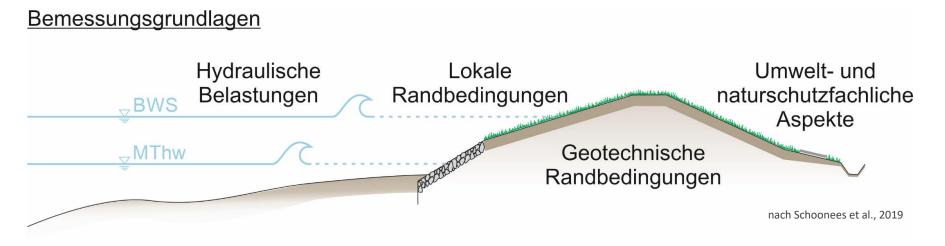


ECODIKE ZUR ÖKOLOGISCHEN AUFWERTUNG VON SEE- UND ÄSTUARDEICHEN AN DER DEUTSCHEN KÜSTE

DR.-ING. DAVID SCHÜRENKAMP

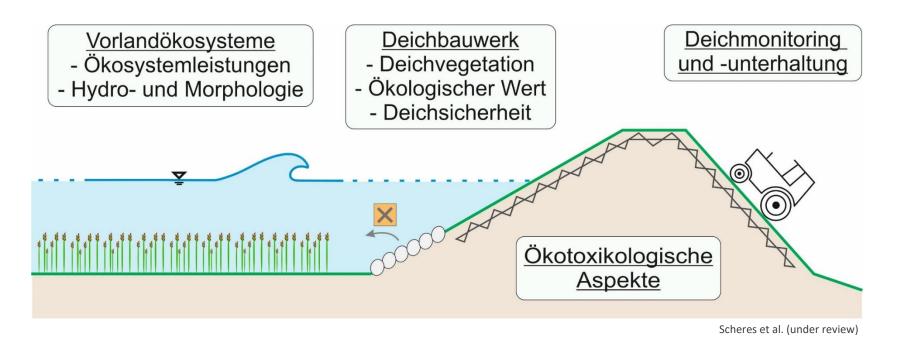
TOM KRISTIAN HOFFMANN

PHILIPP JORDAN


GLIEDERUNG

- 1. Einleitung
- 2. Deichvorlandvegetation
- 3. Deichvegetation
- 4. Deichunterhaltung
- 5. Zusammenfassung

EINLEITUNG – Seedeiche als Küstenschutzelement


- Überflutungsschutz im Sturmflutfall
- Umwelt- und naturschutzfachliche Aspekte berücksichtigt durch
 - Nutzung lokaler Ressourcen,
 - Minimalisierung des Ressourcenverbrauchs und
 - Ausgleichsmaßnahmen
- Bislang keine/kaum Erfahrungen und Empfehlungen zur ökologischen Aufwertung des Deichsystems selbst

ZIELSETZUNG – Ökologische Aufwertung von Seedeichen

- Weiterentwicklung von zukunftsorientierten und nachhaltigen Konzepten im Küstenschutz
- Steigerung des ökosystemaren Wertes von Deichen, Deichbauwerken und Vorländern
- Erhaltung und Verbesserung der Deichsicherheit

DEICHVORLAND-VEGETATION

David Schürenkamp

Kara Keimer

Nils Goseberg

Felix Soltau

Marius Ulm

Arne Arns

Jürgen Jensen

DEICHVORLANDVEGETATION - Zielsetzung

 Berücksichtigung grüner Vorländer als ökosystemfördernden Küstenschutz unter Einhaltung/Verbesserung der Deichsicherheit

Felduntersuchung

- Klassifizierung der Vegetation
- Ermittlung der Vegetationseigenschaften

- Einfluss der Vegetation auf die Wellendämpfung
- Reduktion des Wellenauflaufs durch Vegetation

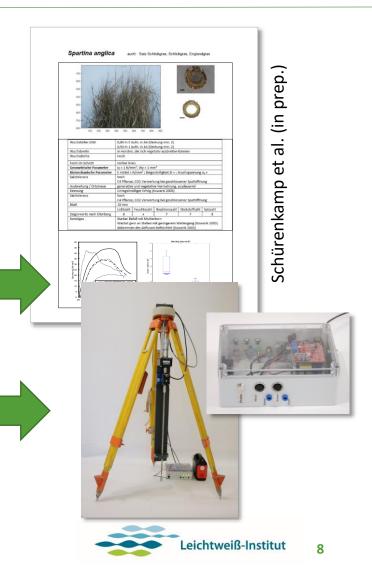
Empfehlungen für die Bemessung von Seedeichen unter Berücksichtigung der Vorlandvegetation

DEICHVORLANDVEGETATION - Biomechanische Felduntersuchungen

Parametrisierung für idealisierte Vorlandvegetation

Ermittlung der hydraulischen Wirksamkeit von Salzwiesenvegetation

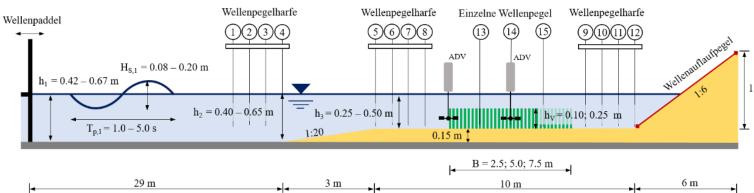
- Biegesteifigkeit (EI), Flächenträgheitsmoment
- Vegetationsstruktur (Vegetationshöhe, vertikale Dichteverteilung)
- Scherfestigkeit des Bodens


Schürenkamp et al. (in prep.)

