

PADO – Numerische Modellierungen

Constantin Schweiger, M.Sc. Univ.-Prof. Dr.-Ing. Holger Schüttrumpf

am 24.03.2021

Lehrstuhl und Institut für Wasserbau und Wasserwirtschaft RWTH Aachen University

Kontakt: Tel: 0241 8025162 E-Mail: schweiger@iww.rwth-aachen.de

Einführung

- > Modellaufbau und -kalibrierung am Beispiel der Versuchsdüne
- Zeitliche Analyse des Dünenversagens
- Modellierung der "Zeetje"-Sturmflut am Hütelmoor
- Modellanwendung: Pilotgebiet (PG) Ahrenshoop
- Zentrale Erkenntnisse

- > XBeach (Roelvink et al. 2009): eXtreme Beach behaviour
 - > Open-source!
 - > Entwicklung aufgrund der Hurrikan-Ereignisse 2004 und 2005 durch u.a. Deltares
 - > 2DH*-Modell für die sturmflutbedingte Erosion sandiger Küstenabschnitte
 - Zeitlich-variierende Wellen- und Wasserstandsrandbedingungen
 - hydrodynamische Prozesse:
 - > Ausbreitung und Transformation kurz- und langperiodischer Wellen
 - > Welleninduzierte Strömungen
 - Basis: wave-action-balance und 2D-Flachwassergleichungen
 - > morphodynamische Prozesse:
 - Sedimenttransport und Sohländerungen
 - > Avalanching Mechanismus für die (2D) sturmflutbedingte Dünenerosion
 - Basis: Advektions-Diffusions-Gleichung und Exner-Gleichung

- >Aufbereitung der Rohdaten mit ArcGIS
- Modellgittererstellung mit MATLAB unter Berücksichtigung verschiedener Kriterien und Verwendung der Deltares Open Earth Toolbox:
 - > Ausreichende Wassertiefe am Modelleinlauf ($h \ge 20$ m)
 - Variable Zellgröße:
 - > Feinere Auflösung im untersuchungsrelevanten Bereich $(dx_{min} (dy_{min}) \sim 1 \text{ m} 4 \text{ m})$
 - > Ansteigende Zellgröße in Richtung Einlaufrand und Modellränder $(dx_{max} (dy_{max}) \sim >10 \text{ m})$
 - > Verwendung der XBeach MPI* Version für größere Modellgebiete empfehlenswert:
 - > Aufteilung in mehrere Teilgebiete während Simulation (ein Teilgebiet pro CPU-Kern)
 - > Anpassung der Modellränder notwendig:

Modellaufbau – Rohdaten

*https://www.geoseaportal.de/mapapps/resources/apps/bathymetrie/index.html?lang=de

5

25. KFKI-Seminar | PADO – Numerische Modellierungen | Constantin Schweiger

Modellaufbau – Modellgitter

nx = 279 *ny* = 324

25. KFKI-Seminar | PADO - Numerische Modellierungen | Constantin Schweiger

Modellaufbau – Wesentliche Eingangsdaten

- >Hydrodyn.-Randbedingungen:
 - Surfbeat-Ansatz
 - Stündlich variierende/r Wellenparameter (T_p, H_{m0}, dir) und Wasserstand

Sediment:

> D50 = 0.3 mm (D90 = 0.5 mm)

Rauheit:

- > Manning mit n = 0.02 s/m^{1/3} = konst.
- Zeitliche Diskretisierung:
 - Simulationsdauer: 30 h (inkl. Vorlaufzeit)

> XBeach Version:

MPI-Version 1.23.5526 des XBeach-X release (3 CPU Kerne)

Vorlaufzeit

Ergebnisausgabe

- Variation einer Vielzahl von Modellparametern (s. Anhang)
- > Kombinationen sensitiver Modellparameter (bspw. *facua*, *gamma*, *wetslp*)
- Untersuchung des Einflusses der k
 üstennahen Bathymetrie und des Strandbereiches vor Versuchsd
 üne (s. Schweiger et AL. 2020)

Aber: Anwendung der default-Parameter führte bereits zu einer hohen Übereinkunft zwischen Simulation und Messung!

