Offshore Wind Energy Foundations Geotextile Sand-Filled Containers as Effective Scour Protection System

Karsten Peters / IMS Ingenieurgesellschaft mbH – Hamburg, Germany Katja Werth / BBG Bauberatung Geokunststoffe – Espelkamp, Germany

- 1. Motivation. Why Scour Protection? Processes and Terms of definitions
- 2. Scour Protection & Materials Methods, geotextile Containers GSC
- 3. Design Fundamentals Efficiency, hydraulic stability
- 4. Practical experiences GSC as scour stabilization
- 5. Conclusion

Motivation: Offshore Wind Turbine Foundations

Challenging Renewable Energy

EWEA target for offshore wind energy until 2020: 8,000 to 11,000 foundations (until 2030: 45,000 OWTs)

Unprotected pile (1978: Model tests by Zanke)

$$S = 1.3 \times D_{pile}$$

(± 0.7 standard deviation) Fredsøe & Sumer, 2002

- Mainly marine sandy bottom: Avoiding scouring
- Offshore maintenance and repair works are expensive

Unprotected pile (1978: Model tests by Zanke)

$$S = 1.3 \times D_{pile}$$

(± 0.7 standard deviation) Fredsøe & Sumer, 2002

- Mainly marine sandy bottom: Avoiding scouring
- Offshore maintenance and repair works are expensive

Unprotected pile (1978: Model tests by Zanke)

$S = 1.3 \times D_{pile}$

(± 0.7 standard deviation) Fredsøe & Sumer, 2002

- Mainly marine sandy bottom: Avoiding scouring
- Offshore maintenance and repair works are expensive

Unprotected pile (1978: Model tests by Zanke)

$$S = 1.3 \times D_{pile}$$

(± 0.7 standard deviation) Fredsøe & Sumer, 2002

- Mainly marine sandy bottom: Avoiding scouring
- Offshore maintenance and repair works are expensive

Protected pile with Geotextile Sand-filled Containers

(Offshore Met Mast scour protection since 7 years in service, d = 20 m)

Side-Scan-Sonar Offshore Met Mast "Amrumbank West" / North Sea:

- Protected pile (\emptyset = 3.50 m)
- 450 pcs. Geotextile Sand-filled Containers (GSC) made from Nonwoven
- random pattern around the pile at the bottom

Protected pile with Geotextile Sand-filled Containers (Offshore Met Mast scour protection since 7 years in service, d = 20 m)

Scour Countermeasure Elements

Movable bed/bottom (sandy or silt type soil is encountered and in water depths of approx. 10-25 m)

1. GSC combines filter and armour in one element

- 2. High performance thick needlepunched nonwovens for filtration, robustness and abrasion resistance
- 3. Straightened and simplified construction process (pre-installed)
- 4. Soft system: No risk of damages for cable devices
- 5. Flexible system: high adaptability to bottom / bed movement actions
- 6. Best replication of natural bottom

No additional granular layer required!

- 1. GSC combines filter and armour in one element
- 2. High performance thick needlepunched nonwovens for filtration, robustness and abrasion resistance
- 3. Straightened and simplified construction process (pre-installed)
- 4. Soft system: No risk of damages for cable devices
- 5. Flexible system: high adaptability to bottom / bed movement actions
- 6. Best replication of natural bottom

Main load case: filling and installation phase!

BAUBERATUNG GEOKUNSTSTOFFE

Geotextile scour protection with GSC

- 1. GSC combines filter and armour in one element
- 2. High performance thick needlepunched nonwovens for filtration, robustness and abrasion resistance
- 3. Straightened and simplified construction process (preinstalled)
- 4. Soft system: No risk of damages for cable devices
- 5. Flexible system: high adaptability to bottom / bed movement actions
- 6. Best replication of natural bottom

- 1. GSC combines filter and armour in one element
- 2. High performance thick needlepunched nonwovens for filtration, robustness and abrasion resistance
- 3. Straightened and simplified construction process (pre-installed)
- 4. Soft system: No risk of damages for cable devices
- 5. Flexible system: high adaptability to bottom / bed movement actions
- 6. Best replication of natural bottom