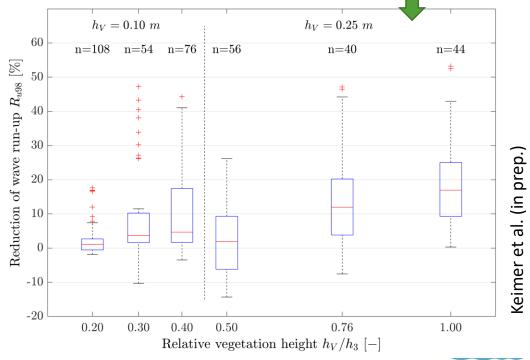
DEICHVORLANDVEGETATION - Biomechanische Felduntersuchungen

Ergebnisse

- Ermittlung hydraulisch relevanter Parameter
 - Bewuchsdichte
 - Bewuchshöhe
 - Steifigkeit (Biegemodul, Flächenträgheitsmoment)
- Steckbriefe mit biomechanischen Parametern für ausgewählte Arten der Salzwiesenvegetation
- Mobiles Feldmessgerät für die Ermittlung des Scherwiderstands vom Boden



DEICHVORLANDVEGETATION - Systematische Laboruntersuchungen



DEICHVORLANDVEGETATION - Hydraulische Wirksamkeit

Ergebnisse

- Reduktion der Wellenenergie (verringerte Transmission) mit sinkender Wassertiefe bzw. steigender Vegetationshöhe
- Verringerung des Wellenauflaufes am Deich |

DEICHVORLANDVEGETATION - Entscheidungsbaum

- Umfangreiche Analyse des Schrifttums und der Datenquellen zu Felduntersuchungen, experimentellen und numerischen Untersuchungen
- Abschätzung der Wellendämpfung durch Vorlandökosysteme mittels
 - Regressionsmodell
 - Entscheidungsbaum
- Klassifizierung der Wellendämpfung
- Beitrag zur numerischen Modellierung der Wellen-Vegetations-Interaktion

Soltau et al. (accepted)

DEICHVORLANDVEGETATION - Ausblick

- Erweiterung und Anwendung der entwickelten Methoden für die Ermittlung von (ökohydraulisch) relevanten Vegetations- und Bodeneigenschaften im Feld
- Entwicklung eines realitätsnahen Salzwiesenmodells für weitere experimentelle Untersuchungen
- Klassifizierung und Kartierung der Salzwiesen hinsichtlich der hydraulischen Wirksamkeit (Wellendämpfung)
- Analyse der welleninduzierten sohlnahen Strömungen auf dem Vorland und innerhalb der Vegetation
- Numerische Modellierung der Interkation von Wellen und Vegetation mit Salzwiesenmodell

DEICHVEGETATION

Tom Kristian Hoffmann

Maike Paul

Jochen Michalzik

Torsten Schlurmann

Cajus Bisgwa

Annelie Graunke

Nicole Wrage-Mönnig

Babette Scheres

Holger Schüttrumpf

Björn Deutschmann

Henner Hollert

DEICHVEGETATION - Stand der Technik

- Standard-Ansaatmischungen nach EAK (2002)
 - Verschiedene Gräser
 - Geringer Kräuteranteil (optional)