Hydrodynamik:

Sute Übereinkunft der H_{m0} -Wellenhöhen im Nahküstenbereich (h = -3 m) während Belastung der Versuchsdüne mit Bias_{Hm0} = -0.04 m (s. Anhang)

Modellierung – Morphodynamik

- > Anwendung qualitativer (o) <u>und</u> quantitativer (•) Kriterien:
 - Vergleich von Quer- und Längsprofilen
 - o Vergleich von Geländehöhendifferenzen
 - Vergleich der Erosionsvolumina
 - Brier-Skill-Score:

$$BSS = 1 - \frac{\sum_{1}^{n} (zb_{c} - zb_{m})^{2}}{\sum_{1}^{n} (zb_{i} - zb_{m})^{2}}$$

Mittlere quadratische Abweichung:

$$RMSE = \sqrt{\frac{1}{N}\sum_{1}^{N}(zb_c - zb_m)^2}$$

Systematischer Fehler:

$$Bias = \frac{1}{N} \sum_{1}^{N} (zb_c - zb_m)$$

s. Sutherland et al. (2004) & Van Rijn (2003)

Mit zb_c : final berechnete Höhenlage, zb_m : final gemessene Höhenlage, zb_i : initiale Höhenlage, N: Anzahl Datenpunkte

Modellierung – Morphodynamik

> Modellversuch:

- Erste Bresche gegen 23:45 Uhr, zweite Bresche gegen 02:00 Uhr
- Kontinuierliche Vermessung der seeseitigen Böschung mit 3D-Scanner

- Vergleich der Simulation mit 44 DGM der seeseitigen Dünenböschung
- > Simulationen mit $dx/dy_{min} = 1m$ sowie $dx/dy_{min} = 0,5m$

Zeitliche Analyse des Dünenversagens*

* 3D-Animation der Simulation (dx_{min}=1m): https://www.iww.rwth-aachen.de/cms/iww/Forschung/Methoden/~mwbw/Numerische-Simulationen/

25. KFKI-Seminar | PADO – Numerische Modellierungen | Constantin Schweiger

- > Wesentliche Erkenntnisse:
 - Anwendung der default-Werte führt zu hoher Modellgenauigkeit hinsichtlich der finalen Dünenerosion (BSS = 0,82)
 - Zeitliche Analyse zeigt gute Übereinstimmung bzgl. Zeitpunkt und Entstehungsort der Breschen
 - > Abweichungen hinsichtlich der Breschenentwicklung
- > Weitere Erkenntnisse (nicht Teil dieser Präsentation):
 - Hoher Einfluss der küstennahen Bathymetrie sowie des Strandbereiches vor der Versuchsdüne (s. Schweiger et Al. 2020)
 - Geringe Verbesserung der Modellgenauigkeit durch morph. Kalibrierung

Folglich: Hohe Modellgenauigkeit, wenn aktuelle und hochaufgelöste Bathymetrie- und Geländedaten vorliegen

Modellierung Hütelmoor

Sturmflut "Zeetje" führte zwischen dem 01. und 03. Januar 2019 zur Entstehung einer Bresche im Bereich des Hütelmoors

Hütelmoor – Bathymetrieeinfluss

- > (U.a.) Untersuchung des Einflusses einer variierenden initialen Bathymetrie:
 - 1. BSH* und KREUZBERG ET AL. (2018) (default)
 - 2. Ausschließlich BSH
 - 3. BSH und Gleichgewichtsprofil nach BRUUN (1954) im küstennahen Bereich ($h(x) = A \cdot x^{2/3}$) mit $A = 0,13 m^2$

