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Summary 

This paper summarises how statistical analyses of hindcast MetOcean data can be applied 
to find optimal solutions for offshore windfarm projects. Models can be used to generate 
oceanographic conditions for large sea areas where long time series can be extracted from 
any position of interest. The results from analysis of normal and extreme conditions are 
favourable informations for the design, planning and operational process of an offshore 
windfarm project. Based on the level of detail benefits are the development of a cost  
effective design and operation process as well as a better understanding of the site condi-
tions for the development of a risk assessment for the entire lifecycle of offshore wind 
farms. 
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Zusammenfassung 

Eine optimale Planung von Offshore Windparks setzt die bestmögliche Kenntnis der meteorologischen 
und ozeanographischen Rahmenbedingungen voraus. Dieser Artikel zeigt, wie statistische Auswertungen 
von Hindcastdaten zu diesem Zweck genutzt werden können. Numerische Modelle finden Anwendung, 
um die ozeanographischen Bedingungen großer Seegebiete zu berechnen und lange Ergebniszeitreihen an 
beliebigen Positionen aus der räumlichen Ergebnisdatei auszulesen. Die Ergebnisse der Analyse von 
Normal- und Extrembedingungen begünstigen den Entwurfs- und Planungsvorgang, sowie den betriebli-
chen Ablauf eines Windpark Projektes. Je nach Detailgrad kann zum Beispiel folgender Nutzen aus 
den Auswertungen gezogen werden: Die Entwicklung eines kosteneffektiven Entwurfs- und Betriebsplans 
oder eine Risikobewertung für den Lebenszyklus des Parks aufgrund eines verbesserten Verständnis der 
Umgebungsbedingungen. 
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1 Introduction 

The development of offshore wind farms requires sound and reliable meteorologic-
oceanographic (MetOcean) data. Learning from the oil and gas industry and looking at 
available offshore standards adaptions were necessary to account for site-specific and 
wind farm industry related requirements. While offshore standards for structural design 
(DNV 2011; GL 2012; IEC 2009) provide a guideline for the methodology to be used, 
particular analysis tools are often subject to changes due to scientific progress and indi-
vidual assessment. 

Methods were established by DHI/DHI-WASY in numerous studies to provide 
reliable MetOcean data and related statistical parameters for design, 
construction/installation and O&M purposes. An overview will be given on applied 
statistical analyses of site-specific oceanographic parameters for normal and extreme 
conditions. These results can be used for the design of offshore structures with respect to 
either fatigue limit state (FLS), related to the possibility of failure due to the cumulative 
damage effect of cyclic loading, or ultimate limit state (ULS), corresponding to the limit 
of the load-carrying capacity. 

For practical applications, preferably long time series for the project sites are evaluat-
ed. These can be derived from hindcast modelling or observational data. Methods and 
tools for subsequent analyses will be illustrated. Furthermore, the sensitivity to the choice 
of methods will be discussed. Conclusions will be drawn on the applicability and accuracy 
of MetOcean data for offshore design in German waters. 
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2 Database 

In order to conduct statistical analysis for normal and extreme conditions within an Off-
shore Windfarm (OWF) preferably long time series of water levels, currents and waves 
should be evaluated for the project site. These can be derived either from available meas-
urements close to the OWF or from extracted hindcast data time series within the project 
area. 

To date most of the OWF in the German Bight and Baltic Sea were planned in areas 
where observational data was not or scarcely available. Observational data sets usually 
cover short periods of time and may be not consistent due to time gaps. Available long 
time series are typically not available for the project sites proper. In most cases these data 
are not suitable as a base for reliable site-specific statistical analyses. A possible solution is 
to use the hindcast approach in order to assess the MetOcean conditions at various sites. 

The hindcast approach is based on the description of large sea areas, e.g. the entire 
North or Baltic Sea with numerical models that are able to simulate currents and water 
levels as well as waves (Fig. 1). The models are driven by long time series of meteorologi-
cal data. It is crucial that available observational data is used to validate the models. 

 
Figure 1: Bathymetry and mesh of the spectral wave model for the North Sea (focusing on the 
German Bight). 