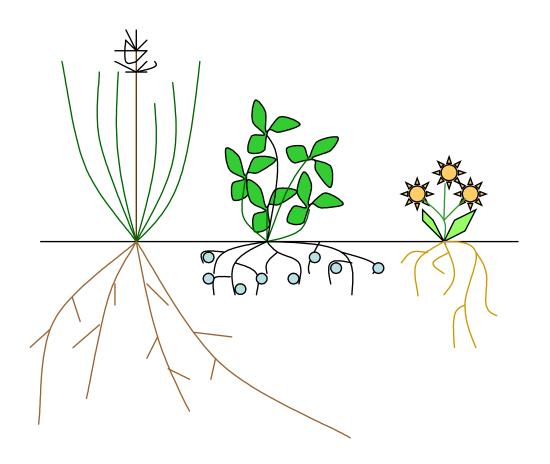
Deutsches Weidelgras

Wiesenrispe

Rotschwingel

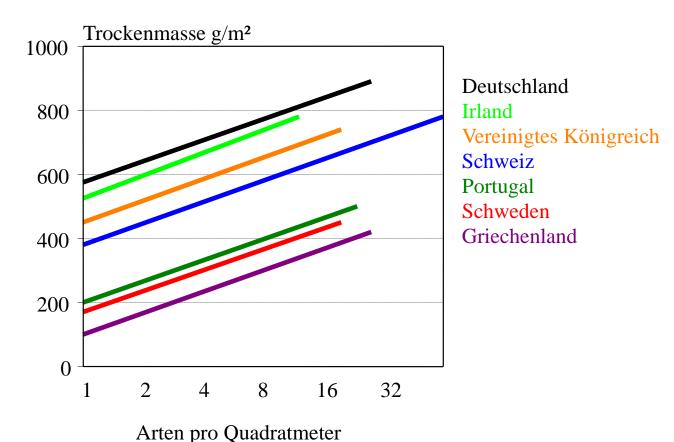
Wiesenscharfgarbe

14


- Saatmischung auf Basis technischer Anforderungen gewählt
 - Schutz vor Oberflächenerosion durch mechanische Belastungen und Witterungseinflüsse
- Geringe Phytodiversität = Eingeschränkte Vielfalt der genutzten Arten und funktionellen Gruppen

DEICHVEGETATION - Vorteile von Phytodiversität

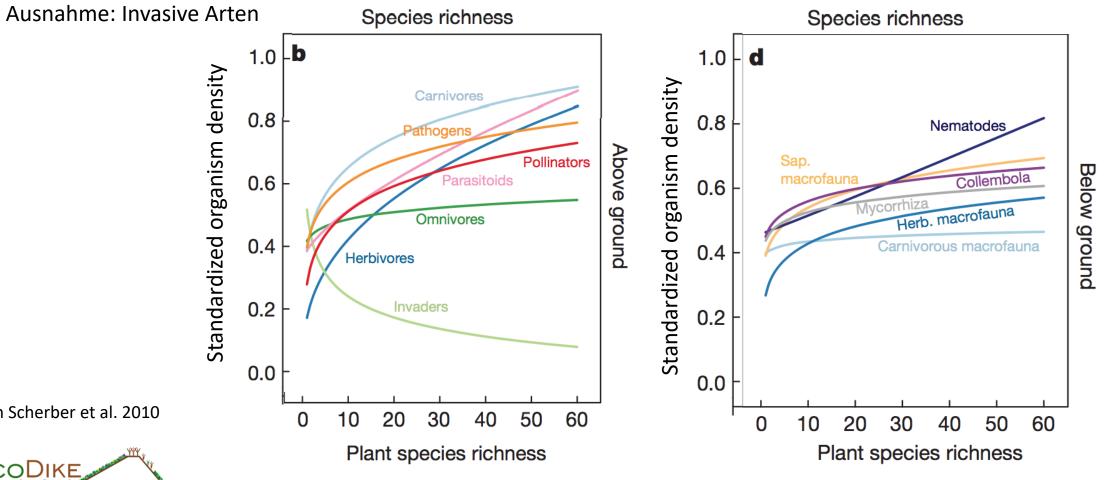
- Verbesserte Ressourcennutzung (Wasser, Nährstoffe)
- Höhere Produktivität
- Verbesserte Resilienz
- Stabilere Produktion
- Verbesserte Produktqualität
- Höhere Biodiversität allgemein
- Höherer ökosystemarer Wert



15

DEICHVEGETATION - Auswirkungen von Phytodiversität

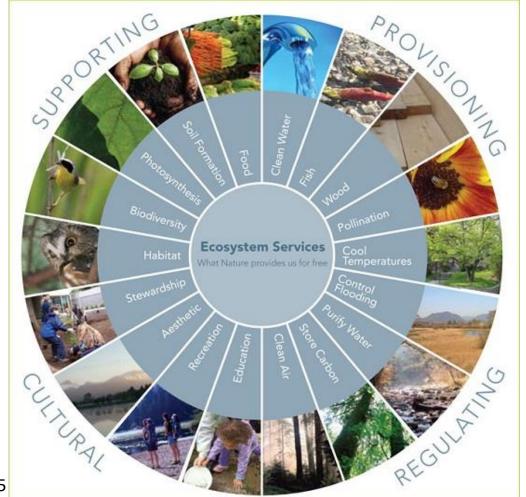
Heuproduktion im europäischen Grünland steigt mit Artenreichtum (Biodepth-Projekt)



nach Hector et al. 1999

DEICHVEGETATION - Auswirkungen von Phytodiversität

Höhere Phytodiversität bewirkt höhe Artenzahl in allen Organismengruppen im Ökosystem


nach Scherber et al. 2010

DEICHVEGETATION - Zusammenfassung der Diversitätsforschung

- Kann zu erhöhter Produktivität führen
- Aufnahme von mehr Stickstoff
- Weniger Auswaschung u.a. Verluste
- Bessere Wassernutzung
- Ist es agronomisch nutzbar?
- Welche Ökosystemleistungen können genutzt werden?