IWW

16

Hütelmoor – Bathymetrieeinfluss

- > Wesentliche Erkenntnisse:
 - Höchste Übereinkunft (BSS = 0,38) zwischen Modell und Messung mit default-Werten und küstennaher Bathymetrie nach KREUZBERG ET AL. (2018)
 - Größten Unterschiede im Bereich der Bresche
 - Zu beachten: r\u00e4umliche Entfernung (~8 km) zwischen Messstandort der hydrodynamischen Randbedingungen und Modellgebiet
- > Weitere Erkenntnisse (nicht Teil dieser Präsentation):
 - Im Rahmen der Kalibrierung konnte keine Verbesserung gegenüber den default-Einstellungen erzielt werden (s. PADO Endbericht)
 - Folglich: Zufriedenstellende Modellgenauigkeit, wenn (aktuelle) und hochaufgelöste Bathymetrie- und Geländedaten vorliegen

Modellanwendung – PG Ahrenshoop

- > Modelleigenschaften:
 - *▶ nx* = 582 ; *ny* = 1501
 - ▶ 15 m < dx < 5 m ; dy = 6 m = konst.</p>
 - > Rauheit: $n = 0,03 \text{ s/m}^{1/3} = \text{konst.}$
 - Stationäre Wellen-RB (SAATHOFF ET AL. (2018)):
 - $H_{m0} = 5,57 \text{ m}, T_p = 10 \text{ s}, \text{ dir} = 295^\circ$
 - Sturmflutganglinie nach SALECKER (2013) mit h_{max} = 2,3 m NHN (s. Anhang)
 - Simulationsdauer: 47 h
 - ➢ Weitere Parameter → Kalibrierung anhand Modellversuch

PG Ahrenshoop

20

PG-Ahrenshoop nach einmaliger hydrodynamischer Belastung

PG Ahrenshoop

PG-Ahrenshoop nach erneuter hydrodynamischer Belastung*

* Zu beachten: Zwischen den Simulationen erfolgte keine Anpassung des Strandbereiches!

21

> t = 28 h: Erste Bresche bei KKM 182,75 mit h = 230 cm, fortan Füllung des Polders

PG Ahrenshoop – Zeitlicher Verlauf

t = 33 h: Zweite Bresche bei KKM 182,65 sowie Bresche im Binnendeich auf Höhe KKM 182,6

PG Ahrenshoop – Zeitlicher Verlauf

t = 35 h: Dritte Bresche bei KKM 183,5

PG Ahrenshoop – Zeitlicher Verlauf

 \geq t =48h: Finaler Wasserstand im Hinterland zwischen 0 – 0,5 m NHN

V V V V V V V V V V V

IWW

PG Ahrenshoop – Finale Breschen

Finale Höhenlage im Bereich der Küstenschutzdüne

Position	Initiale Höhenlage	Finale Höhenlage	Finale Breschenbreite
KKM 182,75	~ 5,6 m NHN	~ 0,8 m NHN	~ 90 m
KKM 182,65	~ 5,5 m NHN	~ 0,9 m NHN	~ 60 m
KKM 183,5	~ 6,5 m NHN	~ 0,05 m NHN	~ 60 m
Deich	~2,6 m NHN	~ -0,4 m NHN	~ 72 m

- > Wesentliche Erkenntnisse:
 - Zweimalige Belastung notwendig, damit Bresche(n) in Küstenschutzdüne entsteht
 - Versagen der Küstenschutzdüne und resultierende Überflutung plausibel
 - Zu beachten:
 - Konstante Rauheit im gesamten Modell und somit keine Unterscheidung im Hinterland zwischen Wald-/Wiesenflächen, Straßen, etc.
 - Großteil des Hinterlandes wurde mit maximaler Zellgröße (dx = 15 * dy = 6 m) diskretisiert
 - Höhenlage unter 0 m NHN im Hinterland problematisch aufgrund der Pfützenbildung in hydraulisch nicht angeschlossenen Bereichen
 - Modellungenauigkeiten erwartet, da keine aktuellen und hochaufgelösten küstennahen Bathymetriedaten vorlagen
- > Weitere Erkenntnisse (nicht Teil dieser Präsentation):
 - (Mehrmalige) Modellanwendung auf PG-Graal-Müritz führte zu keinem Durchbruch der Küstenschutzdüne

