ICSE-6 2012

Integrated Wireless Sensing Technology for Surveillance & Monitoring of Bridge Scour

Panagiotis Michalis¹, Mohamed Saafi², Martin Judd³

^{1,2} Department of Civil Engineering, University of Strathclyde, Glasgow, UK ³Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK

email: p.michalis@strath.ac.uk

Scour in the UK

- Scour is identified as key risk to infrastructure arising from the long term gradual climate change (Defra, 2012).
- 40% chance that at least one rail structure will fail each year due to a flood event (JBA, 2004).

 Main cause of more than 130 railway bridge failures in the UK with an average cost of damage over £1 million/year (RSSB, 2005).

Bridge Failures

- Scour is inspected visually due to technical and cost issues.
- It can cause sudden loss to a structure without apparent signs of impending failure.

The collapsed Northside bridge in Workington (Cumbria, 2009) (source: Byrne, 2009).

The Malahide viaduct failure (Ireland, 2009) (source: RAIU, 2011).

Project Aim

To develop a Scour Monitoring System in order to provide realtime safety surveillance.

Scour Detection Technique

- The capacitive principle is used for the first time for scour/deposition monitoring.
- Scour probe is equipped with several capacitive sensors.
- Between the two rings a high frequency electromagnetic field is generated penetrating the soil outside the tube.
- The signal of the sensor is a function of the permittivity of the medium surrounding the shaft.

Scour Monitoring System

Experimental Testing

Sensor evaluation under different environmental conditions:

Sensor Evaluation

Long term degradation test:

Sensor Evaluation

Scour/sediment deposition test:

Sensor Evaluation

Temperature influence:

Comparison

Method	Scour/Deposition monitoring	Accuracy	Durability	Applicability	Cost (\$)
Diving	X	Low	N/A	Low	1,000*
Sonar	✓	High	Medium	Medium	5,000-15,000**
Automatic Sliding Collar	X	Medium	High	Medium	10,000***
Ground Penetrating Radar	✓	High	Medium	N/A	3,000-10,000*
Global Positioning System	X	High	N/A	Low	5,000-20,000**
Float out devices	X	Medium	Low	Low	3,500***
Optical sensors	✓	High	Medium	N/A	5,000-10,000*
Time Domain Reflectometry	✓	High	Medium	Medium	15,000***
Tilt/Vibration Sensor devices	X	High	High	High	500***
Sounding Rods	X	Low	Medium	Low	7,500***
*Chen et al (2011)		**Lagasse et al (2009)			***Lueker et al (2010)
Capacitance Scour Probes	✓	High	Work in Progress	Work in Progress	300

Conclusions & Next Steps

- ✓ High conductivity due to increased temperature and salinity was found to have contrasting effects on the sensor output amplitudes.
- ✓ Technique is capable of monitoring scour and sediment deposition processes under different environmental conditions.
- A new capacitive sensor with an improved geometry is currently being trialled in the laboratory.
- Development of monitoring system and implementation to a scour-critical bridge is planned.
- Application of the monitoring technique to offshore wind turbine foundations is proposed.

Integrated Wireless Sensing Technology for Surveillance & Monitoring of Bridge Scour

ICSE-6