DEICHVEGETATION - Testvegetationen

- Definition von Testvegetationen
 - Anforderungen: Schutz vor Oberflächenerosion, Widerstand gegen mechanische Belastungen, Stressresistenz


	Poschroibung	Arten-	Anzahl	Anzahl	Anzahl
	Beschreibung		Gräser	Kräuter	Leguminosen
TV1	Standardvegetation nach EAK (2002)	4	3	1	0
TV2	Standard nach EAK (2002), andere Gräser	6	5	1	0
TV3	Standard nach EAK (2002), mehr Kräuter	8	3	2	3
TV4	Gräser nach TV2 und Kräuter nach TV3	10	5	2	3
TV5	Bienenweide, eigene Mischung	18	1	11	6
TV6	Bienenweide, Fertigmischung	20	0	17	3

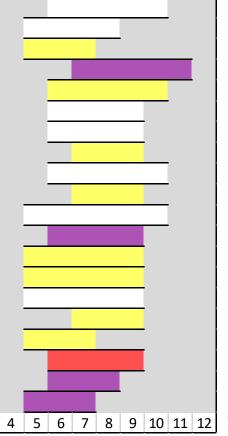
Scheres et al. (under revie

Graunke, 2018

DEICHVEGETATION - Testvegetationen

- Definition von Testvegetationen
 - Anforderungen: Verlängerung der Blühzeiten, Diversität der Blühfarben, Steigerung des ökosystemaren Werts

TV1


Gräser: 97 %

Kräuter: 3 %

TV6

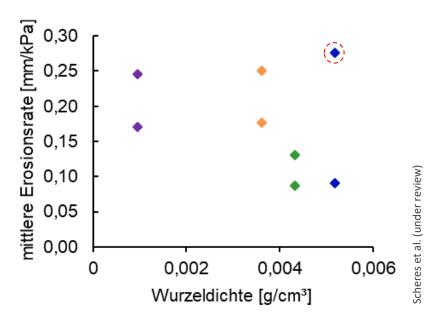
Kräuter: 100 %

Graunke, 2018

DEICHVEGETATION - Testvegetationen

- Definition von Testvegetationen
 - Anforderungen: Schutz vor Oberflächenerosion, Widerstand gegen mechanische Belastungen, Stressresistenz, Verlängerung der Blühzeiten, Diversität der Blühfarben, Steigerung des ökosystemaren Werts

Graunke, 2018



DEICHVEGETATION - Deichsicherheit

Erosionswiderstand gegen Wellendruckschläge

- Gräserdominierte Referenzmischung (TV1)
- Gräser-Kräuter-Mischung (TV4)
- Bienenweide eigener Mischung (TV5)
- Bienenweide Fertigmischung (TV6)

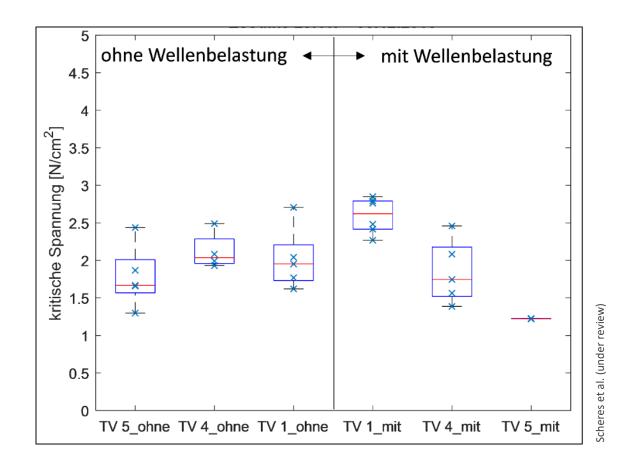
DEICHVEGETATION - Deichsicherheit

Erosionswiderstand gegen Überströmen

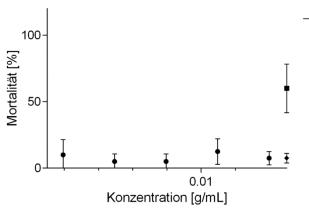
- Kein Deckschichtversagen beobachtet. Maximale Belastungen:
 - TV1 mit Überströmraten bis 180 l/(sm) und Fließgeschwindigkeiten bis 3,7 m/s
 - TV4 mit Überströmraten bis 102 l/(sm) und Fließgeschwindigkeiten bis 2,5 m/s
 - TV5 mit Überströmraten bis 98 l/(sm) und Fließgeschwindigkeiten bis 2,4 m/s

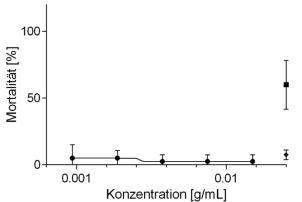
DEICHVEGETATION - Deichsicherheit

- Vegetationswiderstand gegen Wellenbelastung
- Erschwerte Etablierungsphase durch extreme Trockenheit
- Kein belastbarer Zusammenhang zwischen Wellenbelastung und Deckungsgrad erkennbar
- Schadstellen steigerten lokale Erosion unabhängig von umgebender TV



