Assessment of the internal stability of a dam core

By: Marc Smith Eng. Ph.D.
Dam Safety Division

31 August 2012
Context

Hydro Québec (Canada) is a public utility which operates more than 400 embankment dams

Assessment of internal stability of soils (impervious core) is of utmost importance for dam owners

Future projects

Existing structures
(after seepage detection investigations?)
Description of dam

[Diagram showing a dam with a height of 171 m]

Percent passing by weight (%)

Mean grain size distribution

95% of results

Regraded
Internal stability assessment methods

Use of methods based on geometry of grain size distributions (construction control data)

Kenney and Lau (1985, 1986) : shape of grain size distribution curve

Wan and Fell (2008) : diameter ratios

Lafleur (1999) : specific tests

Results compared to field monitoring data to judge representativeness
Kenney and Lau (1985, 1986)

Method developed using sandy soils

Sample vibration and high seepage velocities

Unusual conditions for a dam core
Comparison of slopes of coarser and finer fractions of a soil

Developed for widely graded silt-sand-gravel soils
Specific tests for northern Québec tills

Internally stable (fraction passing 40 mm) when fines content (< 0.08 mm) is greater than 12%
Representativeness of results

Widespread instability of dam core
+ adequate downstream filter = increase in core piezometric levels
Representativeness of results

Widespread instability of dam core + adequate downstream filter = decrease in seepage

Widespread instability of dam core + inadequate downstream filter = increase in seepage
Conclusions

Assessment of an existing dam: consider monitoring data and applicability of methods

Difficult to compare on a common basis the various laboratory testing procedures and instability criteria

Interactions of geometric, hydraulic and mechanical susceptibilities to internal stability have to be considered in assessments and research
Conclusions

Biggest challenge: considering scale effects and variability in in situ soil properties

from Göltz (2008)