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Background 
Overflow and piping are the primary causes 
 of  failures of embankments such as dams, levees and irrigation ponds 

1. Overflow   70 to 80% of levee failures have been caused by overflow. 

                                            About 50% of dam breaks have been caused by overflow. 

2. Piping 
 
 40% of causes of  dam breaks 

3. Slide 

 
 a few percents  



Cases of irrigation ponds      

Irrigation ponds which failed 

due to overflow in 2004, 

Awaji Island, Japan 

Plunge pool 

Loss of vegetation 



A levee suffering overflow 
in 2004, Fukui pref., Japan 

Case of a levee      



Previous studies  

Visser (1998) and Coleman et al. (2002) investigated the breaching 
process of cohesionless embankments during overtopping failure 

Zhu (2006) focused his investigation on the failure process of cohesive 
embankments. 

Hanson et al. (2005) conducted large-scale overflow-embankment tests 
using silty sand and a clayey material, and Hanson et al. (2011) 
integrated the material properties for embankment breach. They have 
intensiely been working on the headcut advance, too. 

Numerical and theoretical studies on this topic have been reported as 
well .(e.g., Zerrouk & Marche 2004; Wang & Bowles 2006; Wang & 
Bowles 2007; Faeh 2007; Fujisawa et al. 2009) 



When does the headcut appear ? 

Coleman et al. (2002). 
Overtopping Breaching of Noncohesive 
Homogeneous Embankment, Journal 
of Hydraulic Engineering, ASCE, Vol.128 

Hanson et al. (2005). 
Physical Modeling of Overtopping 
Erosion and Breach Formation of 
Cohesive Embankments, Transactions 
of the ASAE,  Vol.48 

Cohesionless material 

Cohesive material 



Subcritical Supercritical 

c



Distance 

Tractive stress 

Embankment 

c

Subcritical region: changes in flow can 
propagate both upstream and down 
stream 

Supercritical region: changes in flow 
propagate only downstream 

Where the friction stress reaches the critical 
stress and the erosion start 

Froude-critical point 

Hydraulics – Where does the erosion starts and develop? -       



Erosion on supercritical region 

c
Erosion surface 

The upstream embankment does not change. 

Headcut 



c
Froude-critical point 

The entire profile of the embankment 
is changing 

Erosion on subcritical region 



Governing equations      
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２D shallow water equations 

Temporal change of  

erosion surface 

Horizontal axis

Water flow

Erosional surface

Embankment

u,v

z

x

h
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Finite Volume Method 

z 





p
Water pressure 

Bed shear stress (Tractive stress) 

Volume of soils eroded from unit surface area  
during unit time 

Erosion rate E = 

Erosion of soils      

 )( cE 

Erosion rate: 

Material constants: 

Applied shear stress: 

Critical shear stress: 

E





c
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Area integral 

Divergence theorem of Gauss 

: Area of ith cell 

: Length of jth edge of ith cell 

The ordinary differential equation at each cell is solved with a time-integration scheme. 

Intercell normal flux 

Finite Volume Approach      
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Placement of variables      

The conservative variables of 
the flow depth (h) and the 
flow rate (hu, hv) are stored at 
the cell centers. 

The height of the flow bed (z) 
is stored and computed at the 
cell vertices (= cell nodes). 



1. The numerical method applied to this problem is MUSCL-type finite 
volume method, using an approximate Riemann solver with the 
implementation of  a slope limiter and Surface Gradient Method (SGM). 

2. The change in flow bed height is 
simultaneously solved with the shallow 
water equations. TVD Runge-kutta scheme 
is used for the time integration .  

3. Fictitious cells were installed at the 
boundary to input natural boundary 
condition for water flow and to 
accurately compute the elevation 
change of the water bed  

Computation and stabilization     

“Riemann solver” means the computation of exact solutions for the intercell flux.  

“Slope limiter” constrains the gradients of variables on cells for stable computation. 