DEICHVEGETATION - Scherkraft





DEICHVEGETATION - Deichverstärkung

- Ökotoxikologische Untersuchung von Geotextilien (Vliesstoff HaTe B 300 O II, 3D-Geotextilgitter Fortrac© 3D 90)
 - Auslaugprüfung nach DIN CEN/TS 16637-2 (realistisches Expositionsszenarium)
 - Soxhlet-Extraktion (worst-case-szenario)
- Ergebnis der Fischeitests mit den Eluaten der Auslaugprüfung: Eluate der Geotextilien zeigen kein teratogenes Schädigungspotenzial auf Fischeier von Danio rerio (Zebrabärbling)
- Jedoch weiterer Untersuchungsbedarf zur Belastung mit Mikroplastik

- Fortrac 3D 90 Eluat Mittelwerte
- Positivkontrolle
- Negativkontrolle

- HaTe B300 "O" II Eluat Mittelwerte
- Positivkontrolle
- Negativkontrolle

DEICHVEGETATION - Ausblick

- Analyse der Widerstandskraft in Abhängigkeit vom Etablierungsgrad über die erste Vegetationsperiode hinaus
- Verbesserung der Scherkraftmessung in Abhängigkeit von Bedeckungsgrad und Bodenfeuchte
- Vergrößerung der Datenbasis für eine robuste Auswertung

DEICHUNTERHALTUNG

Philipp Jordan

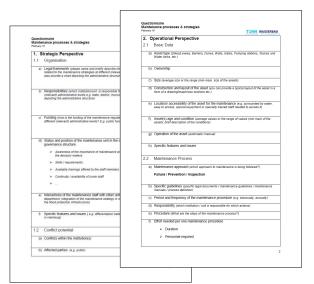
Natasa Manojlovic

Peter Fröhle

DEICHUNTERHALTUNG - Zielsetzung

Risiko-basierte Unterhaltungsstrategie

Analyse des Ist-Zustands


- Durchführung von Experteninterviews im ND Raum
- Analyse hinsichtlich definierter Kriterien

Entwicklung der Strategie & Methoden

- In situ Tests & Bewertung
 - Konzipierung einfacher in situ Tests
 - Objektivierung der Zustandsbewertung

Empfehlungen für die Risiko-basierte Unterhaltung grüner Deiche & eine objektivere, vergleichbarere Zustandsbewertung

DEICHUNTERHALTUNG - Risiko-basierte Unterhaltungsstrategie

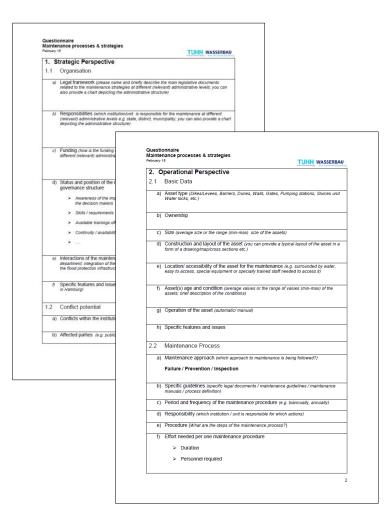
Risiko-basierte Unterhaltung grüner Deiche


"Das Ziel des risiko-basierten Ansatzes ist das Risiko von unerwartetem Versagen der Anlage zu reduzieren"

Schritt	Ziel/ Beschreibung			
1. Risikoanalyse	Identifikation und Analyse der			
	Kritischen/Schwachstellen			
2. Risikobewertung;	Risiko wird anhand definierten messbaren			
	Kriterien bewertet			
3. Entwicklung der	Definition von Unterhaltungsmaßnahmen, um			
Risikobasierte	das Risiko auf das akzeptable Niveau			
Unterhaltungsstrategie:	kosteneffizient langfristig zu reduzieren			
4. Integration in die	Optimierung von Planung, Unterhaltung und			
Anlagemanagement	Betrieb der Hochwasserschutz-Anlagen			
Strategie				

DEICHUNTERHALTUNG - Einordnung

- Unterhaltung in Regelwerken und Empfehlungen
 - Vielzahl an Regelwerken, aber nur in wenigen wird die Unterhaltung gesondert erwähnt
 - Unterteilung der Instandhaltung gemäß DIN 31051 → Wartung, Inspektion, Instandsetzung & Verbesserung
- Instandhaltungsstrategien im Wasserbau
 - Nach Glimm et al. (2009) existieren im Bereich der Bauwerksunterhaltung drei unterschiedliche Instandhaltungsstrategien:



DEICHUNTERHALTUNG - Analyse des Ist-Zustandes

Analyse der existierenden Unterhaltungsstrategien

- Rechtliche Grundlagen
- Umsetzung der Unterhaltungsstrategien in der Praxis
 - Hamburg
 - Niedersachsen
 - Schleswig-Holstein
 - Mecklenburg-Vorpommern
 - Bremen
- Anpassungsbereitschaft im Bezug auf ,Ökodeiche'

