DESIGN GUIDELINES FOR INLAND WATERWAY DIMENSIONS

The World Association for Waterborne Transport Infrastructure
PIANC has Technical Commissions concerned with inland waterways and ports (InCom), coastal and ocean waterways (including ports and harbours) (MarCom), environmental aspects (EnviCom) and sport and pleasure navigation (RecCom).

This report has been produced by an international Working Group convened by the Inland Navigation Commission (InCom). Members of the Working Group represent several countries and are acknowledged experts in their profession.

The objective of this report is to provide information and recommendations on good practice. Conformity is not obligatory and engineering judgement should be used in its application, especially in special circumstances. This report should be seen as an expert guidance and state-of-the-art on this particular subject. PIANC disclaims all responsibility in the event that this report should be presented as an official standard.
TABLE OF CONTENTS

TABLE OF CONTENTS .. 1
LIST OF FIGURES ... 4
LIST OF TABLES ... 6
ACKNOWLEDGEMENT .. 10

1 INTRODUCTION .. 11
1.1 Motivation .. 11
1.2 Objective According to the Terms of Reference .. 12
1.3 Guidance Notes to the Reader of the Report .. 13

2 TECHNICAL INFORMATION .. 15
2.1 Classification of Commercial Vessels for Waterway Design 15
2.1.1 Waterway Design: Define Fairway Class and Reference Vessel 17
2.1.2 Engine Power and Steerability of Reference Vessels ... 17
2.1.3 Differences to the PIANC MarCom WG 121 Approach ... 18
2.2 Waterway Infrastructure Aspects .. 18
2.2.1 Canals .. 19
2.2.2 Canalised Waterways .. 21
2.2.3 Free-Flowing Waterways .. 23
2.3 Driving Dynamics for the Design .. 25
2.3.1 Vessel-Waterway Interaction in Restricted Water ... 25
2.3.2 Change of Resistance Depending on the Waterway ... 27
2.3.3 Changes in Propulsion Efficiency and in Engine Power 29
2.3.4 Effects of Size and Shape of the Waterway ... 31
2.3.5 Ship Induced Waves and Flows with its Retroactive Effects to Safety Distances 34
2.3.6 Sinusoidal Ship Course, Effect of Human Factor and High Traffic Density 36
2.3.7 Navigating Bends .. 37
2.3.8 Influence of Longitudinal Currents ... 39
2.3.9 Influence of Cross Currents .. 39
2.3.10 Groynes ... 40
2.3.11 Wind Effects .. 41
2.4 Definition and Clarification of Design Case and Data Needed 41
2.4.1 Probability of Occurrence of Waterway and Environmental Boundary Conditions 42
2.4.2 Fleet, Properties of the Design Vessel and Relevant Maneuvres 43

3 APPROPRIATE ASSESSMENT OF SAFETY AND EASE QUALITY AND ITS USAGE FOR DESIGN:45
3.1 Introduction ... 45
3.2 Simplified Safety and Ease Approach Supporting Concept Design 46
3.2.1 Parameters Influencing Waterway Design .. 46
3.2.2 Criteria for Analysing Existing Ease Quality or Choosing Appropriate Ease Categories for Design ... 47
3.2.3 Designation of Different Ease Categories ... 48
3.2.4 Waterway-Related Criteria to Analyse or Choose Ease Categories – First Rating Group ... 49
3.2.5 Criteria Related to Vessel Speed – Second Rating Group 51
3.2.6 Traffic Density Criteria – Third Rating Group ... 52
3.2.7 Matching the Criteria of the Three Rating Groups .. 53
3.2.8 Examples ... 57
3.3 Detailed Safety and Ease Approach Supporting Detailed Design 64

4 RECOMMENDED METHODS FOR WATERWAY DESIGN .. 67
4.1 Introduction to the Three Methods Approach .. 67
4.1.1 General Approach in Nautical Waterway Design .. 67
4.1.2 Contribution of the Guidelines to the Planning Process of a Waterway 70
4.1.3 Description of the Three Design Methods .. 72
4.2 Definition and Aim of the Concept Design Method .. 75
4.3 Practice Approach – Using Existing Examples .. 75
4.4 Detailed or Case-By-Case Design .. 76
4.4.1 Definition and Criteria for Detailed Design ... 76
4.4.2 Methods for Detailed Design ... 79
4.4.3 Detailed Design Through Shiphandling Simulators .. 82

