REPORT ON THE DEVELOPMENTS IN THE AUTOMATION AND REMOTE OPERATION OF LOCKS AND BRIDGES

The World Association for Waterborne Transport Infrastructure
PIANC REPORT N° 192
INLAND NAVIGATION COMMISSION

REPORT ON THE DEVELOPMENTS IN THE AUTOMATION AND REMOTE OPERATION OF LOCKS AND BRIDGES

2019
PIANC has Technical Commissions concerned with inland waterways and ports (InCom), coastal and ocean waterways (including ports and harbours) (MarCom), environmental aspects (EnviCom) and sport and pleasure navigation (RecCom).

This report has been produced by an international Working Group convened by the Inland Navigation Commission (MarCom). Members of the Working Group represent several countries and are acknowledged experts in their profession.

The objective of this report is to provide information and recommendations on good practice. Conformity is not obligatory and engineering judgement should be used in its application, especially in special circumstances. This report should be seen as an expert guidance and state-of-the-art on this particular subject. PIANC disclaims all responsibility in the event that this report should be presented as an official standard.
TABLE OF CONTENTS

1 INTRODUCTION 5
 1.1 Scope 5
 1.2 Introduction 5
 1.2.1 Structure of the Report 5
 1.2.2 Reference Projects 6
 1.2.3 Related PIANC Reports 7
 1.2.4 Members of the Working Group 7
 1.2.5 Meetings 9
2 MANAGEMENT SUMMARY 10
3 BUSINESS CASE DEVELOPMENT FOR REMOTE OPERATION AND AUTOMATION 11
 3.1 Introduction to Business Case Development 11
 3.2 Benefits vs. Costs 11
 3.2.1 Benefits 12
 3.2.1.1 One-Off/Non-recurring 12
 3.2.1.2 Recurring 13
 3.2.2 Costs 14
 3.2.2.1 One-Off/Non-recurring 14
 3.2.2.2 Recurring 14
 3.2.3 Risks 14
 3.2.4 Opportunities 15
 3.3 Notes on the Business Case 15
 3.3.1 Implementation 15
 3.3.2 Life Cycle of Control and Network Equipment 16
 3.3.3 Design, Construction, Operation and Maintenance 16
 3.3.4 Risk Assessment 17
 3.3.5 Economies of Scale 17
 3.3.6 Communication Network 17
 3.3.7 Rallying External Stakeholders to Help Promoting a Project 18
 3.4 Current Situation in the Different Countries 18
 3.5 Operating Methods 24
 3.5.1 Overview 24
 3.5.2 Advantages and Disadvantages of Different Methods of Operation 27
4 ORGANISATIONAL IMPLEMENTATION 29
 4.1 Organisational Design 29
 4.2 Standardisation 30
 4.2.1 What is Standardisation? 30
 4.2.2 Standardisation of Processes and Procedures in Terms of Automation and Remote Operation 30
 4.2.3 Standardisation of the Work Environment 31
 4.2.4 Technical Standardisation 31
 4.3 Service Model to Customers 32
 4.4 Interaction with the Public 32
5 OPERATIONAL IMPLEMENTATION 33
 5.1 Implementation of Remote Operation 33
 5.2 Definition of Processes and Procedures 33
 5.2.1 Process – Remote Operation 33
 5.2.2 Process – Asset Management and Maintenance 34
 5.2.3 Graceful Degradation 35
 5.3 Operator Skills 36
 5.3.1 Workload onto the Operator 36
 5.3.2 Operator Tasks 37
 Table 8: Overview of the different possible tasks with both local and remote control operation 37
 5.3.3 Training Requirements 37
 5.3.3.1 Additional Training Requirements for Remote Control 37
 5.3.3.2 Using Remote Control Systems 38
5.3.3.3 Working in a Remote control centre 38
5.3.4 Function Description 38
5.4 Standardisation and Ergonomic Principles 39
5.4.1 Control Room Design 39
5.4.2 Ergonomics of the Operator Desk 40
5.4.3 Visualisation to the Operators 42
5.4.3.1 Human-Machine Interface (HMI) 42
5.4.3.2 Camera Plan 43
5.4.4 Control Room Standardisation in Europe 45
5.4.4.1 Belgium 45
5.4.4.2 Germany 48
5.4.4.3 The Netherlands 49
5.4.5 Control Room Standardisation in the USA 51
5.4.6 Control Room Standardisation in Canada 52
1.1.1. Operator Cognitive Ergonomic Study 53
6 TECHNICAL IMPLEMENTATION 54
6.1 Legislation and Technical Standards 54
6.1.1 Europe: Route to Compliance with EU Directives 54
6.1.1.1 Background 54
6.1.1.2 Compliance by Adoption of Harmonised Standards 54
6.1.1.3 Compliance by Means other than Adoption of Harmonised Standards 55
6.1.1.4 CE Marking 55
6.1.1.5 Technical File 57
6.1.1.6 Provision of Operation and Maintenance Information 57
6.1.1.7 Competence of Maintenance Engineers 58
6.1.1.8 Data Protection Regulations 58
6.1.2 USA: Standards 58
6.1.3 Canada: Standards 59
6.1.3.1 Canadian Regulations 59
6.1.3.2 Canadian Electrical Standards 59
6.2 System Architecture 59
6.2.1 Introduction 59
6.2.2 System Architecture for Remote Operation 60
6.2.3 Management of System Architecture and Complexity 62
6.3 Technical Developments 63
6.3.1 Instrumentation and Control 63
6.3.1.1 Water Level Measurement Devices 63
6.3.1.2 Programmable Logic Controllers (PLC) 65
6.3.1.3 Supervisory Control and Data Acquisition (SCADA) 66
6.3.1.4 Closed Circuit Television System (CCTV-system) 67
6.3.1.5 Communication Technology 69
6.3.2 Data Communication 70
6.3.2.1 Local Area Network (LAN) 70
6.3.2.2 Wide Area Network (WAN) 70
6.3.2.3 Communication Protocols 70
6.3.2.4 Converging Business System Networks with ‘Industrial’ Control Network Data 71
6.3.3 Automation Systems 71
6.3.3.1 Operator-Decision vs Machine-Decision 71
6.3.3.2 Automation of Water Management 72
6.3.3.3 Automation of Railway Bridges 72
6.3.3.4 Traffic Control 72
6.3.3.5 Detection Systems 74
6.3.3.6 Fully Automatic Operation 74
6.3.3.7 Self-Service for Operation by Vessel Operators 76
6.3.3.8 Vessel Self-Spotting and Self-Positioning 79
6.3.3.9 Hands-Free Mooring 80
6.3.4 Simulator Technology 81
6.3.4.1 AWATAR Simulator in Belgium, Flanders 81
6.3.4.2 Plant Simulation in Germany – PLC Control Application Software Testing 82
Safeguarding Operational Safety Relative to the Operation of Barriers