DEICHUNTERHALTUNG - aktuell

Unterhaltungsmaßnahmen auf Deichen

- Fremdvergabe oder Eigenpersonal
- Wichtigste Maßnahme: *Pflege der Grasnarbe*

DEICHUNTERHALTUNG - aktuell

Unterhaltungsstrategie

- Inspektionsstrategie
- Jährliche oder halbjährliche *Deichschauen (,empirische' Methode)*

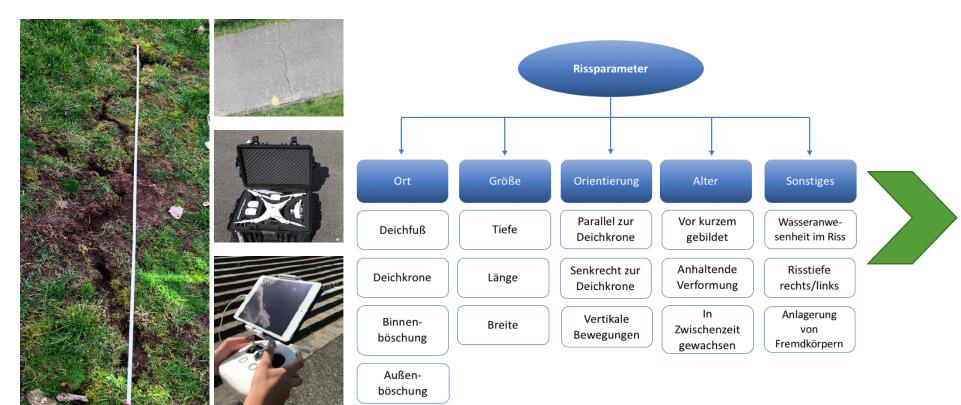
DEICHUNTERHALTUNG - Zusammenfassend & im Ergebnis

- Durchführung der Unterhaltungsmaßnahmen ist Ländersache
- Nach eigene gesetzliche Grundlagen, Normen und Richtlinien
- Viele Gemeinsamkeiten mit kleinen aber feinen Unterschieden
- Ein klarer Ablauf der Unterhaltungsmaßnahmen ist erkennbar
 - Inspektionsstrategie
- Dokumentation vorhanden aber nicht einheitlich
 - Checkliste, Unterhaltungsliste
- Sehr oft sind es Erfahrungen der Unterhalter, die über Schäden/ Mängel entscheiden
- Kriterien zur Einstufung von Mängel/ Schäden sind nur teilweise vorhanden
- → Wichtigstes/ Empfindlichstes Element an einem Deich ist die Grasnarbe

DEICHUNTERHALTUNG - Entwicklung der Strategie & Methoden

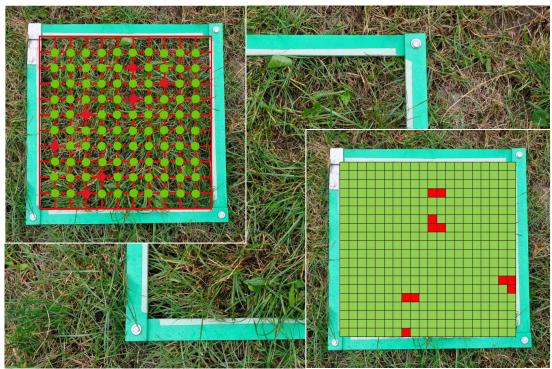
Entwicklung der Strategien und Methoden

- 1. Schritt: Risikoanalyse → Identifikation und Analyse der kritischen/Schwachstellen
- 2. Schritt: Risikobewertung → Risiko anhand definierter, messbarer Kriterien bewerten

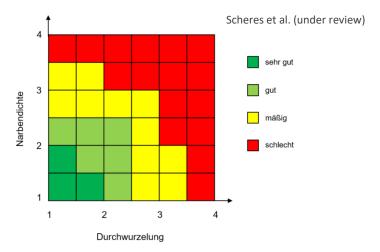


DEICHUNTERHALTUNG - In situ Tests & Bewertung

Untersuchung von Rissen im Deich


Jordan 2018

Α	В	С
Klein	Mittelgroß	Groß
Tiefen bis 10 cm / Breiten bis 5 cm	Tiefen bis 50 cm / Breiten bis 15 cm	Tiefen > 50 cm / Breiten > 15 cm
vereinzelt oder mehrere	vereinzelt	vereinzelt
keine vertikalen Bewegungen	keine vertikalen Bewegungen	vertikale Bewegungen
Längen bis 100 cm	Längsrisse nicht länger als Deichhöhe	Längsrisse länger als Deichhöhe
an allen Bereichen des Deiches	Keine Risse kontinuierlich durch die Deichkrone	Querrisse durch die gesamte Deichbreite
keine Wasser- anwesenheit im Riss	Wasser- anwesenheit im Riss möglich	Wasser- anwesenheit im Riss
evtl. selbstheilend	Instandhaltung erforderlich	Instandsetzung erforderlich