Boundary 

Fictitious cells 



i

j

ijij

i

i

At
SnE

U









3

1

*
1


























0

3

1

*
1

SnE
U

S
U

j

ijij

i

i

f

i

At

t

Third order TVD 
Runge-Kutta Scheme 

),()1( nnn ztL UUU 

),(
4

1

4

1

4

3 )1()1()1()2(
UUUU ztLn 

),(
3

2

3

2

3

1 )2()2()2(1
UUUU ztLnn 

),()1( nnn ztIzz U

),(
4

1

4

1

4

3 )1()1()1()2(
UztIzzz n 

),(
3

2

3

2

3

1 )2()2()2(1
UztIzzz nn 

S
GFU
















yxt 

















vh

uh

h

U


















uvh

ghhu

uh

2/22
F





















2/22 ghhv

uvh

vh

G






































fy

fx

oy

ox

ghS

ghS

ghS

ghS

00

fo SSS








1

E

t

z

Implicitly solved 

Explicitly solved 

Treatment of source term & Time integration     



Surface Gradient Method 

Edge 

a 
Edge 

b 

x 

z 

dx

dz

The conservative variables are the flow depth (h) and 
the flow rates(hu, hv) and usually these variables are 
interpolated over cells. However, the SGM interpolates 
the height of water surface  instead of the flow depth. 

*E

*E

*EE

h

Cell 

i 

dx

dz

dx

dh
 ? 

Zhou et al. (2001) : The surface gradient method for the treatment of source term in 
the shallow-water equations. Journal of Computational Physics, 168,pp.1-25. 
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Surface Gradient Method (C-property) 
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2-D simulation  - examples - 

10.0m 22.5m 

0.2m 

5.0m 
1 

2 

0.1m 

0.1m 

Initial water surface 

Inflow 
1.5[m2/s] 

x 

y 

x 

y 
z 
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Simulation result 

(Embankment profiles) 

Flow rate=1.5 m3/s/m 

Manning’s coefficient=0.019 
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Length: m

1 min.
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Input parameters: 

Boundary conditions: 

Verification 

Inflow rate=0.021 m3/s/m at the left side. 

Free outfall boundary for the right side. 

Porosity=0.395, Critical shear stress (c)=1.0Pa, =7.84E-5 m/s/Pa3/2 

 =1.5, Manning’s coefficient=0.0168 
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3-D simulation – settings - 

150cm 

30cm 

130cm 

1 

2 

2cm scar in depth 

30cm 

A scar ( initial disturbance) with the depth of 2 cm is given on the top of 
the embankment, which might induce the concentration of the overflow 
and erosion. 
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Concept on 3-D simulation 

Concentrated flow and erosion 

Input parameters: 

Boundary conditions: 
Inflow rate=0.0029 m3/s/m at the left side. 

Free outfall boundary for the right side. 

Porosity=0.395, Critical shear stress (c)=0.1Pa, =8.42E-5 m/s/Pa3/2 

 =1.5, Manning’s coefficient=0.0158 



0.2

0.4

0.6

0.8

1

1.2

1.4

0.1
0.2

0.3
0.4

0.5
0.6

0

0.1

0.2

20 sec

x coordinate: m

Dry cell

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1
0.2

0.3
0.4

0.5
0.6

0
0.05
0.1

0.15
0.2

0.25

x coordinate: m

Dry cell

50 sec

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1
0.2

0.3
0.4

0.5
0.6

0
0.05
0.1

0.15
0.2

0.25

x coordinate: m

Dry cell

100 sec

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1
0.2

0.3
0.4

0.5
0.6

0
0.05
0.1

0.15
0.2

0.25

x coordinate: m

Dry cell

600 sec

Numerical results  

20 sec 

50 sec 

100 sec 

600 sec 







Summary    

3. 3-dimensional analysis is also possible by the proposed method. The 
next step is to verify and predict the width of the erosion channel and to 
try the large scale simulation. 

1. The numerical solution of 2D shallow water  equations and the 
erosion rates of embankment material allow us to determine the 
profiles of embankments subjected to overflow erosion. 

2.Surface Gradient Method is quite helpful when the complex geometry 
of flow beds is dealt with.(We must check “C-property” that makes sure 
the balance between the flux and gravitational terms under steady 
state)  



Thank you for your attention ! 



Slope limiter 

10cm 

7cm 



Fictitious cell 

領域内 領域外 

Left side 
Right side 

centroid 

limited gradient 



Outflow Boundary 

Hydraulic 
jump 

Embankment 


