Integrated Wireless Sensing Technology for Surveillance & Monitoring of Bridge Scour

Panagiotis Michalis1, Mohamed Saafi2, Martin Judd3

1,2 Department of Civil Engineering, University of Strathclyde, Glasgow, UK
3 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK

email: p.michalis@strath.ac.uk
Scour in the UK

- Scour is identified as key risk to infrastructure arising from the long term gradual climate change *(Defra, 2012)*.

- 40% chance that at least one rail structure will fail each year due to a flood event *(JBA, 2004)*.

- Main cause of more than 130 railway bridge failures in the UK with an average cost of damage over £1 million/year *(RSSB, 2005)*.
Bridge Failures

• Scour is **inspected visually** due to technical and cost issues.
• It can cause sudden loss to a structure without apparent signs of impending failure.

The collapsed Northside bridge in Workington (Cumbria, 2009) *(source: Byrne, 2009).*

The Malahide viaduct failure (Ireland, 2009) *(source: RAIU, 2011).*
To develop a Scour Monitoring System in order to provide real-time safety surveillance.
The capacitive principle is used for the first time for scour/deposition monitoring.

Scour probe is equipped with several capacitive sensors.

Between the two rings a high frequency electromagnetic field is generated penetrating the soil outside the tube.

The signal of the sensor is a function of the permittivity of the medium surrounding the shaft.
Scour Monitoring System

![Diagram of Scour Monitoring System]

- Water level
- Sensor response over time
- Original riverbed
- Riverbed after scour
- Capacitive sensor
- Anchor system
- Not To Scale

Solar Panel for power energy harvesting
RF signal
WDAS
Concrete Pier
Flow
Tube for Data transfer
Wires data conduit
Power Cable
Wind Turbine for power harvesting

6th International Conference on Scour & Erosion
Sensor evaluation under different environmental conditions:
Sensor Evaluation

- Long term degradation test:
Sensor Evaluation

- Scour/sediment deposition test:
Sensor Evaluation

- Temperature influence:

Fresh Water

- Gravel
- Sand
- Fine Sand
- Silt-Clay

Saline Water

- Gravel
- Silt-Clay
- Fine Sand
- Sand

6th International Conference on Scour & Erosion
Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Scour/Deposition monitoring</th>
<th>Accuracy</th>
<th>Durability</th>
<th>Applicability</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diving</td>
<td>X</td>
<td>Low</td>
<td>N/A</td>
<td>Low</td>
<td>1,000*</td>
</tr>
<tr>
<td>Sonar</td>
<td>✓</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>5,000-15,000**</td>
</tr>
<tr>
<td>Automatic Sliding Collar</td>
<td>X</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>10,000***</td>
</tr>
<tr>
<td>Ground Penetrating Radar</td>
<td>✓</td>
<td>High</td>
<td>Medium</td>
<td>N/A</td>
<td>3,000-10,000*</td>
</tr>
<tr>
<td>Global Positioning System</td>
<td>X</td>
<td>High</td>
<td>N/A</td>
<td>Low</td>
<td>5,000-20,000**</td>
</tr>
<tr>
<td>Float out devices</td>
<td>X</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>3,500***</td>
</tr>
<tr>
<td>Optical sensors</td>
<td>✓</td>
<td>High</td>
<td>Medium</td>
<td>N/A</td>
<td>5,000-10,000*</td>
</tr>
<tr>
<td>Time Domain Reflectometry</td>
<td>✓</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>15,000***</td>
</tr>
<tr>
<td>Tilt/Vibration Sensor devices</td>
<td>X</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>500***</td>
</tr>
<tr>
<td>Sounding Rods</td>
<td>X</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>7,500***</td>
</tr>
</tbody>
</table>

| Capacitance Scour Probes | ✓ | High | Work in Progress | Work in Progress | 300 |

6th International Conference on Scour & Erosion
Conclusions & Next Steps

✓ High conductivity due to increased temperature and salinity was found to have contrasting effects on the sensor output amplitudes.

✓ Technique is capable of monitoring scour and sediment deposition processes under different environmental conditions.

➢ A new capacitive sensor with an improved geometry is currently being trialled in the laboratory.

➢ Development of monitoring system and implementation to a scour-critical bridge is planned.

➢ Application of the monitoring technique to offshore wind turbine foundations is proposed.
Integrated Wireless Sensing Technology for Surveillance & Monitoring of Bridge Scour

Q & A

Control Coordination & Data Processing

p.michalis@strath.ac.uk

ICSE-6

University of Strathclyde
Glasgow