Time Development of Scour by Circular by Wall Jets in Cohesive Soils at Varied Scale

Vishwas Sharma, Undergraduate Student, IIT Kanpur, Kanpur, India

Kerry Mazurek, Associate Professor, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Background

- Stream boundaries in Canada typically a thin layer of alluvial material overlying highly consolidated, clayey sediments.
- Seeking to better understand time development of scour below culverts in clayey soils.
- Modelled as scour by circular wall jets.
Past Work - Abt (1980)

• Large scale experiments in 30.5 m long, 6.1 m wide, 2.4 m deep flume.
• One soil (58 % sand, 28 % clay, 14 % silt).
• Three culvert diameters (273, 356, or 457 mm).
• Tailwater at 45 % of diameter.
• Measure scour hole at 31.6, 100, 316, and 1000 min.
Experimental Setup
Measurements

• Stopped test at times of 10 min, 20 min, 30 min, 1 h, 2 h, 4 h, 8 h then at 8 h intervals.
• Tests run for 36 to 84 h.
• Cross-sections of scour hole taken using laser displacement meter at every interval.
Details of Experiments

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Jet Velocity (m/s)</th>
<th>Test Duration (h)</th>
<th>Clay</th>
<th>Dry Density (kg/m³)</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>PL (%)</th>
<th>LL (%)</th>
<th>τ_c (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.3</td>
<td>84</td>
<td>M370</td>
<td>1610</td>
<td>0</td>
<td>68</td>
<td>32</td>
<td>13</td>
<td>33</td>
<td>26.1</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>36</td>
<td>M370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.9</td>
<td>60</td>
<td>M370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.0</td>
<td>60</td>
<td>BSC</td>
<td>1560</td>
<td>6.5</td>
<td>69</td>
<td>24.5</td>
<td>14</td>
<td>33</td>
<td>19.9</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>84</td>
<td>BSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Growth of Scour Hole Profile along Jet Centreline

Test 2

*Eroded by mass erosion.

Abt (1980)
Typical Cross-Sections

Test 2
(after 240 min)

Abt (1980)
(after 31.6 min and 100 min)
Dimensionless Longitudinal Scour Profile

Normalized longitudinal distance, x/b

Normalized scour depth, $\varepsilon_{cl}/\varepsilon_{clm}$

Legend:
- Sample 1, 2160 mins
- Sample 2, 20 mins
- Sample 2, 480 min
- Sample 2, 2160 min
- Sample 3, 240 min
- Sample 4, 30 min
- Sample 4, 480 min
- Sample 5, 480 min
- Abt Test 28, 31.6 min
- Abt Test 36, 31.6 min
- Abt Test 35, 100 min
- Abt Test 28, 316 min
- Abt Test 28, 1000 min

Eqn. 1
Dimensionless Cross-Sections

Normalized centreline distance (y/b_w)

Normalized scour depth (ϵ/ϵ_c)

- $x=60mm$ at 10mins
- $x=40mm$ at 20mins
- $x=40mm$ at 30mins
- $x=60mm$ at 30mins
- $x=40mm$ at 60mins
- $x=20mm$ at 240mins
- $x=40mm$ at 240mins
- $x=120mm$ at 240mins
- $x=40mm$ at 480mins
- $x=40mm$ at 480mins
- $x=100mm$ at 480mins
- $x=40mm$ at 960mins
- $x=40mm$ at 2160mins
- $x=120mm$ at 2160mins
Prediction of Scales

• To use dimensionless profiles need to predict at a particular time:
 - maximum depth of scour hole along centreline.
 - half-width of scour hole at a given location.

• Assume:

\[\varepsilon_{clm} = f \{ U_o, d, \rho, \mu, \tau_c, t \} \]
- Using dimensional analysis:

\[
\frac{\varepsilon_{clm}}{d} = f\left\{\frac{\rho U_o^2}{\tau_c}, \frac{\rho U_o d}{\mu}, \frac{U_o t}{d}\right\}
\]

\[
\tau_o = c_f \rho \frac{U_o^2}{2}
\]

- Rewrite as using excess stress:

\[
\frac{\varepsilon_{clm}}{d} = f\left\{\frac{\tau_o - \tau_c}{\tau_c}, \frac{U_o t}{d}\right\}
\]
- Using multiple linear regression, find:

\[
\frac{\varepsilon_{clm}}{d} = 0.201 \left(\frac{\tau_o - \tau_c}{\tau_c} \right)^{0.613} \left(\frac{U_o t}{d} \right)^{0.0145}
\]

Adjusted \(r^2 = 0.77 \):
Conclusions

• Shape of scour hole in cohesive materials appears to similar at small and large scales.
• Developed a reasonably good relationship for maximum scour depth based on excess shear stress and dimensionless time.
• Prediction of half-width of scour hole more problematic for small scale tests in clay due to mass erosion.
Acknowledgments

• MITACs Globalink program
• Natural Science and Engineering Research Council of Canada