

Lime Treatment of Soils The Friant-Kern Canal experience

G. Herrier E. Berger S. Bonelli Lhoist R&D Lhoist North America Irstea

• Earth and concrete-lined blankets

- 87 km of the canal built with Porterville clays (montmorillonitic clayey soil)
- Below water level : volumic expansion, lowering density and strength
- Above water : shrinkage, cracks, loss of shear strength and slidings

• Decisions of US Bureau of reclamation for renovation

- Problem of availability of suitable soils for replacement of failed soils
- Replacement by rock or gravel not satisfactory
- 70's : Decision for lime treatment for restoration of damaged zones
- Purpose : stabilize slopes only

TYPICAL EARTH REHABILITATION SECTION

TYPICAL CONCRETE LINED REHABILITATION SECTION

First operations : 1972

- Lime dosage according lab study : 4 % granular quicklime (CaO)
- PI reduction : 47 to 12
- Shrinkage limit increase : from 7 to 26 %
- Increase of compressive strength x20

Construction procedure

- Moving the failed material from the banks
- Partial lime treament of sticky soil to facilitate excavation
- Material moved to the canal bottom for lime spreading and mixing steps
- Mellowing overnight before placement

Placement and compaction

- 30 to 40 cm lifts on the banks
- Compaction with a vibrating sheepfoot roller, « yo-yo » fashion

- Next projects (1975-77 and 1983-84) : changes
 - Placement of the lime-treated material in horizontal lifts, « stair-step » construction
 - Bank slope trimmed
 - Mixing step in adjacent areas (flexibility of the solution)

Feedback and performance of lime-treated sections

- After 1 year irrigation : sheepfoot rollers imprints still visible
- No new slips or slides since the renovation works
- Rc on cored specimens : 2.2 MPa (after 1 month) to 3.4 MPa (after 1 year)

Fig. 8a Sheepsfoot imprints after 10 months

Testimonials

- Lime treatment induces no need for additional material, flattening of slopes...
- After 1 year service, unprotected lime-treated lining did not suffer from erosion
- gravel belt judged unnecessary (60 000 \$ cost savings)
- Lime-treated sections, initially to be recovered with concrete panels, stayed unprotected without erosion or unstability
- Lime stabilized linings needs the **less maintenance**
- No measurements of other properties (permeability), but indirects signs of waterthighting

• Other testimonials of lime applications

- Mississippi River Levees
- Earth dams
- Case of dispersive soils
- French structures, to be investigated

Country	Amount of hydrated lime	Type of test	Curing	Problem	Structure type and location where treated soils placed	Remarks	Reference
New South Wales, Australia	0.5%	Small scale dam model investigation	Not provided	Tunneling failure due to dispersion	Upstream face of the embankment	Recommended to compact the soil to 80% of max. dry density	Rosewell 1977
Canada	1%	Pinhole test	Not provided	Erosion of sensitive marine clay	Dyke's foundation	Reported that lime acted as cementing agent	Dascal and Hurtubise 1977
New Mexico	4%	Pinhole test	Minimum of (4-day curing	Internal erosion of dispersive soils	Fractured sandstone foundation of Los Esteros dam	Recommended to cure soil- lime mix in loose state at near OMC* before the placement and compaction	McDaniel and Decker 1979
Mississippi, USA	2-3%	Laboratory dispersion test	Minimum of 2-day curing	Surface erosion	Slopes of dams	Recommended to cure soil- lime mix in loose state before the compaction	Perry 1977

Thank you for your attention !

gontran.herrier@lhoist.com eric.berger@lhoist.com didier.lesueur@lhoist.com

