

PIANC

InCom WG Report n° 192 - 2019

REPORT ON THE DEVELOPMENTS IN THE AUTOMATION AND REMOTE OPERATION OF LOCKS AND BRIDGES

The World Association for Waterborne Transport Infrastructure

PIANC REPORT N° 192 INLAND NAVIGATION COMMISSION

REPORT ON THE DEVELOPMENTS IN THE AUTOMATION AND REMOTE OPERATION OF LOCKS AND BRIDGES

2019

PIANC has Technical Commissions concerned with inland waterways and ports (InCom), coastal and ocean waterways (including ports and harbours) (MarCom), environmental aspects (EnviCom) and sport and pleasure navigation (RecCom).

This report has been produced by an international Working Group convened by the Inland Navigation Commission (MarCom). Members of the Working Group represent several countries and are acknowledged experts in their profession.

The objective of this report is to provide information and recommendations on good practice. Conformity is not obligatory and engineering judgement should be used in its application, especially in special circumstances. This report should be seen as an expert guidance and state-of-the-art on this particular subject. PIANC disclaims all responsibility in the event that this report should be presented as an official standard.

PIANC Secrétariat Général Boulevard du Roi Albert II 20, B 3 B-1000 Bruxelles Belgique

http://www.pianc.org

VAT BE 408-287-945

ISBN 978-2-87223-268-0

© All rights reserved

TABLE OF CONTENTS

1 INTRODUCTION	5
1.1 Scope	
1.2 Introduction	5 5 5
1.2.1 Structure of the Report	5
1.2.2 Reference Projects	
1.2.3 Related PIANC Reports	6 7
1.2.4 Members of the Working Group	.7
1.2.5 Meetings	9
2 MANAGEMENT SUMMARY	10
3 BUSINESS CASE DEVELOPMENT FOR REMOTE OPERATION AND AUTOMATION	11
3.1 Introduction to Business Case Development	11
3.2 Benefits vs. Costs	11
3.2.1 Benefits	12
3.2.1.1 One-Off/Non-recurring	12
3.2.1.2 Recurring	13
3.2.2 Costs	14
3.2.2.1 One-off/Non-recurring	14
3.2.2.2 Recurring	14
3.2.3 Risks	14
3.2.4 Opportunities	15
3.3 Notes on the Business Case	15
3.3.1 Implementation	15
3.3.2 Life Cycle of Control and Network Equipment	16
· · ·	
3.3.3 Design, Construction, Operation and Maintenance	16 17
3.3.4 Risk Assessment	
3.3.5 Economies of Scale	17
3.3.6 Communication Network	17
3.3.7 Rallying External Stakeholders to Help Promoting a Project	18
3.4 Current Situation in the Different Countries	18
3.5 Operating Methods	24
3.5.1 Overview	24
3.5.2 Advantages and Disadvantages of Different Methods of Operation	27
4 ORGANISATIONAL IMPLEMENTATION	29
4.1 Organisational Design	29
4.2 Standardisation	30
4.2.1 What is Standardisation?	30
4.2.2 Standardisation of Processes and Procedures in Terms of Automation and Remote	~~~
Operation	30
4.2.3 Standardisation of the Work Environment	31
4.2.4 Technical Standardisation	31
4.3 Service Model to Customers	32
4.4 Interaction with the Public	32
5 OPERATIONAL IMPLEMENTATION	33
5.1 Implementation of Remote Operation	33
5.2 Definition of Processes and Procedures	33
5.2.1 Process – Remote Operation	33
5.2.2 Process – Asset Management and Maintenance	34
5.2.3 Graceful Degradation	35
5.3 Operator Skills	36
5.3.1 Workload onto the Operator	36
5.3.2 Operator Tasks	37
Table 8: Overview of the different possible tasks with both local and remote control operation	37
5.3.3 Training Requirements	37
5.3.3.1 Additional Training Requirements for Remote Control	37
5.3.3.2 Using Remote Control Systems	38

