

MUSE

Statistisch-probabilistische Einordnung von Sturmfluten mit sehr geringen Eintrittswahrscheinlichkeiten

KFKI-Nr. 78 bmbf-Nr. 03KIS039

Jürgen Jensen & Christoph Mudersbach

9. KFKI-Seminar • 03.11.2004 • Bremerhaven

Folie 1 © fwu (2004)

Inhalt

- Aufgabenstellung
- Ziel der statistisch-probabilistischen Auswertungen
- Erläuterung des Verfahrens
- Verifikationsrechnungen (Beispiel Cuxhaven)
- Zusammenfassung
- Ausblick
- Diskussion

Aufgabenstellung

- Sturmfluten sind natürliche Phänomene, die mit unterschiedlicher Intensität und Häufigkeit auftreten
- Gebiete mit einer intensiven Nutzung sollen vor Sturmfluten geschützt werden, aber:
 - ein "absoluter" Schutz kann nicht erreicht werden
 - die Schutzmaßnahmen dürfen nicht zu einer weiteren unangepassten Nutzung der Gebiete führen

⇒ RISIKOMANAGEMENT

- Quantifizierung des Risikos einer Überflutung
- Höhe sehr seltener Sturmfluten (H₁₀₀, H₁₀₀₀, H_{10.000}, ...)

Zielsetzung der stat.-prob. Analyse

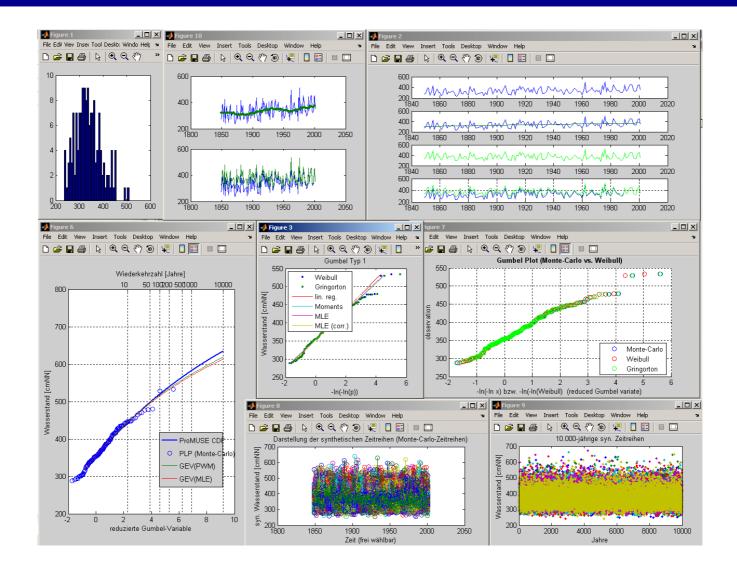
Verbesserung der statistischen Einordnung von Extremereignissen (Wasserstand, Windstau) durch die Verwendung von physikalisch begründeten Annahmen im Bereich sehr seltener Ereignisse.

ProMUSE

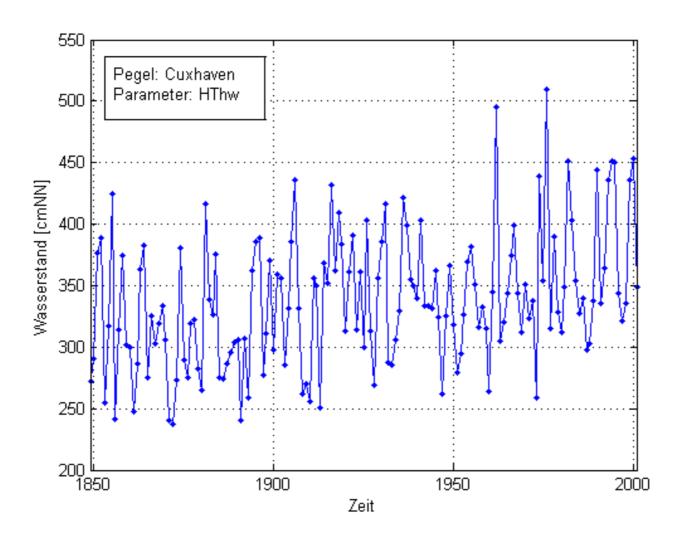
ProMUSE –Verteilungsfunktion ist gegeben durch:

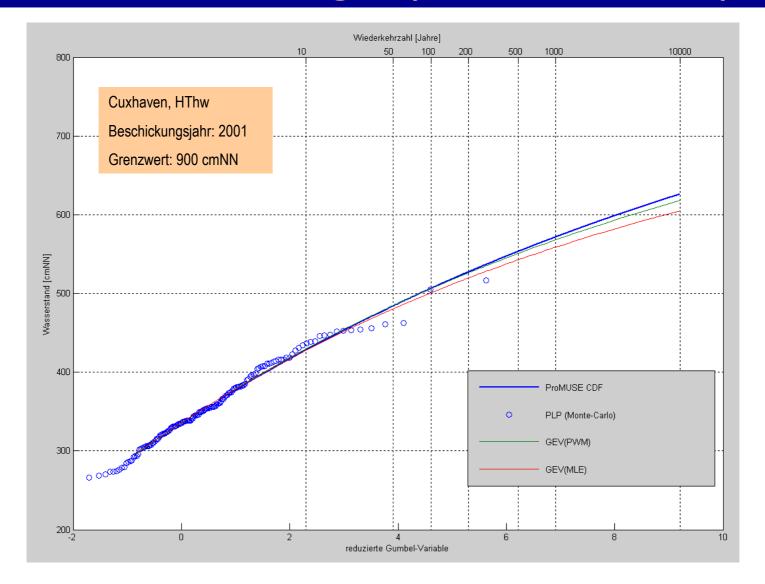
$$\lambda(\mathbf{x}) \cdot \mathbf{T} = (\mathbf{f}_1 - \mathbf{f}_2 \cdot \frac{\mathbf{x} - \mathbf{m}}{\sigma})^{\frac{1}{\tau}}$$

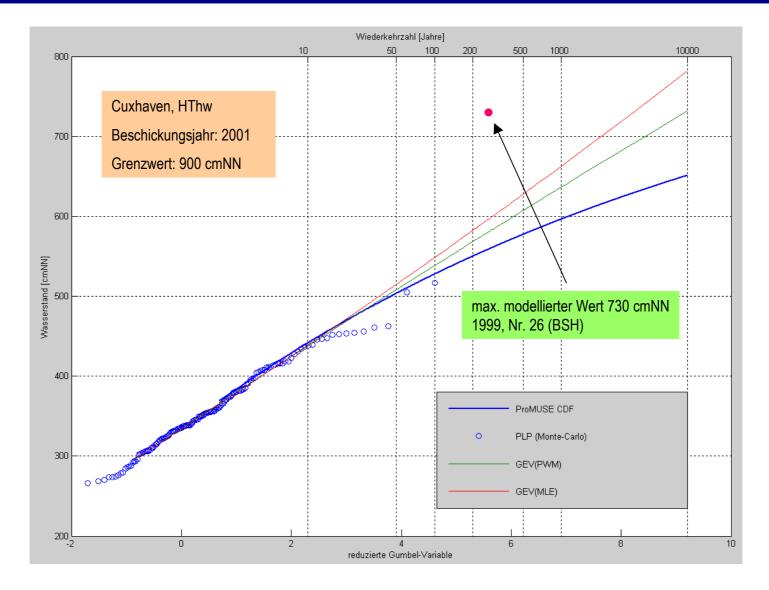
$$\mathbf{f}_1 = \Gamma(1 + \tau) \qquad \mathbf{f}_2 = \sqrt{\Gamma(1 + 2\tau) - (\Gamma(1 + \tau))^2}$$