- Die küstennahe Bathymetrie und Strandbereich haben einen signifikanten Einfluss auf die simulierte Dünenerosion
 - → Gute Übereinkunft zwischen Simulation und Messung, wenn aktuelle und hochaufgelöste Eingangsdaten vorliegen (s. Modellversuch und Hütelmoor)
- Hohe (räumliche) Genauigkeit der default Parameter, wenn aktuelle und hochaufgelöste Eingangsdaten vorliegen
 - Ort der Breschenentstehung unabhängig von den Modellparametern und der räumlichen Auflösung
 - Zeitpunkt der Breschenentstehung abhängig von den Modelleinstellungen und der räumlichen Auflösung

Zentrale Erkenntnisse (II/II)

- Anwendung des Modells auf das PG-Ahrenshoop liefert plausible Ergebnisse, Unsicherheiten sind jedoch vorhanden
 - → Option: Kopplung mit 2D-Oberflächenmodell (bspw. hinter Polder) hinsichtlich feinerer Diskretisierung, variierenden Rauheiten (Wald-/Wiesenflächen, Straßen)
- > Weiterer Forschungsbedarf:
 - Einfluss von Dünenvegetation auf die sturmflutbedingte Dünenerosion
 - > Weitere Untersuchungen zum Einfluss der küstennahen Bathymetrie

Die Anwendung des XBeach Modells erfordert eine (regelmäßige) Beschaffung von küstennahen Bathymetrie- und Geländedaten (Strandbereich) in hoher räumlicher (und zeitlicher) Auflösung. Ist dies gegeben, kann das XBeach Modell eine sinnvoll Ergänzung im Küstenschutz und -management sein.

Quellen

- Holthuijsen, L.H., 2007. Waves in oceanic and coastal waters. Cambridge: Cambridge University Press, 1 online resource (xvi, 387.
- Kreuzburg, M., Ibenthal, M., Janssen, M., Rehder, G., Voss, M., Naumann, M., Feldens, P. (2018): Sub-marine Continuation of Peat Deposits From a Coastal Peatland in the Southern Baltic Sea and its Holocene Development. Front. Earth Sci. 6, 309. doi:10.3389/feart.2018.00103.
- Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., Lescinski, J., 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering 56 (11-12), 1133–1152. doi:10.1016/j.coastaleng.2009.08.006.
- Saathoff, Fokke; Schlamkow, Christian; Dimke, Steffi; Völker, Anita (2013): Aktualisierung des Bemessungsseegangs f
 ür die Au
 ßenk
 üste von Mecklenburg-Vorpommern.
- Salecker, Dörte (2013): Sturmflutganglinie für Aussenpegel an der Ostseeküste Mecklenburg-Vorpommerns.
- Schweiger, C., Kaehler, C., Koldrack, N., Schuettrumpf, H., 2020. Spatial and temporal evaluation of storm-induced erosion modelling based on a twodimensional field case including an artificial unvegetated research dune. Coastal Engineering 161, 103752. doi:10.1016/j.coastaleng.2020.103752.
- Sutherland, J.; Peet, A.H., and Soulsby, R.L., 2004. Evaluating the performance of morphological models. *Coastal Engineering*, 51(8-9), 917–939.
 doi:10.1016/j.coastaleng.2004.07.015.
- van Rijn, L.C.; Walstra, D.J.R.; Grasmeijer, B.; Sutherland, J.; Pan, S., and Sierra, J.P., 2003. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models. *Coastal Engineering*, 47(3), 295–327. doi:10.1016/S0378-3839(02)00120-5.