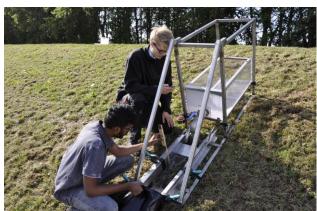
- Visuelle Untersuchung der Grasnarbe
 - Basierend auf Liebrand (1999)

Qualitätsmerkmale		Sehr gut	Gut	Mäßig	Schlecht
		Note: 1	Note: 2	Note: 3	Note: 4
Narbendichte	Bodenbedeckung [%]	> 75	60 – 75	45 – 60	< 45
	Fehlstellengröße [cm²]	< 32	32 – 64	64 – 96	> 96
Durchwurzelung	Wurzellänge [m/5dm³]	> 900	750 – 900	600 – 750	< 600
	Wurzelgewicht [g/5dm³]	> 14	12 – 14	10 – 12	< 10

• Untersuchung der Scherfestigkeit der Grasnarbe

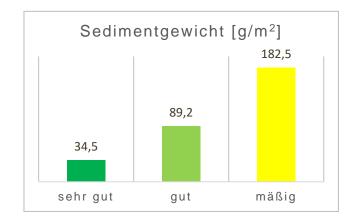
Klasse	Scherfestigkeit [kN/m²]	Bewertung	
1	> 70	Sehr gut	
2	55-70	Gut	
3	45-55	Mäßig	
4	35-45	Schlecht	
5	< 35	Sehr schlecht	

nach Liebrand, 1999

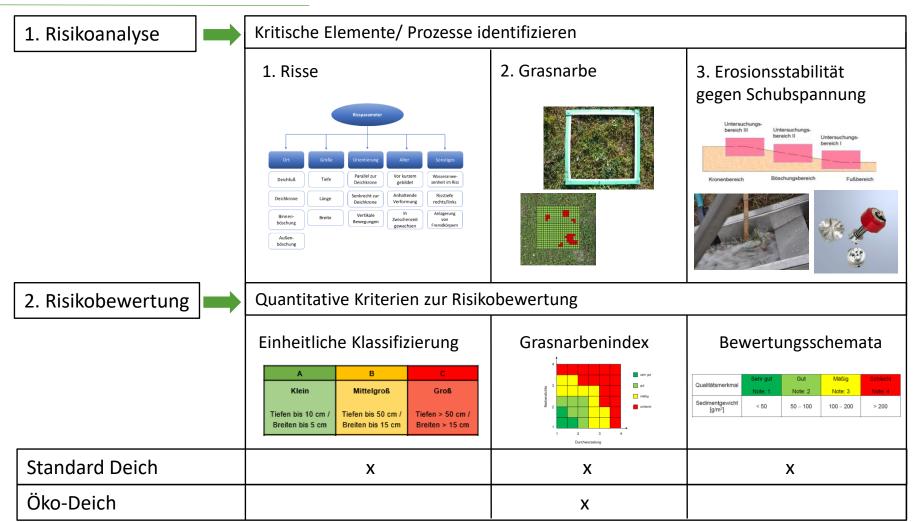


• Untersuchung der Erosionsstabilität gegen Schubspannungen

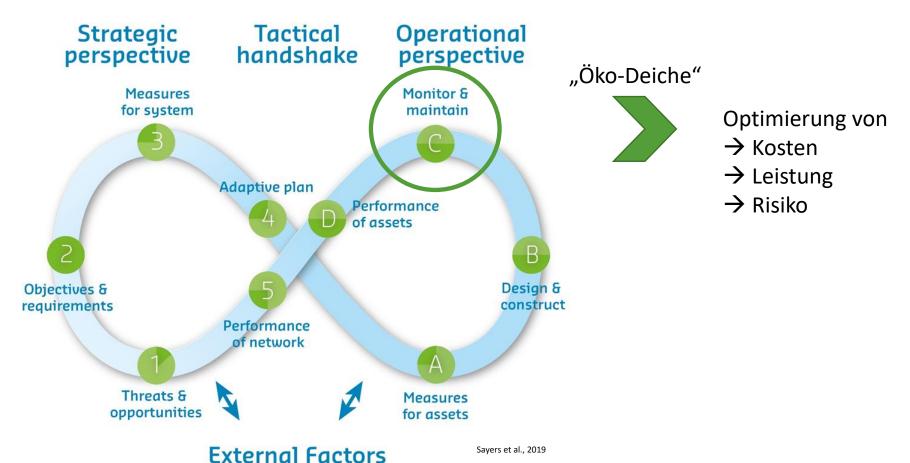
Korrelation zwischen visuellem Zustand und Erosionsstabilität der Grasnarbe?