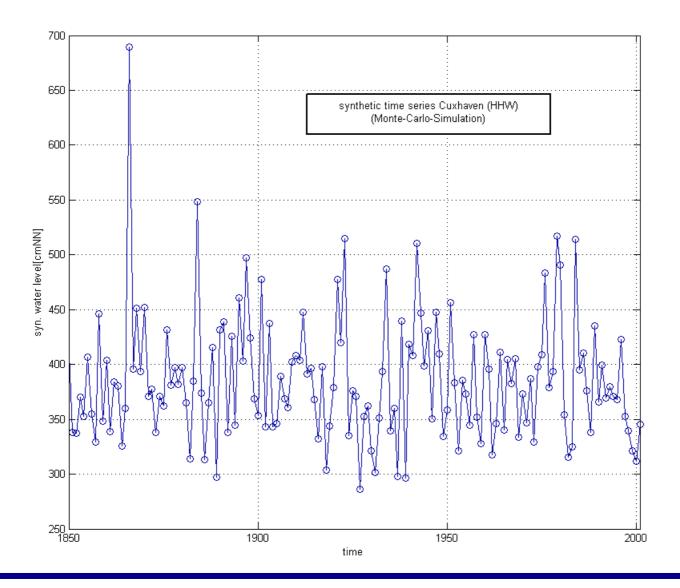

$$\mathbf{mit} \ \Gamma = \mathbf{Gammafunktion}$$

Basis von ProMUSE ist Extremwertverteilung Typ III der Gumbel Extremwertklassen (GUMBEL 1958).


Kennzeichen: Berücksichtigung einer Obergrenze


ProMUSE-Software





Cuxhaven			HThw, original	HThw, mod.
	Jährlichkeit	Pa	Wasserstand [cmNN]	
	100	1·10 ⁻²	506	528
	200	5·10 ⁻³	527	550
	500	2·10 ⁻³	553	577
	1000	1·10 ⁻³	572	596
	10000	1·10-4	626	651
	Wasserstand [cmNN]		Pu	
	730		2,5·10 ⁻⁷	1·10-6

$$\frac{1}{\text{,6 Richtige":}} \frac{1}{\binom{49}{6}} = \frac{1}{13.983.816} = 7,15 \cdot 10^{-8} \qquad \text{,5 Richtige":} \frac{\binom{6}{5}\binom{43}{1}}{\binom{49}{6}} = \frac{258}{13.983.816} = 1,8 \cdot 10^{-5}$$

Monte-Carlo-Simulationen (Cuxhaven, HThw)

Zusammenfassung

- auf der Basis konsistenter Modelle konnten extreme meteorologische Bedingungen (DWD) bzw. Sturmflutwasserstände (BSH) ermittelt werden
- es wurde ein Verfahren (ProMUSE) entwickelt, das die statistischprobabilistische Einordnung von Sturmfluten mit sehr geringen Eintrittswahrscheinlichkeiten ermöglicht:
 - Berücksichtigung einer Obergrenze, die aufgrund physikalischer Randbedingungen festgelegt werden kann
 - Ermittlung der Plotting-Positionen durch Monte-Carlo-Simulationen
 - Untersuchungen zur Variabilität von Zeitreihen durch Monte-Carlo-Simulationen
- Ausstehende Untersuchungen
 - Detailuntersuchungen für Pegelstandorte
 - Einbeziehung weiterer Ansätze zur stat. Einordnung der modellierten Daten
 - Verifikation der Parameterschätzungen

Ausblick

MUSE Ostsee

SEBOK

Verbundforschungsvorhaben

Modellgestützte Untersuchungen zu extremen Sturmflutereignissen an der Deutschen Ostseeküste (MUSTOK)

Ausblick

- Anwendung der bewährten Modellketten und Verfahren auf Ostsee
- Verhältnisse in Ostsee sind deutlich komplexer
- Verbindung von MUSE Ostsee und SEBOK ist sinnvoll, weil
 - gemeinsame Datenbasis
 - Verknüpfungen und Schnittstellen in Modellrechnungen und statistischen Analysen
- konsequentes downscaling: global überregional regional

MUSE

Modeligestützte Untersuchungen zu Sturmfluten mit sehr geringen Eintrittswahrscheinlichkeiten

