ICSE6 2012

BED EROSION ON THE RIVER GALET AND ITS IMPACT ON RAILWAY INFRASTRUCTURE

Mark CHEETHAM
SNCF - Direction de l'Ingénierie

- Introduction
- River Galet
 - Catchment characteristics
 - History of flooding
 - Geomorphology
- Hydromorphology study
 - Ground Investigation
 - Hydraulic Model
- Conclusions

Introduction

• The Galet viaduct is situated on the railway line between the towns of Givors and Grezan in the Languedoc-Roussillon region of France (Gard, 30).

Introduction

• An inspection of the viaduct railway in 2008 following flooding in the Galet catchment identified generalised bed lowering of the Galet exposing the foundations of the structure.

- Catchment Characteristics
 - Physical characteristics
 - Surface area = 3.5km²
 - ◆ Watercourse length = 3.5km
 - Average slope 3%
 - Land cover predominantly agricultural (vineyards)
 - Rainfall
 - Rainfall intensities of 200-400mm (upto 800mm) in a few days
 - Peak intensities of 125mm in 15 minutes have been recorded
 - Flow estimation (ungauged catchment)
 - $Q_{100} = 70m^3/s$
 - \bullet = 20m³/s/km²

- History of flooding
 - 23 september 1924
 - Original structure comprised a single 3m span arch.
 - Strucure destroyed by the flood of 23 september 1924
 - Breach of 60m formed in the railway embankment
 - River bed scoured by up to 6m downstream
 - 30 september 1958
 - 22 september 1993
 - 8 september 2002
 - 1 december 2003
 - 11 september 2008
 - ?? October 2011

- River Galet
 - History of flooding
 - Profile of the River Galet post flood of 23 september 1924

- > History of flooding
 - Rebuilding of the railway viaduct in 1926
 - 3 arches each of 6m span
 - Construction of 3 weirs at the confluence of the Galet and the Rhône
 - Artificial raising of the river bed between the weirs and the new viaduct (imported fill material)

River Galet

> Geomorphology

Source: CartoEploreur

River Galet

> Geomorphology

Photograph A – Upstream of Garrigues Bridge

River Galet

> Geomorphology

 Photograph B – Reach between Garrigues Bridge and the Galet Viaduct

River Galet

> Geomorphology

Photograph C – Reach downstream of the Galet Viaduct

- Geomorphology
 - Observation of river bed changes

Viaduct pier base 2008

Viaduct pier base 2011

- > Geomorphology
 - Observation of river bed changes

Waterfall downstream of viaduct 2008

Waterfall downstream of viaduct 2011

River Galet

- > Geomorphology
 - Observation of river bed changes

Reach between Garrigues Bridge and the Galet Viaduct (bank protection placed in 2002/3)

- Geomorphology
 - Observation of river bed changes

Immediately downstream of Garrigues Bridge 2008

Following works in 2011

- Hydromorphology study
 - ➤ Ground Investigation

- > Hydraulic model
 - HEC RAS 1D
 - River length ≈1km
 - Run in steady state and sediment transport mode

- > Hydraulic model
 - HEC RAS 1D
 - River length ≈1km
 - Run in steady state and sediment transport mode
 - 3 year simulation:
 - $Yr 1 1 flood 20m^3/s$
 - $Yr 2 1 flood 40m^3/s$
 - Yr 3 1 flood $68m^3/s$

- > Hydraulic model
 - Results of sediment transport modelling (series of 3 floods of 20m³/s, 40m³/s and 68m³/s) reflect well observations made on the ground

- > Hydraulic model
 - 4 Solutions for stabilising the river bed adjacent to the Galet Viaduct were integrated into the model:
 - 1. Reconstruction of the weirs at the confluence of the Galet and the Rhône
 - 2. Construction of a single weir immediately downstream of the existing waterfall
 - 3. Construction of a series of low weirs between the existing waterfall and the confluence of the Galet and the Rhône
 - 4. Use of rock armour to protect the bed and banks of the Galet from further erosion between the existing waterfall and the confluence

Conclusions

- ➤ The River Galet is undergoing important and ongoing bed modification (lateral and vertical erosion)
- The Galet Viaduct is at risk of destabilisation without rapid intervention to control the erosion of the river bed
- ➤ Of the bed stabilisation options considered, the construction of single weir downstream of the existing waterfall is the optimal medium term option
- ➤ The proposed bed stabilising works adjacent to the Galet Viaduct will have a limited impact in terms of reducing bed erosion in the reach between the railway viaduct and Garrigues Bridge
- ➤ The reach upstream of Garrigues Bridge is at risk of erosion