Anhang – Kalibrierung

Modellkalibrierung – Schema

Übersicht zu sensitiven Modellparametern

Parameter	fa	icua+	f	orm	bed	riction	bedfriccoef		dryslp		wetslp		break		gamma		por		morfac	
Literatur	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert	Bandbreite	Finaler Wert
DEFAULT	0.0 - 1.0	0.1	1, 2, 3	2	1, 2, 3, 4, 5	1	3.5e-05 - 0.9	0.01	0.1 - 2.0	1.0	0.1 - 1.0	0.3	1, 2, 3, 4, 5	3	0.4 - 0.9	0.55	0.3 - 0.5	0.4	0.0 - 1000.0	1.0
McCall (2008)		-	-			1		40		1.0		0.15	-	1	-	0.55	-		-	1.0
Roelvink et al. (2009)	-	-	-			1	-	50, 65	-	-	-		-	-	-	-	-		-	-
Van Dongeren et al. (2009)		-	-	-		-	-	-		-			-	-	-		-		-	-
Van Thiel de Vries (2009)		0.1	-	3	-	-	-	-	0.25 - 2.0	1.0	0.1 - 0.3	0.1	-	3	-	0.5	-	•	-	1.0, 10.0
Brandenburg (2010)		-	-	-	-				-	•		-	· ·	-	-	-	-	-		
Bollo at al. (2011)		-	-				-	-	-				-	-	-	-	-		-	
De Vries (2011)		-						-						3		0.54	-			1.0
Harley et al. (2011)		-	-				-		0.5, 2.0	0.5	0.1 - 0.5	0.5				-			0.0, 10.0	10.0
Riesenkamp (2011)		-	-				-	-	0.6 - 1.4	1.0	0.25 - 0.45	0.3	1, 3	3	0.35 - 0.55	0.35	-			-
Splinter et al. (2011)	-	0.15	-	-	-	-	-	-	-	-	-		-	3	-	-	-	0.4	-	10.0
Van Rooijen (2011)	-	0.0	-	2		-	-		-			0.3	-	-	-	-	-		-	-
Van Thiel de Vries (2011)		-	-			-	-	-	-				-	-	-	-	-	-	1.0, 10.0	10.0
McCall et al. (2012)		-	-			1		37	-				-	-	-	-	-	•	-	-
Splinter & Palmsten (2012)	0.075 - 0.3	0.15	-				-	-	-	1.0	•	0.3	1, 2, 3	1	-	-	-		-	
Van Thiel de Vries (2012)	-	-	-	-		•	-			•	-	-	· ·		-	-	•		-	-
Williams at al. (2012)	0.1, 0.3	0.3	1, 2	2		-	-	- 0.007		- 1	0.2, 0.4	0.4		-		- 0.9	-		5.0, 10.0	10.0
Armaroli et al. (2012)		-				-	-	-				0.5		-		-				-
Bugajny et al. (2013)	0.0 - 0.5	0.3 (0.1 - 0.5)		-		-		-	0.5 - 1.5	1.0, 1.5	0.1 - 1.0	0.4 (0.3)		1	-	-				10.0
Den Heijer (2013)			-	-		-		-		-		-	-	-	-	-	-	· ·	-	5.0
Li et al. (2013)	-		-			-		-	-	-	-		-	-	-	-	-		-	-
Terlouw (2013)						1		65		-				-	-	-				-
De Vet et al. (2014)		0.2	-			4	0.02, 0.04	0.02, 0.04	-				-	-	-	-	-			10.0
De Vet (2014)		0.2	-	-	1, 4	1, 4	-	35, 0.04	-	•		0.1	-	-	-	-	-	•	1.0, 10.0	1.0
Dissanayake et al. (2014)	0, 0.5, 1.0	-	1, 2	2		1	30, 57, 90	90	-	-	0.3, 0.15, 0.6		-	-	-	-	-		1.0 - 5.0	1.0
Nedernoff (2014)	0 - 0.4	0.25	-			1	15-55	30		1.0	0.1 - 0.3	0.1				-	•		1.0, 10.0	10.0
Stulj (2014) Van Geer et al. (2014)	<u> </u>					-	20 - 40	33	<u> </u>			0.1								