Modelling of currents and water levels is carried out with a hydrodynamic model, e.g. 
MIKE 21 HD FM (FM – flexible mesh), using long time series of astronomical tides, 
wind fields and atmospheric air pressure. Modelling of the waves is carried out with a last 
generation spectral wave model, like MIKE 21 SW FM. Boundary conditions for this 
model are again the wind fields and the currents and water levels from the hydrodynamic 
calculation, as those influence the wave field propagation and wave heights in shallow 
areas. Furthermore, wave spectra from a North Atlantic Model are integrated at the 
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model boundaries in order to account for the entering long period swell from the North 
Atlantic Ocean. 

By means of these models it is possible to use the available long time series of wind 
fields to calculate waves, water levels and currents for long periods of time (hindcast). 
These time series can subsequently be subject to a thorough statistical analysis. 

3 Statistical analyses of metocean data 

For the design of wind turbines and their foundations, the hydrographic conditions at the 
location of the OWF in question are required. In order to assess the normal and extreme 
conditions of water levels, currents and waves, reference points for the area of interest are 
chosen to be analyzed. The choice depends on the size of the project area, the complexity 
of the bathymetry, and the level of detail required by the designer.  

3.1 Normal conditions 

A number of analyses are carried out on observations or the established MetOcean data 
detailing the operational and fatigue design conditions within the project site: Time series 
of hourly data are evaluated statistically to provide scatter tables and plots, as well as 
weather windows and downtimes. 

3.1.1 Time series and statistics  

Time series and general statistics represent the values of wind, water level, current and 
waves that are used for analyses of normal conditions. Parameters of interest that are  
directly extracted from the hindcast model are e.g. highest modelled wind speed 10 m 
above mean sea level ( 10U ), the total water level range (consisting of tidal and residual – 
surge induced- parts), the total current speed and wave parameters, namely significant 
wave height ( m0H ), peak period ( pT ) and zero-crossing period ( 02T ), of the total spec-
trum (including wind waves and swell).  

 

 
Figure 2: Long time series of modelled hindcast data for OWF Sandbank, significant wave height 
(top) and wind speed (bottom). 
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Fig. 2 exemplifies a time series of hindcast data (in this case significant wave height and 
wind speed at the Sandbank project site). These datasets for various parameters are the 
base for subsequent analyses. 

3.1.2 Scatter diagrams and roses 

Based on the metocean database, scatter diagrams/roses for the annual/omni, monthly 
and directional conditions can be conducted for combinations of e.g.: significant wave 
height vs. wave period (scatter) or wave direction (rose plot) as well as wind/current 
speed vs. direction. For monthly (Jan-Dec) and directional (based on MWD or 10D ) 
conditions the data base is filtered by a third parameter. 

Rose plots give a good overview of the general distribution of the parameter in 
question. The figure for annual/omni current conditions at the project site of Sandbank 
presented in Fig. 3 indicates the main current directions (going to) along the NW-SE axes 
and shows that highest currents can be observed for the Ebb tide.  

 
Figure 3: Current rose for Sandbank project site. 
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3.1.3 Fatigue data 

For fatigue analysis, significant wave heights and their related wave periods are assessed 
from scatter plots and diagrams to identify the most important load cycles for e.g. the 
design of the foundation. 

An omnidirectional scatter plot and associated diagram of significant wave height  
( m0H ) against peak wave period ( pT ) for a 3h sea state at the Sandbank project site is pre-
sented in Fig. 4. Resolution of the scales are 1 s for Tp and 0.5 m for Hm0, respectively. 

 

 
Figure 4: Scatter plot and table for m0H  vs pT  – modelled data at OWF Sandbank. 
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Clear relations can be identified, this is in particular apparent during higher sea states as 
illustrated. However, lower sea states might include a significant fraction of longer-period 
waves associated with swell conditions as can be seen from the higher peak wave periods 
for m0H  4 m  in Fig. 4. Through a polynomial fit to the 1 % highest waves a correlation 
between significant wave height and Wave period can be derived from the data. The 
polynom, which describe the correlation between m0H  and 02T , or pT  respectively, is in 
good agreement with relationships known from literature, e.g. JOURNÉE and MASSIE 
2001, WMO 1998. 

Further improvements of the used hindcast models allow to use their frequency spec-
tra for each individual sea state to determine scatter data of individual wave heights, H, 
vs. wave period, T, for fatigue damage calculations, instead of simply using the original 
time series data from the model. These scatter tables are generated by inverse Fourier 
transform of the modelled frequency spectra for each individual sea state, assuming a 
Gaussian process. Individual wave heights and wave periods are found by a zero down-
crossing analysis of the generated time series of sea surface elevation. The analyses are 
conducted for the total part of the wave spectrum, and sea states are sorted by mean 
wave direction MWD. 