5 RECOMMENDATIONS FOR SPECIAL DESIGN CASES .. 85
5.1 General Remarks and Guidance Notes on How to Use the Recommendations in Chapter 5 .. 85
5.1.1 Introduction to the Procedure ... 85
5.1.2 Determine the Necessary Quality of Driving for Design 85
5.1.3 Determine the Waterway Dimension .. 85
5.1.4 Account for Extra Widths ... 86
APPENDIX E: EXTENDED CONCEPT DESIGN – ACCOUNT FOR EXTRA WIDTHS ..228
E.1 How to Account for Extra Width for Fairways ...228
E.1.1 Outline of the Approach ...228
E.1.2 Example for Deriving Extra Widths ..230
E.1.3 Recommended Approach for Extra Widths ...232
E.2 Understanding of Safety Distances and Extra Widths ...236
E.2.1 Ship Induced Waves and Flows with its Retroactive Effects to Safety Distances236
E.2.2 Sinusoidal Ship Course and Effect of Human Factor ..246
E.2.3 Navigating Bends ..252
E.2.4 Influence of Longitudinal Currents ...263
E.2.5 Influence of Cross Currents ...265
E.2.6 Driving Close to Groynes ...271
E.2.7 Wind Effects ...278
APPENDIX F: APPLICATION OF THE GUIDELINES TO AN EXAMPLE ..294
LIST OF FIGURES