	Working in a Remote control centre	38
5.3.4 Fund	ction Description	38
5.4 Standa	rdisation and Ergonomic Principles	39
5.4.1 Con	trol Room Design	39
5.4.2 Ergo	nomics of the Operator Desk	40
	alisation to the Operators	42
5.4.3.1	Human-Machine Interface (HMI)	42
5.4.3.2		43
	trol Room Standardisation in Europe	45
5.4.4.1	Belgium	45
-	Germany	48
	The Netherlands	49
	trol Room Standardisation in the USA	51
	trol Room Standardisation in Canada	52
	perator Cognitive Ergonomic Study	53
	AL IMPLEMENTATION	54
	tion and Technical Standards	54
	ppe: Route to Compliance with EU Directives	54
6.1.1.1	Background	54
6.1.1.2	Compliance by Adoption of Harmonised Standards	54
6.1.1.3	Compliance by Means other than Adoption of Harmonised Standards	55
6.1.1.4	CE Marking	55
6.1.1.5	Technical File	57
6.1.1.6		57
	Provision of Operation and Maintenance Information	
6.1.1.7	Competence of Maintenance Engineers	58
6.1.1.8	Data Protection Regulations	58
	: Standards	58
	ada: Standards	59
	Canadian Regulations	59
6.1.3.2	Canadian Electrical Standards	59
	Architecture	59
	duction	59
	em Architecture for Remote Operation	60
	agement of System Architecture and Complexity	62
	cal Developments	63
	umentation and Control	63
6.3.1.1	Water Level Measurement Devices	63
Position D		64
6.3.1.2	Programmable Logic Controllers (PLC)	65
6.3.1.3	Supervisory Control and Data Acquisition (SCADA)	66
6.3.1.4	Closed Circuit Television System (CCTV-system)	67
6.3.1.5	Communication Technology	69
	Communication	70
6.3.2.1	Local Area Network (LAN)	70
6.3.2.2	Wide Area Network (WAN)	70
6.3.2.3	Communication Protocols	70
6.3.2.4	Converging Business System Networks with 'Industrial' Control Network Data	71
6.3.3 Auto	mation Systems	71
6.3.3.1	Operator-Decision vs Machine-Decision	71
6.3.3.2	Automation of Water Management	72
6.3.3.3	Automation of Railway Bridges	72
6.3.3.4	Traffic Control	72
6.3.3.5	Detection Systems	74
6.3.3.6	Fully Automatic Operation	74
6.3.3.7	Self-Service for Operation by Vessel Operators	76
6.3.3.8	Vessel Self-Spotting and Self-Positioning	79
6.3.3.9	Hands-Free Mooring	80
	ulator Technology	81
6.3.4.1	AWATAR Simulator in Belgium, Flanders	81
6.3.4.2	Plant Simulation in Germany – PLC Control Application Software Testing	82

6.3.4.3 Simulator in the Netherlands	83
6.3.4.4 Simulator in Belgium, Port of Antwerp	84
7 SAFETY	85
7.1 Introduction	85
7.2 Operational Safety	85
7.2.1 Situational Awareness	85
7.2.2 Responsibilities Relative to the Operation of Barriers	85
7.2.3 Operational Safety Relative to the Mooring Process	85
7.3 Technical Safety Solutions	86
7.3.1 Functional Safety	86
7.3.2 Hierarchy of Risk Reduction	86
7.3.3 Defining Safety Functions	87
7.3.4 Safety Requirements	87
7.3.4.1 Interlocking in the Control System	87
7.3.4.2 Safety Requirements on Video Management7.3.4.3 Failsafe-PLC	88
7.3.4.3 Failsafe-PLC	89
7.3.4.4 Emergency Stop	89
7.3.5 Redundancy	92
8 SECURITY	93
8.1 Introduction to Security	93
8.2 Perimeter Protection	93
8.3 Cybersecurity	93
8.4 System Hardening	94
8.5 Traffic Monitoring	94
8.5.1 Control of Vessel Traffic	94
8.5.2 Camera Ship Recognition in Case of Collisions	94
8.5.3 Control of Local Road and Pedestrian Traffic	95
9 TRAFFIC MANAGEMENT	96
10 INFORMATION MANAGEMENT	97
10.1 Value of Information	97
10.2 (Big) Data Analysis	97
10.2.1 Data Collection Useful for Traffic Management	97
10.2.2 Water Level Management Data Collection	98
10.2.3 Data Collection Useful for Asset Management	98
10.2.4 Health Monitoring	98
11 FUTURE CONSIDERATIONS	100
11.1 Increase of Data Collection	100
11.2 Vision: Where to go to?	100
12 REFERENCES	101