Aretxabala (2015)	0.1 - 0.35	0.1/0.15	-			1	-	25, 55	0.85 - 1.0	0.85 / 1.0	0.2 - 0.3	0.2		-		0.541	-		1.0 - 5.0	1.0
Bendoni (2015)		-	-			1	-	75					-			-	-			10.0
Dissanayake et al. (2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Miani et al. (2015)			-			-		-						-		-				-
Roelvink et al. (2015)	0, 0.2, 0.5	0.2 (0.25)	-			1	30, 55	30	-				-	-	-	-	-	-	-	5.0
Van Rooijen et al. (2015)		-	-	-			-		-			-	-	-	-	-	-	•		-
Bertin & Olabarrieta (2016)				-		1		30		-				-	-	0.4	-		-	-
Elsayed & Oumeraci (2016)		-	-	2		4		0.03	-				-	-	-	-	-		-	10.0
Muller et al. (2016)		-				2		0.005						-		-	-			1.0
Palmsten & Splinter (2016)		-	-			2	0.001 - 0.020			4 (?)	0.15 - 0.3				0.50 - 0.55	-	-			1.0
Van Rooijen et al. (2016)		-	-				-	-	-	-				-	-	-	-		-	-
Caichac (2017)	-	-	-	-	-	-		-	-	-	-	-	-	2, 4	-	0.55 / 0.78	-	-	-	3.0
Daly et al. (2017)	-	-	-	1	1, 4	1, 4	-	55, 0.02	-			0.3	-	-	-	-	-		-	1.0
De Beer (2017)	•	-	-	-	1, 3, 4	1, 3, 4		56/57, 0.1442, 0.0184	-	-	-	-	-	-	0.32 - 0.60	0.42	-	-	-	-
Elsayed & Oumeraci (2017a)		-	-	2	· ·	4	<u> </u>	0.03	· ·		· ·		· ·	-	-	-	-	· ·	-	10.0
Elsayed & Oumeraci (2017b)	0.1 - 0.5	> 0.1	-	2	· ·	2		0.00062		-				-	-	-	-	· ·	-	10.0
Elsayed & Oumeraci (2017c) Elsayed (2017)		-	-	-		-		-				-	-	-	-	-				- 10.0
Harter & Fialus (2017)		-	1, 2. 3	2		-		-		-		-	-	-	-	-	-		0.0 - 20.0	10.0
Hewageegana (2017)	· ·			-		-		-				-			-	-			-	-
Jongedijk (2017)		-	-	-		-				-		-	-	-	-	-	-	-		-
Phillips et al. (2017)	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-
Suh (2017)	-	-	-		-			-	0.2 - 1.8				-		0.44 - 0.88	-				-
Von Gronau (2017)		-	-	-		2		0.001				0.26	-	-	-	0.541	-			· ·
Wesselman et al. (2017)	· ·			-	· ·	-	· ·	-	· ·		•	-	· ·	3	0.4 - 0.9	0.45	-	· ·		
Jiménez et al. (2018)	· ·	-	-	-		-		-		-	•	-		-	-	-	-	· ·	-	
Kurunaratinia et äl. (2018) Klaver (2018)	<u> </u>		-		<u> </u>	-						-	-	-		-		<u> </u>		-
Lashley et al. (2018)			<u> </u>		<u> </u>	- 1	50.75	- 75					<u> </u>							<u> </u>
Passeri et al. (2018)				1		1				-				-	-	-	-			-
Roelvink et al. (2018)	· ·	-		-				-				-		4		0.55	-	· ·		-
Storlazzi et al. (2018)	•	-	-	-		-				-		-	-	-	-	-	-	· ·	-	-
Dissanayake et al. (2019)	· ·	-	-	1	-	-			-	-	-	-	-	-	-	-	-	-	-	1.0
Roelvink & Costas (2019)		-	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-
Van Der Graaf (2019)		-	1, 2	2		-	-	-		-	0.1, 0.3	0.3	-	-	-	-	-	-	-	1.0