Figure 2.1: Telescopic wheelhouses ... 19
Figure 2.2: Forces on a ship sailing eccentrically 21
Figure 2.3: Meeting of two loaded vessels in a Péniche canal 21
Figure 2.4: Multiple locking of a pushed convoy in the USA 23
Figure 2.5: Inland vessel cruising in confined waters 26
Figure 2.6: Cross section parameters of the vessel and of the waterway on the German Neckar River close to Bingen [pictures Bernhard Söhngen] 30
Figure 2.7: Resistance curves in open water, shallow water, and confined water 27
Figure 2.8: Width of the waterway compared with the width of influence of the vessel ... 28
Figure 2.9: Resistance of a Campine barge in open water and in a canal 28
Figure 2.10: Vessel at a distance d off the axis of the waterway 29
Figure 2.11: Standard open water propeller diagram 30
Figure 2.12: Resistance in open water (green) and confined water (red) 30
Figure 2.13: Power needs of a Rhine vessel L=110 x B=11,40 m x T=2,80 m, in different waterways 31
Figure 2.14: Changes of speed with same depth and width on surface but different width on bottom (upper table and sketches), or with same cross section but different shape and width (lower table) 33
Figure 2.15: Encounters of a downstream sailing Convoy (185 x 11.4 x 2.8) with a 135-m long container carrying vessel (top photo) and a corresponding convoy (Photo below) on the Upper Rhine 35
Figure 2.16: Phases of a ‘meandering ship course’ as result of the unstable течение ... 36
Figure 2.17: Illustration of the extra width needed in navigating bends 38
Figure 2.18: Flow vectors at a groyne head without (upper photo) and with (lower photo) drawdown influence (pictures Bernhard Söhngen) 40
Figure 2.19: Unladen ship sailing in strong wind (blowing from the right), which is relevant in the area with low trees [BAW] 42
Figure 3.1: Influencing parameters in waterway design 47
Figure 3.2: Ease quality chart ... 56
Figure 3.3: Steps for applying the detailed S&E approach 66
Figure 4.1: General Approach in Nautical Waterway Design and steps to follow for designing inland waterways with hints about relevant Chapters and appendices ... 69
Figure 4.2: Contribution of the present guidelines to the planning process of waterway infrastructure ... 72
Figure 4.3: Extraction of Figure 4.1 concerning the contribution of Chapter 4 to the General Approach in waterway design ... 73
Figure 4.4: Detailed Flow Chart for applying the Three Methods Approach with decisions and interrelations to the general approach according to Figure 4.1 and Figure 4.3 ... 74
Figure 4.5: General recommendations and steps to follow using SHs for waterway design with special respect to Safety and Ease of navigation (abridged version of Figure D.1 in Appendix D) ... 84
Figure 5.1: Definitions in fairway dimensions of canals 87
Figure 5.2: Adaptation of the bow ship speed dependence of the bow thruster from shallow water to canals ... 97
Figure 5.3: Actual bathymetry (black) and designed profile (red, two-way narrow profile for class IV) for the straight section in Uitbergen [Fahy, 2014] ... 98
Figure 5.4: Fairway bounded by buoys (marked by arcs) at a width and depth bottleneck of the Middle Rhine close to Bingen ... 100
Figure 5.5: Existing fairway width Wf (related to vessel beam B, ordinate) in rivers and from guidelines for single-lane traffic (inland stretch) ... 106
Figure 5.6: Existing fairway width in rivers and from guidelines for two-way traffic (inland stretch) ... 107
Figure 5.7: Real-time simulations at the shiphandling simulator SANDRA of DST (Germany) for the Danube ... 110
Figure 5.8: Numerical simulation of the two-dimensional maximum flood current at the bend Kramp: bathymetry and flow velocity [Maximova, 2011] ... 111
Figure 5.9: Comparison of the swept path ratio of a class IV vessel in the Kramp with fairway width to ship’s beam ratios of other rivers and waterway bend evaluations ... 112
Figure 5.10: Definition of the fairway parameters at bridge openings 114
Figure 5.11: Detailed Design for a bridge passage in between two bends at Dendermonde on the Upper-Sea-Scheldt [Richter et al., 2010] ... 119
Figure 5.12: Detailed Design for a bridge passage in Germany ... 119
Figure 5.13: Visualisation of the length LIA and width WIA of a lock approach for the Untertürkheim Lockage in the German Neckar River ... 119
Figure 5.14: Length and widths of lock approaches 121
Figure 5.15: Nautical conditions while navigating a right turn from upstream towards lock approaches on the inner and outer bend with corresponding flow velocities and drift angles (schematic) ... 121
Figure 5.16: Schematic diagram of a lock approach with crossstreamflow area ... 124
Figure 5.17: Existing situation (2013) of the lock complex with weir in Harelbeke, Belgium [Verwilligen, 2013] ... 125
Figure 5.18: Design of a new lock in Harelbeke (downstream side), comparison of three design alternatives (brown, blue, green) and the nautical best design (green alternative of the three), which uses a guiding wall
between the weir and the approach channel of the lock (right) [Verwilligen, 2013]. Nevertheless the blue alternative was chosen as the best design for all design parameters.