- Testergebnisse
 - Korrelation zwischen visuellem Zustand und Erosionsstabilität der Grasnarbe (siehe Graphik oben rechts)
 - Erste Bewertungstabelle konnte entwickelt werden
 - Ausgespültes Sedimentgewicht abhängig von der Fließgeschwindigkeit des Wassers


Qualitätamarkmal	Sehr gut	Gut	Mäßig	Schlecht
Qualitätsmerkmal	Note: 1	Note: 2	Note: 3	Note: 4
Sedimentgewicht [g/m²]	< 50	50 – 100	100 – 200	> 200

DEICHUNTERHALTUNG – Risiko-basierter Ansatz


- Risikoanalyse
 Kritische
 Elemente/Prozesse
 definieren
- 2. Risikobewertung→ QuantitativeBewertungskriterien
- Risikobasierte Strategie
- Integration in die Anlagenmanagement Strategie (LifeCycle Management)

DEICHUNTERHALTUNG - Anlagenmanagement-Strategie

Integration des Risiko-basierten Unterhaltungsansatzes in die Anlagenmanagement-Strategie der Deiche

DEICHUNTERHALTUNG - Ausblick

- Weiterführende Beobachtungen der Rissentwicklung über die Sturmflutsaison
- Durchführung zusätzlicher Versuche zur Erosionsstabilität, um eine größere Datenbasis aufzubauen
- Automatisierung der Auswertung der Grasnarbenmatrix
- Erweiterung und Anwendung der entwickelten Methoden und Bewertungsschemata auf ökologisch gestaltete Deiche
- (Weiter-)Entwicklung eines "Maintenance Toolkit" für Unterhalter und Betreiber

ZUSAMMENFASSUNG UND AUSBLICK

- Steigerung des ökosystemaren Werts von Deichsystemen durch
 - Förderung von Vorlandökosystemen
 - ökologische Aufwertung des Deichbauwerks selbst
- Deichsicherheit und Küstenschutz haben weiterhin höchste Priorität
- Erste Planungsempfehlungen als Ergebnis des EcoDike-Projektes
- Antrag auf Förderung eines Folgeprojektes
 "EcoDikeFuture" im Forschungsprogramm MARE:N

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

Wir danken dem Bundesministerium für Bildung und Forschung (BMBF) und dem Kuratorium für Forschung im Küsteningenieurwesen (KFKI) für die finanzielle und fachliche Unterstützung.

GEFÖRDERT VOM

Quellenverzeichnis

- **Glimm et al**. 2009. *Integrierte Konzepte, Modelle und Techniken für bestehende und neue Bauwerke*. In: Unsere Gewässer Forschungsbedarf aus Sicht der Praxis, Eine Dokumentation von HTG und DGGT. Hafentechnische Gesellschaft e.V. und Deutsche Gesellschaft für Geotechnik e.V.
- **Hector et al.** 1999. Plant diversity and productivity experiments in European grasslands. Science 286: 1123-1127
- **Jordan, Manojlovic, Fröhle**. 2019. *Unterhaltung grüner Seedeiche im deutschen Küstenraum Eine Analyse der bestehenden Unterhaltungsstrategien*. In: Tagungsband HTG Kongress Lübeck, 11. bis 13. September 2019, Hafentechnische Gesellschaft e.V.
- **Keimer, Miescke, Schürenkamp, Goseberg**. (in prep.). *Ecosystem services of salt marshes for coastal protection: Laboratory study of hydrodynamic processes on the foreshore and at sea dikes using inflexible idealized vegetation*. In: Coastal Engineering.
- Liebrand. 1999. Restoration of Species-Rich Grasslands on Reconstructed River Dikes. Dissertation. Wageningen Agricultural University, Wageningen, Niederlande.
- Millennium Ecosystem Assessment 2005. "Ecosystems and Human Well-being." Classic Edition Sources: Environmental Studies. Thomas A. Easton. 4th ed. New York: McGraw-Hill, 2012. 41-47. Print.
- Sayers et al. 2019. A perspective on the future of asset management for flood protection, A Policy Brief from the Interreg North Sea Region FAIR Project.
- **Scherber et al.** 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment Nature 468: 553-556
- Scheres, Arns, Bisgwa, Deutschmann, Fröhle, Goseberg, Graunke, Hoffmann, Hollert, Jensen, Jordan, Keimer, Manojlovic, Michalzik, Paul, Schlurmann, Schürenkamp, Soltau, Ulm, Wrage-Mönnig, Schüttrumpf. (under review). EcoDike Grüne Seedeiche und Deckwerke für den Küstenschutz. In: Die Küste.
- Schoonees, Gijón Mancheño, Scheres, Bouma, Silva, Schlurmann, Schüttrumpf. 2019. Hard structures for coastal protection, towards greener designs. In: Estuaries and Coasts 21 (7), S. 755. doi: 10.1007/s12237-019-00551-z.
- Schürenkamp, Keimer, Kosmalla, Freund, Goseberg. (in prep.). Biomechanics of salt marsh vegetation for ecosystem-based coastal protection. In: Coastal Engineering.
- **Soltau, Arns, Ulm, Jensen**. Accepted. Classifying wave attenuation by vegetation using a decision tree model. Coastal Structures Conference 2019, 30.09.-02.10.2019, Hannover, Deutschland.