A least-square fit of the Hmax and THmax mean values (based on the single maximum H 
in each sea state and the associated T) is included in the applied method. 

3.1.4 Wind wave misalignment 

For wind turbine design, misalignment between the two most important dynamic forces 
(wind at hub height and waves) is a significant loading condition. 

A scatter table between wind direction ( 10D ) and mean wave direction (MWD) 
indicates the wind-wave-misalignment in total values (Fig. 5). Typically analyses are 
separated for different wind speeds at hub height to allow a more detailed and thus 
optimized design. Design optimization based on thorough analysis may lead to substantial 
cost savings in the design of the wind turbines.  

 
Figure 5: Scatter table for wind direction vs – mean wave direction at OWF Sandbank. 

At present a slightly different approach is used to assess the misalignment. 
The wind-wave misalignment is calculated as MWD minus D10 for each time step. For 

example, if the wind blows from south (WD = 180°N) and the waves propagate from 
west (MWD = 270°N), the misalignment is +90°.  
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Scatter diagrams of the misalignment vs. 10U  and m0H  and frequency distributions 
depict the general load incidents. For the total sea states, a significant misalignment is 
observed for low wind speeds (i.e. below about 10 m/s) or low m0H  (i.e. below 1.5 m). 
This is explained by the occurrence of mixed sea-states and the fact that waves propagate 
e.g. in the German Bight predominantly from the Northwest, while the occurrences of 
wind events are more evenly distributed over the directional sectors. For higher sea-
states, the misalignment is reduced noticeable. The most extreme sea-states show a 
misalignment in the range close around 0°.  

The sea-part of the wave spectrum is by definition fairly well correlated with the wind 
direction, while the swell-part of the wave spectrum shows dominating misalignment of  
-90 and +90°. 

3.1.5 Operational parameters – weather windows/persistence statistics 

Operational parameters (weather windows and downtimes) are crucial during construc-
tion and operation of OWF’s. Precise datasets and thorough analyses can be used to im-
prove the planning and optimize the operations by e.g. choosing the right time slots or 
vessels.  

Time series of hindcast data are analysed in order to estimate the probability of occur-
rence of weather windows and down times for offshore works within the project site.  
A persistence analysis provides information regarding the long term average of weather 
conditions within the project area. For this purpose weather windows and downtimes for 
operational parameters such as significant wave height m0H  and wind speed 10U  are cal-
culated. 

A weather window is defined as a period of time during which an operational condi-
tion is continuously fulfilled, this means a certain parameter is constantly below a given 
threshold (e.g. significant wave height m0H  3m ). The downtime period is defined as all 
other periods of time. Hence, the total of weather windows and downtimes for each con-
sidered weather condition corresponds to the length of the entire period of time. This 
definition follows the usual interpretation for logistic planning. Two different approaches, 
overlapping and non-overlapping can be applied when analysing weather windows. 

When the non-overlapping approach is applied only total numbers of weather win-
dows are counted. This means when a weather window beneath a parameter’s threshold 
within a given period is counted, its number of occurrence is rounded down to an integer 
value instead of giving a decimal number (overlapping approach) as illustrated by Fig. 6. 

Base for the analysis can be the mean value, but statistical percentiles such as the P50 
(median) are used more frequently. For most of the resistant statistics the median aligns 
with the mean value (50 %). As long as more than half of the data do not reveal gaps, the 
median will lead to a correct result and a more robust statistic with regards to outliers. 

The analyses can be conducted for different percentiles (e.g. P50, P75 and P90) based 
on a selection of thresholds for operational parameters ( m0H , 10U ) for varying periods of 
time. Additionally a combination of both parameters based on their critical thresholds can 
be analyzed for defined durations like, e.g. 1; 3; 6; 9; 12; 18; 24; 48; and 96 hours. 

The analyses are illustrated based on the P50 results at Sandbank for different thresh-
olds of m0H  and duration of 12h (see Fig. 7). 
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Figure 6: Weather window January (31 days) including an example for comparison between over-
lapping and non-overlapping methods. Both approaches refer to the definition Weather Win-
dows + Down Times = 100%. 