Figure 5.19: Definition of a junction according to the Dutch guidelines [Rijkswaterstaat, 2011] .. 126
Figure 5.20: Schematic diagram of a special junction, an oblique harbour entrance .. 127
Figure 5.21: Real time simulation study for the design of a junction limited by bridges for a class Vb push convoy .. 129
Figure 5.22: Plan view of a turning basin according to German guidelines ... 130
Figure 5.23: Kinematics of a free turn at rest of a vessel with a fully prismatic underwater body (worst case concerning the position of the pivot point), using the stern rudder only (upper sketch) and realistic free turn with bow thruster support (picture below) .. 130
Figure 5.24: Turning manoeuvre sailing downstream on the German Elbe River to enter the connection canal (between Elbe and Elbe-Havel-Canal) at Niegripp .. 131
Figure 5.25: Kinematics of a fixed turn, left using 'body contact' and right using a mooring rope 133
Figure 5.26: Example of a turning basin at Mulhouse-Ile Napoléon in France .. 135
Figure 5.27: Example of the turning basin at ile Napoléon Port in France ... 136
Figure 5.28: Example of a turning basin on the Canal du Centre in Belgium .. 137
Figure 5.29: Real time simulation study for the passage of the Zeebergbridge (red corner) and the design of the turning basin for a class IV vessel .. 138
Figure 5.30: Definition of a berthing area ... 139
Figure A.1: Indication of the widths and heights in the Chinese guidelines ... 162
Figure A.2: Chinese lock approach .. 167
Figure A.3: Dutch canal dimensions .. 168
Figure A.4: Dutch dimensions lock approaches .. 171
Figure A.5: German canal dimensions ... 174
Figure A.6: German lock approaches ... 176
Figure A.7: German turning basin .. 176
Figure A.8: German berthing place .. 177
Figure A.9: Russian dimensions of canal lock approaches .. 179
Figure A.10: Russian dimensions of river lock approaches ... 179
Figure A.11: Dimensions of U.S. approach guard wall widths ... 184
Figure B.1: Cross sections of the Waal River, The Netherlands .. 191
Figure B.2: Cross sections of the River lJssel (upper part) .. 192
Figure C.1: General approach to consider the Safety and Ease of Navigation ('S&E') quality for design, both using the simplified and detailed approach in case of a waterway reach to be improved .. 197
Figure C.2: Extended part of Figure 4.1, concerning usage of the detailed approach for assessing the Safety and Ease of navigation quality for design and reference cases ... 203
Figure C.3: Steps for choosing an appropriate index system for assessing a detailed S&E score 204
Figure C.4: Example for assigning index values to ease designations of Table C.1 analogous to the ease quality chart, Figure 3.2 ... 209
Figure C.5: Visualisation of the transformation from a measured value to an appropriate S&E index by example of the approach used for Figure C.4 .. 210
Figure D.1: General recommendations and steps to follow using SHs for waterway design with special respect to Safety and Ease of navigation—example concerning a waterway to be improved (abbreviations: 'pnc': present nautical condition, 'vrc': verification reference case, 'erc': ease reference case, 'dc': design case, 'S&E': Safety and Ease of navigation) ... 224
Figure E.1: Summary on how to determine the necessary fairway F with the Extended Concept Design (example two-way) ... 231
Figure E.2: Calculated wave field (vessel removed for better illustration) of a fully loaded GMS .. 237
Figure E.3: Encounter of two 185 m long and 2.8 m deep draught convoys, sailing close to the critical speed at field tests in the Main-Danube Canal (BAW) ... 238
Figure E.4: Drive of a fully loaded 185-m long convoy close to the left bank at critical speed during field tests in the Main-Danube Canal ... 239
Figure E.5: Look from below on a fully loaded vessel, sailing in a German standard canal just after the stern-stern passage of an encounter (DST) .. 239
Figure E.6: Scale model tests (DST) on the encounter of a GMS (view direction) with a Europe Ship 240
Figure E.7: Snapshot of calculated flow velocities and waves of a Europe ship, sailing close to Vcm, as an observer, standing on the bank slope, would see them .. 240
Figure E.8: Waves from a passenger boat, sailing at a distance of about 100 m to the bank ... 241
Figure E.9: Superposition of diverging waves, generated at the bow and stern of an individually sailing push boat, which lead to maximum wave heights at the bank ... 242
Figure E.10: Calculated surfaces of equal flow velocity magnitude relative to the embankment of a GMS (T=2.8 m), using the full power of a strong bow thruster (500 kW, outlet dimensions 0.8 m x 0.8 m) ... 243