7.1. Introduction

7.2. Operational Safety

7.2.1. Situational Awareness

7.2.2. Responsibilities Relative to the Operation of Barriers

7.2.3. Operational Safety Relative to the Mooring Process

7.3. Technical Safety Solutions

7.3.1. Functional Safety

7.3.2. Hierarchy of Risk Reduction

7.3.3. Defining Safety Functions

7.3.4. Safety Requirements

7.3.4.1. Interlocking in the Control System

7.3.4.2. Safety Requirements on Video Management

7.3.4.3. Failsafe-PLC

7.3.4.4. Emergency Stop

7.3.5. Redundancy

8. SECURITY

8.1. Introduction to Security

8.2. Perimeter Protection

8.3. Cybersecurity

8.4. System Hardening

8.5. Traffic Monitoring

9. TRAFFIC MANAGEMENT

10. INFORMATION MANAGEMENT

10.1. Value of Information

10.2. (Big) Data Analysis

11. FUTURE CONSIDERATIONS

11.1. Increase of Data Collection

11.2. Vision: Where to go to?

12. REFERENCES

LIST OF FIGURES

FIGURE 1: THE PRINCIPLES OF THE GOLDEN CIRCLE

FIGURE 2: SUMMARY OF THE RELATIONS DEPENDING ON THE DEGREE OF AUTOMATION AND OPERATION

FIGURE 3: PROCESS DEFINITION FOR REMOTE OPERATION

FIGURE 4: PROCESS DEFINITION FOR MAINTENANCE AND ASSET MANAGEMENT

FIGURE 5: CONTROL ROOM DESIGN (REFERENCE: WSV, GERMANY)

FIGURE 6: EXAMPLE OF AN OPERATOR DESK AND INTERFACES

FIGURE 7: TESTING OPERATOR DESKS (REFERENCE: WSV, GERMANY)

FIGURE 8: OPERATOR CHAIR AND DESK (REFERENCE: PORT OF ANTWERP)

FIGURE 9: COMPARING DIFFERENT LEVELS OF DETAIL FOR SCADA REPRESENTATION

FIGURE 10: 3-D MODELLING AND VALIDATION OF CAMERA POSITIONS (TALLINN HARBOUR BRIDGE)