 
Figure 7: Diagram of weather window (top) and down time (bottom) for m0H  and duration of 
12 h. 
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Seasonal results are additionally presented in Tab. 1 given as percentage of occurrence for 
each month. The standard deviation, which is per definition based on the mean value, is 
included in parenthesis to indicate the variance/scatter of each monthly bin value within a 
model period of 23 years. 

Table 1: Table of weather window (top) and down time (bottom) for m0H  and duration of 12 h. 

 

3.2 Extreme conditions 

Extreme conditions of wind, wave, water levels and currents occurring at the site are 
determined in order to define design conditions for the ultimate limit state (ULS), 
corresponding to the limit of the load-carrying capacity. Precise assessment of extreme 
conditions is not only crucial for safety issues, a detailed and sound assessment can also 
be used for an optimised design which is safe and cost-efficient.  

At DHI, extreme value analyses (EVA) for the parameters of interest are conducted 
based on sensitivity tests of a number of different distributions and thresholds, as well as 
fitting methods.  

The assessment of individual wave heights within predefined storm sea states can be 
assed based on the storm mode approach (TROMANS and VANDERSCHUREN 1995). This 
approach allows determining the maximum wave and/or cresting height ( maxH , maxC ) 
occurring during a storm based on short term distributions. 

Furthermore, extreme value assessment can be constrained by monthly or directional 
subseries in order to account for directional or monthly variability. 
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3.2.1 Extreme value analysis 

The first step in extreme value analysis is to identify the extreme events from the data, on 
which a probability distribution will be fitted. Various identification methods exist such as 
Annual Maximum Peak (AMP) or Peak Over Threshold (POT). The AMP method se-
lects one peak per year of data, while the POT method selects all peaks above a given 
threshold. POT can also be referred to as the Average Annual Peak (AAP) method, if the 
threshold is defined by specifying an average number of peaks to be selected per year 
instead of a fixed threshold. The applied function and method are always very subjective 
depending on physical and site specific knowledge. Therefore, both AMP and AAP 
methods can be used in studies to perform sensitivity analyses for different distributions 
to find the most robust and more objective sustained estimate. 

When the POT/AAP method is used, independence of the extreme events can be en-
sured by using an inter-event time of 36h and an inter-event level of 0.7. This means that 
two events can be selected as extremes only if they are separated by a minimum of 36 h 
and that the value (WS, m0H …) went below 0.7 times the peak value of the smaller of the 
two events. Fig. 8 depicts the POT/AAP method. 

 
Figure 8: Time series of m0H  showing selected peaks using the AAP method. 

3.2.2 On probability distributions 

Extreme values with long return periods are estimated by fitting a probability distribution 
to historical data. A number of distributions, data selection and fitting techniques are 
available for estimation of extremes from historical data and the estimated extremes are 
often rather sensitive to the choice of method. However, it is not possible to choose a 
preferred method only based on its superior theoretical support or widespread acceptance 
within the industry. Hence, it is common practice to test a number of approaches and 
make the final decision based on goodness of fit. The following probability distributions 
are often used in connection with extreme value estimation: 2-parameter Weibull, the 
truncated Weibull and the Gumbel Distribution. 

An example of the different fittings is given in Fig. 9 and Fig. 10 depicts an extreme 
distribution fit. 
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Figure 9: Omni-directional values of 100-year m0H  at a North Sea OWF site estimated using 
different distributions for a varying thresholds.  
 

 
Figure 10: Extreme distribution of m0H  at a North Sea OWF site (UK EEZ) based on Weibull 
distribution (AAP = 5.0). Dots: data, black line: central estimate of extreme distribution. 5 % and 
95 % confidence bounds are shown with dashed blue line. 

  

178

 Die Küste, 81 (2014), 167-184



 
 

3.2.3 Confidence limits 

To estimate the uncertainty due to sampling errors, a bootstrap analysis is carried out on 
the omnidirectional extreme values. The bootstrap consists of the following steps: 

 Construct a new set of extreme events by sampling randomly with replacement 
from the original data set of extremes  

 Carry out an extreme value analysis on the new set to estimate T-year events. 
An empirical distribution of the T-year event is obtained by looping step 1 and 2 many 
times. Quartiles are read from the empirical distribution. 

The results are presented in terms of plots showing the estimated distribution and the 
5 % and 95 % quartiles (dashed lines). 