> Folgende Parameter wurden im Rahmen der Kalibrierung detailliert untersucht:

Parameter	Beschreibung	Bandbreite
facua	Einfluss von Wellensteilheit und – asymmetrie auf Sedimenttransport	0,1 - 0,2
dryslp	Kritische Sohlneigung (trocken) Avalanching	0,8 - 1,6
wetslp	Kritische Sohlneigung (nass) Avalanching	0,1 - 0,8
friction	Rauheitsgesetz (Chézy oder Manning)	C: 45 – 65 m ^{1/2} /s n: 0,02 – 0,04 s/m ^{1/3}
form	Formel f. Gleichgewichtssedimentkonz.	1 – 3
porosity	Sedimentporisität	0,3 - 0,5
break	Ansatz für Einfluss des Wellenbrechens	1 – 3
gamma	Kalibrierungsparameter für Wellenbrechen	0,35 - 0,85

- Sowie Kombinationen sensitiver Parameter:
 - facua, wetslp, gamma, n, (por)

Anhang – Modellierung Modellversuch

Modellierung – Eingangsdaten

	Parameter	Eingangswerte				
	nx	279 (~ 2000 m)				
	ny	324 (~ 800 m)				
Modollaittor	dx	$dx_{min} = 1 m, dx_{max} \sim 15 m$				
Modeligitter	dy	$dy_{min} = 1 m$, $dy_{max} = 10 m$				
	Offshore Wassertiefe	-20 m				
	Offshore Sohlneigung	~ 0,04				
Wollop	thetamin / thetamax	280° / 40°				
vvenen	wavemodel / wbctype	surfbeat / jonstable				
	D50 / D90	0,3 mm* / 0,5 mm *				
Sediment	morfac	10 (Default)				
	Manning	0,02				
Sonatina	cyclic [boundaries]	1				
Sonstige	tintg / tintm	3600 s / 1800 s				

Modellierung – Hydrodynamik

> Hydrodynamische Kalibrierung:

> Vergleich zwischen Messung (H_{m0} , alle 30 Min.) mit Simulation (H_{mean} , alle 30 Min.)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

> Zu beachten: $H_{mean} = H_{rms} \sim \frac{H_{m0}}{\sqrt{2}}$ (HOLTHUIJSEN 2007)

Anwendung der default-Parameter:

IWW

Unterschätzung der gemessenen Wellenhöhe an Position P2 (h ~ 4 m) mit Bias = -0.11 m

 Gute Übereinstimmung zwischen Messung und Simulation (v.a. für *t* > 14 h) an Position P3 (*h* ~ 3 m) mit Bias = -0.04 m

Zeitliche Analyse des Dünenversagens*

Vergleich der Simulation mit 44 DGM der seeseitigen D
ünenböschung
 Simulationen mit $dx/dy_{min} = 1m$ sowie $dx/dy_{min} = 0,5m$

- Zu beachten:
 - Ausrichtung des Laserscanners auf Bereiche mit hoher morphologischer Aktivität während Modellversuch
 - Variierende räumliche und zeitliche Erfassung der Dünenerosion
 - Folge: variierende Punktdichte für Vergleich mit Simulationsdaten (s. Abb. für Simulation mit dx_{min} = 0,5m)

Zeitliche Analyse des Dünenversagens

39

> 1. Bresche: gute Übereinstimmung (hoher BSS, niedriger Bias & RMSE)

2. Bresche: geringere Übereinstimmung (niedriger BSS, höhere Bias & RMSE)

Anhang – Modellierung Hütelmoor

Modellierung Hütelmoor

Modellierung Hütelmoor

Modellierung Hütelmoor – Sturmflut "Zeetje"

V V V V V V V V V V V

IWW

Hütelmoor – gemessene Höhendifferenzen

	Parameter	Eingangswerte				
	nx	402 (3732 m)				
	ny	250 (1000 m)				
Modellaittor	$dx_{max,Off} - dx_{min} - dx_{max,On}$	11 m – 4 m – 10 m				
Modeligitter	dy	dy = 4 m = konstant				
	Offshore Wassertiefe	-20 m				
	Offshore Sohlneigung	~ 0,04				
Wellen	thetamin / thetamax	260° / 10°				
wenen	wavemodel / wbctype	surfbeat / jonstable				
	D50 / D90	0,3 mm / 0,5 mm				
Sediment	morfac	10 (Default)				
	Manning	0,02				
Sonation	cyclic [boundaries]	1				
Sonstige	tintg / tintm	3600 s / 1800 s				