Figure E.11: Encounter of two fully laden convoys in German standard rectangular canal profile in the end phase with very small net distance between both vessels .. 245
Figure E.12: Combined encounters and overtaking manoeuvres ... 245
Figure E.13: Reverse drive of the Class IV vessel MS Hella in a small branch of the Neckar River at Heilbronn ... 246
Figure E.14: 3-D numerical calculations for assessing the forces and moments on the underwater body of a Class Va vessel ..247
Figure E.15: Selected results of BAWs evaluation of field data concerning extra widths Δb due to instabilities and human factors ..248
Figure E.16: Convoy traversing the Rhine from the right-hand bank side of the previous left curve to the outer bank of the next right turn ...252
Figure E.17: Geometric relations with definition for a ship navigating in a bend ...253
Figure E.18: Dependence of the crosswise force coefficients on T/h for a Class Va vessel while drifting with β = 15° ..254
Figure E.19: Observed relative (related to L) extra width in curves Δb as a function of the ratio of the ship length L and the average curve diameter R ..255
Figure E.20: Extra width in curves, using the ‘Pythagoras-Approach’ for moderate and high values of c1 (relative position of the pivot point) ..256
Figure E.21: Flow lines, starting from bottom right, traversing the river and digging down top left, running in the opposite direction from the outer to the inner bend (Rhine-km 553.5, Betteck, 3-D calculations of BAW) ...257
Figure E.22: Frequency distribution of ship speeds measured in bends on various rivers (HL 82-85 refers to the values measured during model tests with slow-moving pushed convoys on the Mississippi) (BAW) ...259
Figure E.23: Calculated relative positions of the turning point cr for a Class Vlb vessel (B=22.8m, L=185 m) for different T/h and specific vessel speeds ..260
Figure E.24: Field data of three differently loaded Class Vlb vessels (increasing T/h top down), sailing the Danube River downstream in a narrow right bend between Deggendorf and Vilshofen at a water level close to mean water ..262
Figure E.25: Large tow sailing downstream in a sharp right turn of the Mississippi River close to Vicksburg with visible large-scale turbulences ...263
Figure E.26: Class Vb container vessel (135 x 14.2) entering Karlsruhe harbour from downstream ..265
Figure E.27: Flow fields at three inlet structures ..267
Figure E.28: Definition of variables used for assessing extra widths due to cross currents ..269
Figure E.29: Strongly trained Rhine River close to Karlsruhe (upstream view), showing strong turbulent interactions (cross flows especially at the heads of the spur dikes and large eddies alongside the interaction zone on the left) ..271
Figure E.30: Sedimentation patterns of different groyne fields to be seen on the German Danube between Straubing and Vilshofen at very low water ..273
Figure E.31: Extra width for sailing close to groyne fields upstream ..275
Figure E.32: Extra widths at groynes for the same conditions as in Figure E.31, downstream ..275
Figure E.33: Schematic sketch of groyne fields with indicated velocities and definition of main variables for the approach to assess extra widths due to the natural flow field ..276
Figure E.34: Schematic sketch of groyne fields and definition of main variables concerning the consideration of drawdown-induced dewatering with corresponding cross flow velocities ..277
Figure E.35: Empty motor vessel pushed towards the south bank of the German Hunte River (coastal stretch) at high wind speed (April 2014, Nordwest-Zeitung online) ..281
Figure E.36: Visualisation of wind directions and speeds together with forces on the underwater body of the vessel while drifting against the wind ..282
Figure E.37: Wind statistic of the German city of Angermünde (near to Berlin) in terms of a Wind Rose (12 sectors 30° each), dealing with probabilities (in %) and corresponding wind speeds (in m/s) on the basis of hourly average wind observations, measured in 10 m height (2002-2011) ..283
Figure E.38: Vertical profile of the time averaged wind velocity v(z) with definition of the almost undisturbed wind velocity vA in height zA (boundary layer) ..285
Figure E.39: Wind gust factor at 10 m height, depending on the averaging time according to the Spanish guidelines ROM 0.4-95 for different terrain roughness types (Table E.6) ..286
Figure E.40: Graph for assessing the relative extra width due to crosswind (ΔFw/L) for a steady state conditions driving vessel ..289