3.2.4 Individual wave and crest heights 

For design purposes, the maximum wave and crest height occurring in a storm are of 
special interest e.g. in order to estimate the most severe ULS requiring the maximum 
wave height or to define the air gap at a substation based on the maximum crest height 
ULS. Based on hindcast data only the extreme values for significant wave heights are 
estimated for a certain sea state and the maximum individual wave height maxH  occurring 
in that particular storm is often derived by formulae, which does not account for the rare 
and rather asymptotic properties of extremes. 

A more detailed approach used by DHI is to estimate the short term variability of the 
maximum individual wave and crest heights within a storm by using the convolution 
method supposed by (TROMANS and VANDERSCHUREN 1995). Here the long-term dis-
tribution of individual waves and crests is found by convolution of the long-term distri-
bution of the modes with the short-term distribution of the maximum conditional on the 
mode. 

3.2.5 Short-term distributions 

The short-term distributions of individual wave heights and crests conditional on m0H  
are assumed to follow the distributions proposed by FORRISTALL (1978 and 2000). The 
Forristall wave height distribution is based on Gulf of Mexico measurements, but experi-
ence from the North Sea has shown that these distributions may have a more general 
applicability. For this type of distribution, the distribution of the extremes of a given 
number of events, N, (waves or crests) converges towards the Gumbel distribution con-
ditional on the most probable value of the extreme event, Hmp (or Cmp for crests). 

3.2.6 Individual Waves (Modes) 

The storm modes, or most probable values of the maximum wave or crest in the storm  
( mpH  or mpC ), are obtained by integrating the short-term distribution of wave heights 
conditional on m0H  over the entire number of sea states making up the storm. This 
produces a database of historical storms each characterized by its most probable 
maximum individual wave height which is used for further extreme value analysis. 

179

 Die Küste, 81 (2014), 167-184



 
 

Peak-over-threshold estimates of the 100 year maximum wave at a North Sea OWF  
site are plotted as a function of the average annual number of events over threshold in 
Fig. 11. 

 
Figure 11: Omni-directional values of 100-year maxH  at a North Sea OWF site estimated using 
different distributions for a varying number of selected peak events (AAP). 

On-site analysis for individual crest heights follows the same approach using the short-
term distribution proposed by FORRISTALL (2000). The analysis is carried out for the 
crest height above SWL (the instantaneous water level including effects of tide and surge). 

The associated period for the maximum wave can be derived according to the rec-
ommendations in (DNV 2010) and (IEC, 2009). The stated relations are estimated for a 
specific area in the North Sea and therefore do not account for site specific conditions. A 
rather/more progressive way of estimating the relation between Hmax and associated Pe-
riod THmax is to use the given spectral information from hindcast data.The periods associ-
ated with the maximum individual waves (THmax) are derived from pairs of maximum 
wave and associated period for each individual sea state simulation carried out to deter-
mine HT-scatter data (see Fatigue data). The joint probability model described later on is 
used to determine the relationship between Hmax and its resulting median (50) periods as 
well as 5 and 95 percentiles (which may be used as upper and lower bounds). 
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3.2.7 Subset-extremes  

Estimates of subset (e.g. directional and monthly) extremes are required for a number of 
parameters. These allow a better understanding of the site conditions; e.g. at a project site 
with highly directional extremes the developer can account for this directional extremes 
within the design process when e.g. boat landings or scour protection measures are 
planned.  

In order to establish these extremes, a common practice is to fit extreme value distri-
butions to data sampled from the modelled database that fulfil the specific requirement to 
direction, i.e. the extremes from each direction are extracted, and distributions fitted to 
each set of directional data in turn. By sampling an often relatively small number of val-
ues from the data set, each of these directional distributions is subject to uncertainty due 
to sampling error. This will often lead to the directional distributions being inconsistent 
with the omnidirectional distribution fitted to the maxima of the entire (omnidirectional) 
data set. Consistency between directional and omnidirectional distributions can e.g.  
be ensured by requiring that the product of the n directional annual non-exceedance 
probabilities equals the omnidirectional. 