LIST OF FIGURES

FIGURE 1: THE PRINCIPLES OF THE GOLDEN CIRCLE	9
FIGURE 2: SUMMARY OF THE RELATIONS DEPENDING ON THE DEGREE OF AUTOMATION AND	
OPERATION	26
FIGURE 3. PROCESS DEFINITION FOR REMOTE OPERATION	34
FIGURE 4. PROCESS DEFINITION FOR MAINTENANCE AND ASSET MANAGEMENT	35
FIGURE 5: CONTROL ROOM DESIGN (REFERENCE: WSV, GERMANY)	39
FIGURE 6: EXAMPLE OF AN OPERATOR DESK AND INTERFACES	40
FIGURE 7: TESTING OPERATOR DESKS (REFERENCE: WSV, GERMANY)	41
FIGURE 8: OPERATOR CHAIR AND DESK (REFERENCE: PORT OF ANTWERP)	41
FIGURE 9: COMPARING DIFFERENT LEVELS OF DETAIL FOR SCADA REPRESENTATION	43
FIGURE 10: 3-D MODELLING AND VALIDATION OF CAMERA POSITIONS (TALLINN HARBOUR BRIDGE)	44
FIGURE 11: EXAMPLE OF CAMERA LOCATIONS REPRESENTED ON A SCADA-SCREEN	44
FIGURE 12: EXAMPLE OF A DUAL WORKSTATION (PORT OF ANTWERP PROTOTYPE)	45
FIGURE 13: SCREEN SET-UP FROM A DUAL WORKSTATION (PORT OF ANTWERP PROTOTYPE)	46
FIGURE 14: EXAMPLE OF THE STANDARD SCADA APPLICATION WHICH IS A SCHEMATIC	
REPRESENTATION OF THE OBJECT IT SERVES (PORT OF ANTWERP PROTOTYPE)	46
FIGURE 15: TYPICAL CONTROL ROOM LAY-OUT IN FLANDERS	47
FIGURE 16: CONTROL ROOM STANDARDISATION IN FLANDERS - DESK SIMULATOR	48
FIGURE 17: AN EXAMPLE OF THE STANDARD SCADA SYSTEM FOR LOCKS USED BY THE GERMAN W	/SV
	49

FIGURE 18: REMOTE TRAFFIC CENTRE MAASBRACHT FOR BRIDGES, LOCKS, DAMS AND PUMPING	
STATIONS (INDOOR)	50
FIGURE 19: REMOTE TRAFFIC CENTRE MAASBRACHT FOR BRIDGES, LOCKS, DAMS AND PUMPING	
STATIONS	51
FIGURE 20: CONCEPT OF A DUAL OPERATOR DESK ENVISIONED BY THE US ARMY CORPS OF	
ENGINEERS	51
FIGURE 20: OPERATIONS CONTROL CENTRE (MAISONNEUVE)	52
FIGURE 21: MAISONNEUVE OPERATIONS CONTROL CENTRE LAY-OUT	52
FIGURE 22: NIAGARA OPERATIONS CONTROL CENTRE LAY-OUT	53
FIGURE 24: DECISION TREE FOR APPLICATION EU GUIDELINES MACHINE SAFETY	56
FIGURE 25: POSSIBLE SET-UP CONTAINING THE AUTOMATION SYSTEMS NECESSARY FOR REMOTI	
CONTROL	60
FIGURE 26: POSSIBLE APPROACH FOR THE SYSTEM ARCHITECTURE FOR REMOTE OPERATION	61
FIGURE 27: REFERENCE PROJECT 'SCUO V2'	78
FIGURE 27; VESSEL SELF SPOTTING SYSTEM INSTALLATION	79
	-
FIGURE 28: HANDS-FREE MOORING SYSTEM USED BY THE ST. LAWRENCE SEAWAY MANAGEMENT	
CORPORATION	81
FIGURE 29: AWATAR SIMULATOR SET-UP	81
FIGURE 30: SCHEMATIC PRESENTATION OF THE PLC SIMULATION MODEL	82
FIGURE 31: SIMULATION SCREEN	83
FIGURE 32: PROGRAMMING SEQUENCES	83
FIGURE 34: STANDARD OPERATOR DESK IN GERMAN LOC'S WITH LOCKAGE STOP AND EMERGENC	Y
STOP	90
FIGURE 35: THE SAFETY CIRCUIT AS A SENSOR-LOGIC-ACTUATOR CIRCUIT	91
FIGURE 36: HARDWIRED EMERGENCY STOP USED BY THE RHÔNE TRAFFIC MANAGEMENT CENTRI	Ξ.
FRANCE	[′] 91
	-

LIST OF TABLES

TABLE 1: PREVIOUS PIANC REPORT	7
TABLE 2: RELATED PIANC REPORTS	7
TABLE 3: MEMBERS OF THE WORKING GROUP	8
TABLE 4: SUMMARY OF THE BENEFITS, COSTS, RISKS AND OPPORTUNITIES	12
TABLE 5: REMOTE CONTROL CENTRES AND THEIR CHARACTERISTICS (1)	22
TABLE 6: REMOTE CONTROL CENTRES AND THEIR CHARACTERISTICS (2)	23
TABLE 7: ADVANTAGES AND DISADVANTAGES OF DIFFERENT METHODS OF OPERATION	27
TABLE 8: OVERVIEW OF THE DIFFERENT POSSIBLE TASKS WITH BOTH LOCAL AND REMOTE (CONTROL
OPERATION	37
TABLE 9: SUMMARY OF THE SPECIFICATIONS OF USED FONTS FOR GUI	48
TABLE 10: COMPARISON OF CHARACTERISTICS OF TECHNICAL COMPONENTS	62
TABLE 11: OVERVIEW OF THE WATER LEVEL MEASUREMENT TECHNOLOGIES AND THEIR	
SPECIFICATIONS	64
TABLE 12: MEMBERS OF THE WORKING GROUP	101