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Introduction 

• Typical examples of short cylinders are sea mines on the seabed, 

which originally installed e.g. on a plane bed, may experience a range 

of seabed conditions. 

The bed may be flat or rippled, the cylinder may be surrounded by a 

scour hole, and they may be self-buried. 

This is caused by the complicated three-dimensional flow generated by 

the incoming flow, the cylinder and the seabed.  

Moreover, ocean surface waves are short-crested where the sharpening 

of the wave crests manifests wave nonlinearity making the problem 

more complex. 

 

• Commonly used procedure for random waves is the deterministic 

method, i.e. to use the regular wave formulas by replacing all the 

wave-related quantities with their rms (root-mean-square) values and 

an appropriate characteristic wave period. 
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Some previous works 

• Whitehouse (1998), Sumer and Fredsøe (2002); reviews of scour. 

 

• Voropayev et al. (2003); burial of short cylinders under shoaling 

regular waves over a sloped sandy bottom. 

 

• Catano-Lopera and Garcia (2006, 2007); scour around and self-burial 

of short cylinders exposed to steady currents and regular waves. 

 

• Myrhaug and Ong (2009); burial and scour of short cylinders in long-

crested random waves plus current, including effects of second order 

wave asymmetry. 
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Purpose 

• To provide a practical stochastic method for calculating the burial and 

scour depths of short cylinders due to long-crested (2D) and short-

crested (3D) nonlinear random waves. 

 

This is achieved by using 

• formulas for the burial and scour depths of  short cylinders for regular 

waves plus currents presented by Catano-Lopera and Garcia (2006, 

2007) in conjunction with a stochastic approach by assuming the 

waves to be a stationary narrow-band random process. 

 

• the Forristall (2000) wave crest height distribution representing 2D and 

3D nonlinear random waves. 
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Burial and Scour in Regular Waves 
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          is the probability density function (pdf) of the non-dimensional near-bed 

wave induced velocity under the wave crest (i.e. Forristall, 2000) 

 

 

α, β estimated from the fit to the simulated wave data based on Sharma and Dean 

(1981) depending on the wave steepness                            and                            

Ursell number                 

 

This is based on the assumptions 

• the wave motion is a stationary narrow-band random process 

 

• the burial and scour formulas for regular waves are valid for  

  irregular waves (i.e. are re-arranged to be valid for individual irregular  

  waves)         
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Burial and Scour in Random Waves 
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Results and Discussion (1) 

Nonlinear to linear ratio 

 

Example of results for the burial depth for n = 10 
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Results and Discussion (2) 

Ratio between maximum equilibrium burial depth for 3D waves and 

max equilibrium burial depth for 2D waves for n = 10 
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Summary 

A practical approach for estimating the burial depth and the length of the 

scour hole for short cylinders exposed to 2D and 3D nonlinear random 

waves is provided. 

Examples of results for the burial depth, B, show that: 

•For both 2D and 3D waves 

 

        

      The difference increases as the water depth decreases and as the 

      steepness of the sea state increases. 

 

•When the water is shallow enough it appears that                            , 

      and that this difference increases as the water depth decreases. 

      This behaviour is attributed to the smaller wave setdown effects for 

      3D waves than for 2D waves; the difference, however, appears to be 

      small.  

 

•The present results should be taken as tentative, and data for 

comparison are required before any conclusion can be made regarding 

the validity of the approach.  

 

 

2 3;Dnonlin lin Dnonlin linB B B B 

3 2Dnonlin DnonlinB B
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Features of 2D and 3D Random Waves included 

in the Forristall (2000) distribution 

The wave setdown effects are smaller for 3D than for 2D waves, which is 

due to the fact that the 2nd order negative difference frequency terms are 

smaller for 3D waves than for 2D waves. 

 

Consequently:                           3 2c D c D >
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