3.2.8 Optimized subsets (directional) 

The directional extremes are derived FROM fits to each subseries data set meaning that a 
RT  year event from each direction will be exceeded once every RT  years on average. Hav-

ing e.g. 8 directions this means that one of the directions will be exceeded once every 
/ 8RT  years on average. A 100-year event would thus be exceeded once every 

100 / 8  12.5  years (on average) from one of the directions. 
For design application, it is often required that the summed (overall) return period 

(probability) is RT  years. A simple way of fulfilling this would be to take the return value 
corresponding to the return period RT  times the number of directions, i.e. in this case the 
8 100  800x -year event for each direction. However, this is often not optimal since it 
may lead to very high estimates for the strong sectors, while the weak sectors may still be 
insignificant. 

Therefore, an optimized set of directional extreme values is produced for design pur-
pose in addition to the individual values of directional extremes described above. The 
optimized values are derived by increasing (scaling) the individual TR values of the direc-
tions to obtain a summed (overall) probability of RT  years while ensuring that the  
extreme values of the strong sector(s) become as close to the overall extreme value as 
possible. In practice, this is done by increasing the RT  of the weak directions more than 
that of the strong sectors but ensuring that the sum of the inverse directional RT ’s equals 
the inverse of the targeted return period, i.e.: 

 
1 , ,omni

1 1n

i R i RT T
  (1) 

where n is the number of directional sectors and ,R omniT  is the targeted overall return 
period. 
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3.2.9 Joint Probability Analysis (JPA) 

The probability of coincidence for two extreme parameters in question (e.g. WL and  
m0H ) is mostly required to evaluate the unlikely event of an extreme loading condition. 

As an example, in the North Sea, the probability of an extreme wave occurring jointly 
with a very low water level is negligible, as the former are associated to westerly storms 
and the latter to easterly winds. Therefore it is beneficial for the design to estimate, e.g., 
the association between extreme high water levels and extreme wave heights to derive the 
probability of a joint occurrence of the two parameters. 

Values of 10U , WL and CS associated with extremes of one variable are estimated us-
ing the methodology proposed in (HEFFERNAN and TAWN 2004). This method consists 
in modelling the marginal distribution of each variable separately.  
No restriction is given on the marginal model of the variables. A combination of the 
empirical distribution for the bulk of events and a parametric extreme value distribution 
function fitted to the extreme tail of data has been adopted here. For parameters which 
may have both a positive and a negative extreme such as the water level associated to 
wave height, both the positive and the negative extreme tail are modelled parametrically. 
Fig. 12 shows an example of the modelled dependence structure for significant wave 
height m0H  and water level  in physical space. The model is clearly capable of describing 
the positive association between wave heights and water level for this condition and ap-
pears also to capture the relatively large spreading. 

 
Figure 12: Dependence structure of m0H  and water level in physical space. Circle markers show 
data points and coloured lines mark the contours of constant probability density. 

The applied joint probability model is event-based. This means that independent events 
of the conditioning parameter are extracted from the model data of hourly values. The 
combined inter-event time and inter-event level criterion was applied to isolate independ-
ent events of the conditioning parameter. The conditioned parameter was extracted from 
the model time series at the point in time of the peak of the conditioning parameter. 
Time averaging of the conditioned parameter is often carried out prior to data extraction 
in order to reduce the influence of phases in the analysis (the fact that the water level may 
not peak at exactly the same time as the peak wave height for instance). 
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4 Summary and conclusions 

For design and operational purposes, detailed and sound knowledge of the site conditions 
at an OWF location are crucial for safe and cost-effective planning.  

Long time series of reliable MetOcean conditions form the backbone of any sound 
statistical analysis. These long time series can be from measurements or from state-of-
the-art numerical models that have been validated with measurements from different lo-
cations and for variable conditions. 

Statistics on normal conditions give a good overview of the design-governing parame-
ters with regards to their directional and monthly occurrence. Especially fatigue analyses 
based on scatter data and wind-wave-misalignment are important for the structural de-
sign. Weather statistics are a basic and most likely contractual document for the logistics 
planning of construction and operation of OWF’s and may save costs during O&M oper-
ations as an optimised logistics approach can be chosen.  

The extreme statistics presented here shows DHI’s approach to determine the most 
severe loading conditions based on hindcast data, which are used for wind farms planned 
within the German EEZ waters. This ensures an optimized design including spatial and 
time variation of the extreme conditions as well as the joint occurrence of individual  
parameters.  

In general the development of an offshore wind farm based on continuously improv-
ing MetOcean data and analysis will lead to a safe but not over-dimensioned and there-
fore cost effective construction which benefits a risk assessed planning. 
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