FIGURE 11: EXAMPLE OF CAMERA LOCATIONS REPRESENTED ON A SCADA-SCREEN

FIGURE 12: EXAMPLE OF A DUAL WORKSTATION (PORT OF ANTWERP PROTOTYPE)

FIGURE 13: SCREEN SET-UP FROM A DUAL WORKSTATION (PORT OF ANTWERP PROTOTYPE)

FIGURE 14: EXAMPLE OF THE STANDARD SCADA APPLICATION WHICH IS A SCHEMATIC REPRESENTATION OF THE OBJECT IT SERVES (PORT OF ANTWERP PROTOTYPE)

FIGURE 15: TYPICAL CONTROL ROOM LAY-OUT IN FLANDERS

FIGURE 16: CONTROL ROOM STANDARDISATION IN FLANDERS - DESK SIMULATOR

FIGURE 17: AN EXAMPLE OF THE STANDARD SCADA SYSTEM FOR LOCKS USED BY THE GERMAN WSV
FIGURE 18: REMOTE TRAFFIC CENTRE MAASBRACHT FOR BRIDGES, LOCKS, DAMS AND PUMPING STATIONS (INDOOR) 50
FIGURE 19: REMOTE TRAFFIC CENTRE MAASBRACHT FOR BRIDGES, LOCKS, DAMS AND PUMPING STATIONS 51
FIGURE 20: CONCEPT OF A DUAL OPERATOR DESK ENVISIONED BY THE US ARMY CORPS OF ENGINEERS 51
FIGURE 20: OPERATIONS CONTROL CENTRE (MAISONNEUVE) 52
FIGURE 21: MAISONNEUVE OPERATIONS CONTROL CENTRE LAY-OUT 52
FIGURE 22: NIAGARA OPERATIONS CONTROL CENTRE LAY-OUT 53
FIGURE 24: DECISION TREE FOR APPLICATION EU GUIDELINES MACHINE SAFETY 56
FIGURE 25: POSSIBLE SET-UP CONTAINING THE AUTOMATION SYSTEMS NECESSARY FOR REMOTE CONTROL 60
FIGURE 26: POSSIBLE APPROACH FOR THE SYSTEM ARCHITECTURE FOR REMOTE OPERATION 61
FIGURE 27: REFERENCE PROJECT 'SCUO V2' 78
FIGURE 27: VESSEL SELF SPOTTING SYSTEM INSTALLATION 79
FIGURE 28: HANDS-FREE MOORING SYSTEM USED BY THE ST. LAWRENCE SEAWAY MANAGEMENT CORPORATION 81
FIGURE 29: AWATAR SIMULATOR SET-UP 81
FIGURE 30: SCHEMATIC PRESENTATION OF THE PLC SIMULATION MODEL 82
FIGURE 31: SIMULATION SCREEN 83
FIGURE 32: PROGRAMMING SEQUENCES 83
FIGURE 34: STANDARD OPERATOR DESK IN GERMAN LOC’S WITH LOCKAGE STOP AND EMERGENCY STOP 90
FIGURE 35: THE SAFETY CIRCUIT AS A SENSOR-LOGIC-ACTUATOR CIRCUIT 91
FIGURE 36: HARDWIRED EMERGENCY STOP USED BY THE RHÔNE TRAFFIC MANAGEMENT CENTRE, FRANCE 91

LIST OF TABLES

TABLE 1: PREVIOUS PIANC REPORT 7
TABLE 2: RELATED PIANC REPORTS 7
TABLE 3: MEMBERS OF THE WORKING GROUP 8
TABLE 4: SUMMARY OF THE BENEFITS, COSTS, RISKS AND OPPORTUNITIES 12
TABLE 5: REMOTE CONTROL CENTRES AND THEIR CHARACTERISTICS (1) 22
TABLE 6: REMOTE CONTROL CENTRES AND THEIR CHARACTERISTICS (2) 23
TABLE 7: ADVANTAGES AND DISADVANTAGES OF DIFFERENT METHODS OF OPERATION 27
TABLE 8: OVERVIEW OF THE DIFFERENT POSSIBLE TASKS WITH BOTH LOCAL AND REMOTE CONTROL OPERATION 37
TABLE 9: SUMMARY OF THE SPECIFICATIONS OF USED FONTS FOR GUI 48
TABLE 10: COMPARISON OF CHARACTERISTICS OF TECHNICAL COMPONENTS 62
TABLE 11: OVERVIEW OF THE WATER LEVEL MEASUREMENT TECHNOLOGIES AND THEIR SPECIFICATIONS 64
TABLE 12: MEMBERS OF THE WORKING GROUP 101