of the Reynolds equations. The continuity equation becomes 

all 

öll+0"(Hu)=0 
(3.75) 

and the momentum equation becomes 

du 
_ -V-(HA Vu)+gVrl- ýs 

+nh =0 (3.76) 
dt HH pH pH 

where, the co-ordinate directions (x, y, z) are aligned in the east, north and vertical directions; 

u(x, y, t) is the depth-averaged horizontal velocity; h(x, y) is the water depth measured from 

a reference elevation; ij(x, y, t) is the distance from the reference elevation to the free surface; 
H(x, y, t) is the total water depth, H=-h; g is the gravitational acceleration; p is a reference 
density; V is the horizontal gradient operator (a/ax, a/ay); and Ah(x, y, t) is the coefficient for 

the horizontal component of viscous stresses. The surface and bottom stress conditions are 
given by 

S =yTH(ua-u) 
(z=li) (3.77) 

0 Vb 
=Cplulu =7BH u (z =h) 

P 
(3.78) 
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where, the surface and bottom stress are denoted as T, and Tb respectively, u, is the wind velo- 
city, and C, is a bottom drag coefficient. Essential boundary conditions on ii or volumetric 
flux are set at open boundaries, and (u "n) =0 (no normal flow, where "n is the unit normal) 
is set on land boundaries. 

This study focuses on the solution for surface elevation in the two-dimensional, discrete 

wave equation form of the continuity equation and the solution for the horizontal velocity 
components in the momentum equation. The governing equations are approximated using 
standard Galerkin techniques. The equations are discretized after defining a set of 2-dimen- 

sional triangular elements in the horizontal plane. Mixed methods are used in such a way that 
the elements use a piecewise constant basis for 11 and a constant normal velocity on each edge. 

The continuity equation (3.75) can be expressed in weighted residual form as: find -l eS 
such that 

JQfia ds2 + Jsý fiV - (H u)dSZ =0, b'ýj ES (3.79) 

Here S is the space of square integrable functions and SZ is the flow domain. Expanding ii, ^-q 
in terms of the finite basis and numerically integrating produces an algebraic problem for 

the nodal unknowns. 
The weak form of momentum equation can be given as: find uEU such that 

f 
JS, u[du+Yf3u-fT(u, -u)-V. 

(A,, Vu)]dQ=-f! 
3üg\r1M, 

V EU (3.80) 
dt 

where, the equation is interpreted component-wise and U is the space of vector functions that 
have a divergence. Note that the term (VH/H)(AhVu) arising from the expansion of the ho- 

rizontal viscous stress term has been neglected. Expanding u, ü in terms of the finite element 
basis 4 again produces an algebraic problem for the nodal unknowns. The surface pressure 
gradient term and the horizontal stress term are integrated by parts to give 

jÖ[-+YBu_YT(u_u)]dQ 
+f VÖ"(AhVu)dc 

dt s 

= 
JgVÖrdS2-[g(ÖTi)-ÖA, Vu. n]dF (3.81) 

where, F is the boundary of the flow domain 11. The line integral in this equation provides a 
convenient means to specify the boundary conditions on 9 and horizontal stress. 

These equations are discretized in time using a semi-implicit method such that the equa- 
tions are evaluated in the time interval (tm, tm ), where the superscript denotes the time le- 

vel. The distance through the interval is given by the weight 0. The semi-implicit approach is 

given as 

q m+I 11 m - +OýHmýBum+l+ýI-6ýumýý-0 
Ot 

m+l * U -° +9Gm+1+(1-6)G* =F* 
At 

(3.82) 

(3.83) 
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G yB u-'IT (ua-u)+gOrI (3.84) 

F* 0 "(Ahvu) (3.85) 

Semi-Lagrangian methods are used in order to take advantage of the simplicity of Eule- 
rian methods and the enhanced stability and accuracy of Lagrangian methods. Here the su- 
perscripts m and m+1 denote variables evaluated at the fixed nodes in the Eulerian grid at 
times time tm and t m+'. The subscript :,. denotes a variable evaluated at time t "' at the end of 
the Lagrangian trajectory form a computational node (see Fig. 3.13). At each time step, the 
velocity is integrated backwards with respect to time to determine where a particle would be 
at time t"' to arrive at a grid node at time t"'. The material derivative in equation (3.83), the 
first term, thus has a very simple form. 

Pig. 3.13: Definition of the elements used and the Lagrangian trajectories. At time t"', a particle starts at 
the location where velocity is u: '., and arrives at a node in the grid at time t""'. (WAITERS AND CASULLI, 

1998) 

There are three test problems studied (i) a simulation of tides in a polar quadrant region 
that indicates that there are no computational nodes; (ii) a simulation of tides in a regular 
channel with sloping bottom that provides an assessment of accuracy and convergence rate; 
and (iii) a simulation of a flood on the Big Lost River, Idaho, that assesses performance in a 
highly irregular but realistic geometry. The results look quite satisfactory. 

KAWAHARA et al. (1982,1983) used multi-level f-e models including stratification. Such 

models will be useful for the computation of currents associated with storm surges. 
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