KFKI-Nr. 78

bmbf-Nr. 03KIS039

Laufzeit: 7/2002 - 6/2005

9. KFKI-Seminar • 03.11.2004 • Bremerhaven

Forschungsvorhaben

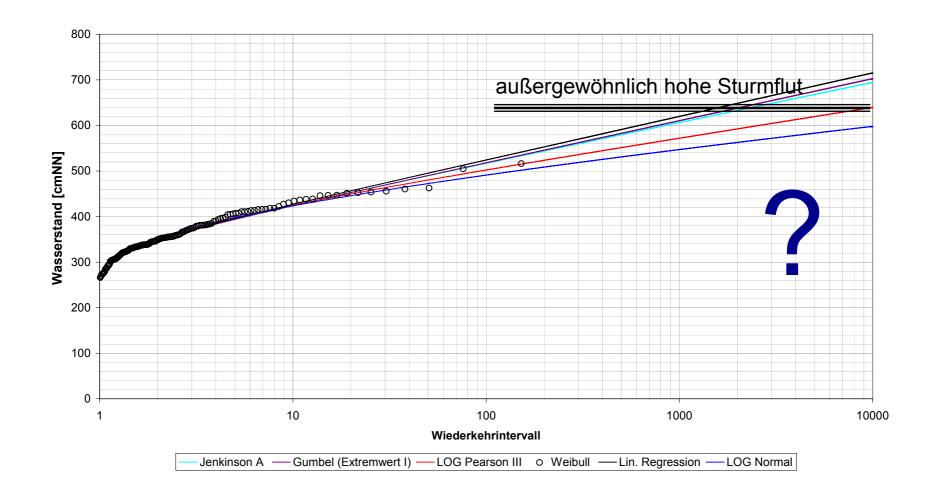
Modellgestützte Untersuchungen zu Sturmfluten mit sehr geringen Eintrittswahrscheinlichkeiten (MUSE)

http://fwu.fb10.uni-siegen.de/projects/muse

KFKI-Projekt Nr. 78 (7/2002 bis 6/2005)

Partner:

Forschungsstelle Wasserwirtschaft und Umwelt (fwu) an der Universität Siegen


Deutscher Wetterdienst (DWD)

Bundesamt für Seeschifffahrt und Hydrographie (BSH)

Problem

Projektziel

Entwicklung von Methoden zur Modellierung und statistischen Einordnung physikalisch möglicher, aber noch nicht eingetretener, außergewöhnlich hoher Sturmfluten.

Untersuchungsgebiet

Aufgabenteilung

Sichtung der Archive DWD und EZMW

Auswahl geeigneter Wetterlagen

Berechnung von Windfeldern und Erzeugung der Randdaten für Modelle

Berechnung von Sturmhochwasserständen mit 3D-Strömungs-Wasserstandsmodell

Ermittlung des Einflusses der Windschubspannung

Statistischprobabilistische
Analyse der
beobachteten und
modellierten Daten
hinsichtlich der
Eintrittswahrscheinlichkeiten

physikalisch konsistente Modelle

Zeitplan

- DWD-Arbeiten sind abgeschlossen
- BSH-Arbeiten sind Ende 2004 abgeschlossen
- fwu-Arbeiten Mitte 2005 abgeschlossen

KFKI-Projektgruppe

Begleitung durch KFKI-Projektgruppe:

- Frau Dr. habil. G. Gönnert (Obfrau)
- Herr Dipl.-Oz. R. Annutsch
- Herr Dipl.-Ing. H.-G. Coldewey
- Herr Dipl.-Oz. S. Dick
- Herr Dipl.-Ing. H.-D. Niemeyer
- Frau Dipl.-Met. G. Rosenhagen
- Frau Dr. E. Rudolph
- Herr Dipl.-Ing. D. Schaller
- Herr Dipl.-Met. H. Schmidt
- Frau Prof.'in Dr.-Ing. A. Töppe
- Herr Dipl.-Ing. F. Thorenz (Forschungsleiter Küste)

Veröffentlichungen

Jensen, J., Mudersbach, Ch., Koziar, Ch. und Bork, I.: "Modelling of extreme storm surge weather situations in the North Sea and its statistical analysis", Littoral 2004-Conference, Aberdeen (UK), 2004

Bork, I. und Müller-Navarra, S.: "Modellstudien zu Extremsturmfluten in der Nordsee", Klimaänderung und Küstenschutz, TU Hamburg-Harburg, 2004, zur Veröffentlichung angenommen

Jensen, J., Koziar, Ch. und Mudersbach, Ch.: "Simulation von extremen Sturmflutwetterlagen in der Nordsee und deren statistische Analyse", Klimaänderung und Küstenschutz, TU Hamburg-Harburg, 2004, zur Veröffentlichung angenommen

Müller-Navarra, S., Bork, I., Jensen, J., Koziar, Ch., Mudersbach, Ch., Müller, A. und Rudolph, E.: "Modellstudien zur Sturmflut und zum Hamburg-Orkan 1962" (Arbeitstitel), Veröffentlichung geplant in HANSA 2004/2005

Poster, 4. Forum Naturkatastrophen DKKV, Mainz

Website: http://fwu.fb10.uni-siegen.de/projects/muse

