SIXTH INTERNATIONAL CONFERENCE ON SCOUR AND EROSION, Paris, August 27 to 31, 2012

ON THE SIGNIFICANCE OF AERATION IN THE ASSESSMENT OF EROSION OF UNLINED SPILLWAYS

Lily Wu, Bill Peirson, Steven Pells, Kurt Douglas and Brett Miller

A major group withir

A major group within

Erosion of unlined spillways – present programme

- Many spillways discharge into an unlined rock channel.
- The unlined channel is sited in rock judged to be resistant to erosion at least for high frequency floods.
- However, there have been a few spillways which have experienced unanticipated erosion.
 - Is there an unrecognised risk?
 - There has certainly been an unrecognised cost
- When do aging spillway slabs become vulnerable?

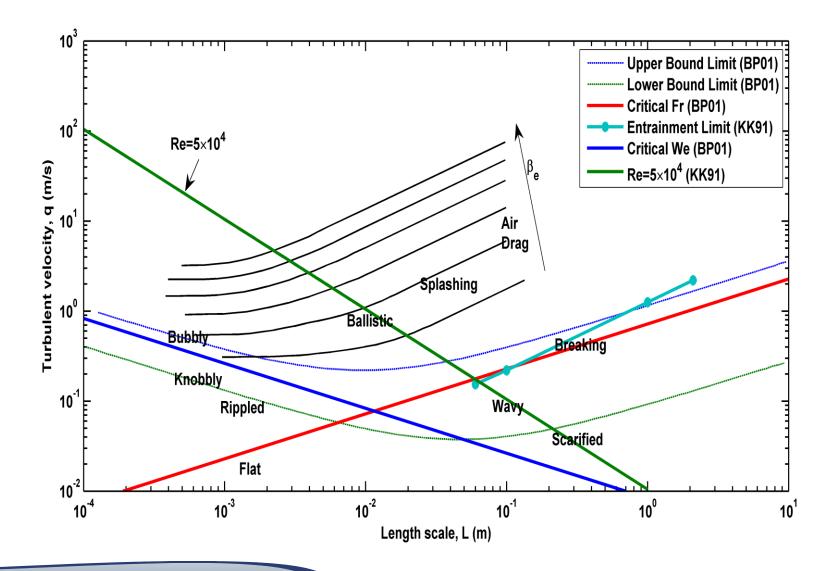
Erosion of unlined spillways Why should we worry about aeration?

- Aeration significantly reduces spillway drag.
- A review of design methods for steep rockfill spillways showed unreconciled diversity in German, British and American design approaches.
- Peirson and Cameron (2006, JHE) showed these approaches could be reconciled once aeration included.
- Placement significantly changes bulk density and stability (Peirson et al., 2008, JHE)
- How important is aeration as a source of uncertainty in the assessment of unlined channels?

UNSW | Water Research Laboratory

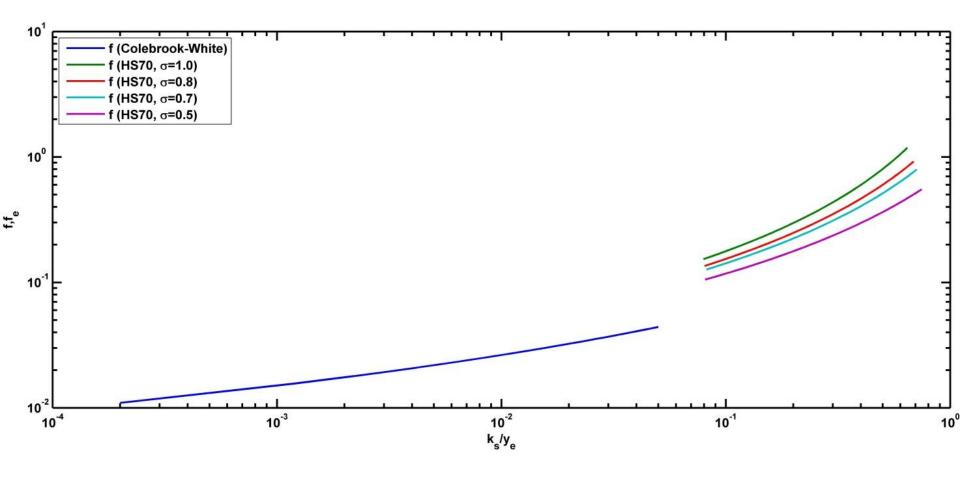
A major group within Water@UNSW

Key issue – we do not understand the hydraulics of aerated flow (Ceccio, 2010)


- Approaches are diverse:
 - Non-dimensional
 - Microphysical
- For water, Froude, Reynolds and Weber characterisations are interdependent.

W Water Research Laboratory

- Primary objective reconciliation:
 - Large-scale: Kobus and Koschitzky (1991)
 - Micro-scale: Brocchini and Peregrine (2001)
- These approaches can be reconciled


A major group within

water@ UNSW

Relative roughness

major group within

A major group within

Status of numerical modelling

- Sabbagh-Yazdi et al. [2008]
 - Flow-3D/ Reynolds/ VOF
 - Cain and Wood [1983]
 - Aeration sub-model sim. to Brocchini and Peregrine [2001]
 - point of inception, mean velocities, mean air conc. OK
- Cheng et al. [2006]
 - Fluent/ turbulent flow of mixtures.
 - single bubble size of 5mm.
 - Qualitatively cavity recirculation
 - Captured observed velocity profiles and surface pressures
- Ones to watch:
 - Gerris [Popinet, 2003] complex 3D aerated surface structure.
 - Smoothed particle hydrodynamics (SPH) instabilities?

A major group within

Conclusions and recommendations

- Good reconciliation between microphysical approaches to aeration and non-dimensionalisation of large-scale data.
- Drag on rock spillways three-fold enhancement over widely-used expressions based on pipe-test data. Emergence?
- Numerical techniques to represent aeration have been developed which have been calibrated to limited test data. Blind predictive ability has not been demonstrated.
- Large-scale physical investigations now directed at reconciling recently-developed mechanical/energetic coupling approaches for unlined spillways. Aeration will play a significant role on steep slopes.

Water Research Laboratory