LIST OF TABLES

Table 2.1: CEMT/ITF-1992 classification ...15
Table 2.2: Dutch classification 2011 ..16
Table 2.3: Chinese classification ..16
Table 2.4: Russian classification ..17
Table 2.5: Characteristics of reference motor cargo vessels ..17
Table 2.6: Thresholds of appearance of restricted water effects ..27
Table 2.7: Changes of critical speed depending on banks and width of the waterway ..33
Table 2.8: Check list of waterway properties and environment high-volume increment for class Vla and Vlb waterways (m) ..43
Table 2.9: Checklist concerning fleet, vessel properties and manoeuvres ..44
Table 3.1: Designation of ease quality with examples of existing waterways ...49
Table 3.2: Waterway related criteria for choosing appropriate ease categories (Design case) – 1st rating group..50
Table 3.3: Assignment of ease of navigation categories to the vessel speed over ground ..52
Table 3.4: Assignment of ease of navigation categories for the design case to traffic density of commercial navigation..52
Table 3.5: Compilation of the simplified S&E approach: blank forms for assessing the average (total) ease scores (design and analysis case) ...54
Table 3.6: Assessment of the existing ease quality (analysis case) on the German Neckar ..58
Table 3.7: Assessment of the necessary ease quality (design case) on the German Neckar River ..60
Table 3.8: Analysis of the present state of the Lower Seine River ...61
Table 3.9: Assessment of the design requirements of the Lower Seine River ...62
Table 3.10: Assessment of the present state of the Freycinet network ...63
Table 3.11: Assessment of the design requirements of the Freycinet network ...64
Table 4.1: Criteria indicating a detailed study (left column) and the use of ship simulation techniques (right column) in the design process ..77
Table 4.2: Overview of established methods of performing a detailed study for waterway design with some advice for application ..78
Table 5.1: Canal fairway dimension in existing guidelines as a factor of ship dimension for deep-draught vessels (no relevant wind increments), straight sections and no relevant cross flow velocities ..88
Table 5.2: Concept Design Method for canals (‘basic dimensions’ for straight sections) ..89
Table 5.3: Minimum bend radius for design in existing guidelines ...90
Table 5.4: Rough estimates of relative (with regard to vessel beam) extra widths or rather safety distances \(\Delta \text{Beam}/B\) for a vessel speed of \(0.9 \cdot V_{\text{mp}}\). Extended information see Table E.3 ..92
Table 5.5: Dutch high traffic density increment for classes Vla & Vlb ..93
Table 5.6: Check list (incomplete) concerning the analysis of existing fairway widths in a river for the design step (2) in Figure 4.1 ..99
Table 5.7: Conclusions drawn from the evaluation of practice examples for free-flowing rivers ...109
Table 5.8: Final averaging over the river sections under investigation ..110
Table 5.9: Beam Multiplier minimum bridge openings in canals (basic fairway width) *) US normal: poor ATN, reduced: extensive ATN ..115
Table 5.10: Beam Multiplier minimum bridge openings in rivers (fairway width) *) US normal: poor ATN, reduced: extensive ATN ..115
Table 5.11: Minimum value bridge opening and safety margin in canals, straight section (\(H = \) fixed height of the vessel above design water level, air draught) - basic widths in accordance with Table 5.9 ...116
Table 5.12: Practice data for bridge opening ratio ...118
Table 5.13: Lock approach (LA) according to the definition in Figure 5.13. as a factor of ship dimension *(from top of wall to lock entry), (s) single lock, (d) double lock ...122
Table 5.14: Minimum value as factor of ship dimensions for lock approaches, straight canals or rivers with very low flow velocities in almost straight reaches, single-lane traffic during entry and exit (definition see remarks below Figure 5.13) ...123
Table 5.15: Minimum width of turning basins (including safety allowances) as a factor of ship dimension from existing guidelines ...132
Table 5.16: Berthing places as a factor of ship dimension (add fender width) for straight channel sections without significant flow impact ...139
Table A.1: Belgian canal dimensions ...161
Table A.2: Chinese canal dimensions in rivers including bank clearance and wind for straight sections ..163
Table A.3: Chinese canal dimensions (coverage ratio \(n\) no less than 6 or 7 with high cross flow) ...163
Table A.4: Chinese maximum allowable velocity at water surface near the head of the dividing dam (approach navigation structures) ...164
Table A.5: Extra increment due to cross flow for crossing structures (bridges) ..165
Table A.6: Extra width increment due to cross flow for bridge openings ...166
Table A.7: Chinese turning basin ..167
Table A.8: Dutch minimal canal dimensions ..168
Table A.9: Dutch depths and wind increments ..169