Anhang – Modellanwendung Ahrenshoop

Modellanwendung – PG Ahrenshoop

XBeach Modellparameter								
Untersuchung: Pilotgebiet Ahrenshoop								
Kategorie	Variable	Wert	Kommentar					
	nx	582						
	ny	1501						
	dx,min	5 m						
Medellaittor	dx,max	15 m	Modelllänge ~ 6114 m					
Wodengitter	dy,min	6 m						
	dy,max	6 m	Modelbreite ~ 9000 m					
	Offshore wd	-20 m						
	Offshore slope	2/100						
	thetamin	240						
Wallongitter	thetamax	360						
Wellengitter	single_dir	1						
	dtheta	thetamin-thetamax						
	D50	0.0003 m						
	D90	0.0005 m						
	morfac	10						
Sediment	Korndichte	2650 kg/m ³						
	Porosität	0,35	s. XBeach Kalibrierung anhand 2. MV.					
	Rauheitsgesetz	Manning						
	Rauheitswert	0.03	s. XBeach Kalibrierung anhand 2. MV.					
	instat	jons	JONSWAP Spektrum (konstant)					
	Hrms	5,57 m	Saathoff et. al (2013): Aktualisierung des Bemessungsseegangs					
hydrodynamische	Тр	10 s	für die Außenküste von Mecklenburg-Vorpommern. Universität Rostock. Aorar- und Umweltwissenschaftliche Fakultät,					
Randbedingungen	dir0	295°	Lehrstuhl für Geotechnik und Küstenwasserbau					
	h,max	2,3 m	Salecker, Dörte (2013): Sturmflutganglinie für Aussenpegel an der Ostseeküste Mecklenburg-Vorpommerns. Technische Universität Hamhurg-Harburg. Institut für Wasserbau.					
	tstop	169200 s	Universitat namourg-narourg, measured to the					
	tstart	0 s	Start Modell-Output					
zeitliche	tinta	360 s	Zeitintervall für globalen Output					
Diskretisierung	tintm	1800 s	Zeitintervall für gemittelten Output					
	tintp	360 s	Zeitintervall für Punkt-Output					
	CFL	0.7	maximal zulässige Courant-Zahl					
	x	globale x-Koordinate	en					
	v	globale v-Koordinate	en					
	, Н	Hrms						
	zb	Sohllage						
	7S	Wasserspiegellage						
	hh	Wassertiefe						
Globaler Output	thetamean	mittlere Wellenrichtr	una					
	umean	mittlere Fließgeschv	windigkeit (x-Ri.)					
	ue	eulersche Fließgeso	chwindigkeit (x.Ri.)					
	Sutot	integrierter Sedimer	nttransport (Geschiebe und suspensiert)					
	theta	Wellenrichtung (w.r.	t. x-Achse)					
Weiteres	cyclic	1	cyclic Boundaries, da Wellen schräg ins Modell einlaufen: Wellen, die das Modell am Rand verlassen, laufen ggü wieder ins Modell ein.					
	wetslp	0,2	s. XBeach Kalibrierung anhand 2. MV.					
			<u> </u>					

Anhang – Verschiedenes

Modellierung	Größe Modellgitter	dx _{min}	Sturmflutdauer	Anzahl CPU Kerne	Rechendauer
Versuchsdüne	nx = 279, ny = 324	1 m	30 h	3	~10 h
Hütelmoor	nx = 402, ny = 250	4 m	50 h	3	~7,2 h
PG-Ahrenshoop	nx = 582, ny = 1501	5 m	47 h	7	~44,9 h

Zu beachten:

Zeitschritt wird vom XBeach Modell anhand einer maximal zulässigen Courant-Zahl bestimmt:

$$CFL = rac{c \cdot \Delta t}{\Delta x}$$

mit CFL = 0.7 (default).

> Minimale Zellgröße hat somit Einfluss auf Simulationszeit!