- 1. GSC combines filter and armour in one element
- 2. High performance thick needlepunched nonwovens for filtration, robustness and abrasion resistance
- 3. Straightened and simplified construction process (pre-installed)
- 4. Soft system: No risk of damages for cable devices
- 5. Flexible system: high adaptability to bottom / bed movement actions
- 6. Best replication of natural bottom

Requirement: Deformation capability → reached by NP NW (needle-punched nonwovens)

- 1. GSC combines filter and armour in one element
- 2. High performance thick needlepunched nonwovens for filtration, robustness and abrasion resistance
- 3. Straightened and simplified construction process (pre-installed)
- 4. Soft system: No risk of damages for cable devices
- 5. Flexible system: high adaptability to bottom / bed movement actions

6. Best replication of natural bottom

Source: Ingenieurbüro Mohn

Why Scour protection? — Scour Protection — Design — Practice — Conclusion

Basic Design Rules

Required GSC fill volume → **sufficient weight of GSC**

Model scale 1:17

Rule of thumb for OWT scour protection: "As large as necessary, as small as possible"

Natural scale 1:1

Basic Design Rules

- Required GSC fill volume → sufficient weight of GSC
- Model scale: 1:17 $H_S = 10.8m$, $T_P = 13.8s$, d = 37.5 m, Regular waves and JONSWAP spectra No tidal currents

Source: Wilms, Wahrmund, Stahlmann, Heitz, Schlurmann (2011)

Experimental results – GSC as scour protection (I/II)

- Required fill volume → sufficient weight of GSC
- Location: 34 km NW of Sylt / North Sea
- Water depth: d = 21 m
- Pile diameter: D = 5.5 m
- Design wave: H = 12.5 m; T = 14 s
- Protection with NWSC
- Scope: Verification in model scale 1:10

Source: Sparboom et al. (2007ff) Large-scale investigations on scour protection for monopile foundations For offshore wind foundations

Experimental results – GSC as scour protection (I/II)

Required fill volume → sufficient weight of GSC

Results:

- 1. High fill rate (against internal sediment movement) provides higher hydraulic stability against displacement
- 2. Randomly placed GSC provide higher stability then regularly placed GSC
- 3. fill rate \geq 85%, weight ~ 3.5 tonnes

Experimental results – GSC as scour protection (II/II)

• Required fill volume → sufficient weight of GSC

Source: Wilms, Wahrmund, Stahlmann, Heitz, Schlurmann (2011)

Experimental results – GSC as scour protection (II/II)

• Required fill volume → sufficient weight of GSC

Source: Wilms, Wahrmund, Stahlmann, Heitz, Schlurmann (2011)

• Germany's most severe scour problems / North Sea storm flood barrage (1993)

Source: contractor group (ARGE) Eidersperrwerk

• Germany's most severe scour problems / North Sea storm flood barrage (1993)

- Question: How to install a granular filter layer 2/150 mm in 30 m depth without seggregation?
- Solution: Encapsulation into 48,000 nonwoven GSC / dumped from water surface.

• Germany's most severe scour problems / North Sea storm flood barrage (1993)

Filling (movable twin fill device)

Sources: Boskalis Hirdes & NAUE

• Germany's most severe scour problems / North Sea storm flood barrage (1993)

Installation with stone dumping vessel - daily rate = 700 NWSC

Sources: Boskalis Hirdes & NAUE

• Germany's most severe scour problems / North Sea storm flood barrage (1993)

Total amount nonwoven NWSC: 48,000 Installation period: April – August 1993 Less then a number of 10 GSC were damaged!!

Sources: Boskalis Hirdes & NAUE

• Quay wall island Sylt / North Sea / Germany (1994) – 23,000 GSC

• Quay wall island Sylt / North Sea / Germany (1994) – 23,000 GSC

Source: NAUE GmbH & Co. KG

Conclusion

- Geotextile sand-filled containers (GSC) made of
 - ... needle-punched filter nonwoven (NWSC),
 - ... filled with soil (sand) with a volume V \geq 1 m³,
 - ... installed randomly,
 - ... in a minimum two-layer-system prior to
 - ... pile driving

provide an effective scour protection system for offshore wind turbine foundations without any additional granular filter or armour layers.

Thank you for your kind attention!

For more information, please visit our booth!

kwerth@bbgeo.com