Table A.10: Dutch high traffic density increment for classes Vla & Vlb ...170
Table A.11: Dutch bridge openings and headroom for fixed bridges ..170
Table A.12: Dutch bridge openings for movable bridges ...171
Table A.13: Dutch dimensions lock approaches (including all increments for example due to wind) ...172
Table A.14: French canal dimensions ..173
Table A.15: French bridge opening (wind and bank clearance included) ...173
Table A.16: German canal dimensions (Classes Vla & Vlb) including wind and bank clearance ..174
Table A.17: Basic clearance electric power transmission lines ...175
Table A.18: Extra clearance electric power transmission lines ..176
Table A.19: Russian bridge opening ...178
Table A.20: Fairway width design Criteria (inland water navigation) [USACE, 1980], including wind implicitly ..182
Table A.21: Beam Multipliers for Horizontal Clearances under Bridges for single-lane traffic in straight reaches without cross-currents [USACE, 2011]..183
Table A.22: Beam multipliers for horizontal clearances under bridges for two-way traffic in straight reaches without cross-currents [USACE, 2011]..183
Table A.23: Optimum Design Ratios for Guard Wall Areas [Stockstill et al., 2004]..184
Table B.1: The Chinese fairway dimensions in use ..187
Table B.2: The Danube fairway dimensions in use ..187
Table B.3: The Seine fairway dimensions in use ..188
Table B.4: The Rhine river system dimensions in use (Rhine Commission)..189
Table B.5: Fairway dimensions of the Mississippi River ..190
Table B.6: Guidelines minimal width of fairway at bottom Boven IJssel (OLR – agreed lowest water level)...192
Table B.7: Bridge opening ratio, two-way ..193
Table B.8: Width of lock approach ratio ..194
Table C.1: Proposal of selected characteristic values from ship handling simulations, defining the difficulty of a driving situation, corresponding rating groups and proposals on how to weight the different criteria according to the approach from Iribarren (2015)..206
Table C.2: Approach analogous to Table C.1 proposed by Söhngen (2015 a) for choosing characteristic values defining the nautical difficulty ..206
Table C.3: Some examples of the approach proposed by Gronarz (Appendix F) for choosing characteristic values defining the nautical easiness in terms of ‘reserves’..207
Table C.4: Scaling parameters, physical causes and order of magnitude of safety distances s^* in terms of ship beams B [VBW, 2013 or BAW, 2016], which can be used as length scales L_c for making characteristic values from simulations dimensionless ..207
Table C.5: Characteristic numbers, which can be roughly related to ease categories A, B and C of the simplified S&E approach and to an ease quality far below C..208
Table D.1: Present application boundaries of ship simulation software used for inland waterway design218
Table D.2: Minimising modelling inaccuracies in inland waterway design by using the principle of comparative considerations..220
Table D.3: Application of the NASA Task Load Index to assess the ‘work load’ of the pilots in case of field investigations and ship handling simulations. Take the first table to assess the scores of each criterion, and the second table for comparing the criteria one below the other to end up with weighting factors for the first table..222
Table E.1: General information for applying the Extended Concept Design concerning the type of increments and whether or not they are included in the basic widths ..229
Table E.2: Individual extra widths to apply the Extended Concept Design concerning fairway design in canals, rivers and for bridge openings ..235
Table E.3: Rough estimates of relative (with regard to vessel beam) extra widths $\Delta b_{\text{inst}}/B$ due to ship-waterway interaction ..244
Table E.4: Rounded calculated values of extra width due to instabilities Δb_o of the vessels course and human factors ..250
Table E.5: Rounded proportionality factors c_C (equals to $0.5c_C^2$ for $c_C \leq 1$ and $c_C - 0.5$ for $c_C > 1$, c_C = relative positions of the pivot point) in the approximation equation for assessing the extra width in curves $\Delta b_{\text{curve}} = c_C L^2/R \leq L$ (R = average curve radius) ..261
Table E.6: Coefficients of the empirical wind profile according to the type of the wind approach surface ..284
Table E.7: Wind gust parameter g from Spanish guidelines ROM 0.4-95, depending on the averaging time $t_{\text{averaging,gust}}$ basing on an observation time of 10 minutes (according to the Beaufort definition) ..286
Table E.8: Rounded relative (related to vessel overall length L) extra widths c_W due to drifting against the wind ..290
Table E.9: Proposal to use the wind increments $\Delta F_{W,\text{ASL}}$ from Table E.8 (S&E A, single-lane) for other Safety and Ease of navigation qualities and other driving situations, leading to ΔF_{W}, which is the sum of wind increments of e.g. 2 vessels and increased interaction allowances ..292