Measurement of the Variation of Shear Velocity on Bed during a Wave Cycle

Nelly Oldekop
Tallinn University of Technology
30.08.2012
Overview

- Introduction;
- Setup and procedures;
- Experimental results;
- Conclusions.
Introduction

- The shear stresses and shear velocities on the bottom of the surf zone have been studied experimentally relatively little;

- Many theoretical researches in the field of breaking wave investigation are based on the experiments made in an oscillator U – tube;

- The theoretical work assumes that the velocity distribution is logarithmic during the whole wave period;

- All works so far have dealt with shear velocity in one point only – this means that based on the experiments it is impossible to evaluate the dynamics of the shear velocity.
Setup and procedures

<table>
<thead>
<tr>
<th>T, s</th>
<th>h_b, m</th>
<th>d_b, m</th>
<th>x_b, m</th>
<th>H_0, m</th>
<th>H_0/L_0</th>
<th>H_b, m</th>
<th>H_b/d_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.106</td>
<td>0.111</td>
<td>2.90</td>
<td>0.072</td>
<td>0.012</td>
<td>0.118</td>
<td>1.06</td>
</tr>
</tbody>
</table>
PARIS 27-31 Aug, 2012
6th International Conference on Scour and Erosion
Setup and procedures

- The shear velocity is evaluated using measured near bed velocities at the lower boundary of an open channel:
 \[u^* = \sqrt{\frac{\tau_b}{\rho}} \]

- The bottom shear stress is calculated based on the measurements in the breaking waves:
 \[\tau_b = \mu \frac{du}{dy} \]

- The velocity gradient was determined based on the 0-velocity on the boundary and the velocity measured closest to the bed. The height above the bed of the first measuring point:
 \[\delta_x = \frac{4F\lambda}{\pi ED_L \cos\left(\frac{\theta}{2}\right)} \quad \text{and} \quad \delta_z = \frac{4F\lambda}{\pi ED_L \sin\left(\frac{\theta}{2}\right)} \]
Experimental results

1. Ensemble averaged variation of the bottom shear velocity in different cross-sections;
2. The variation of shear velocity on the bottom over the surf zone.
Experimental results (1)

Ensemble averaged variation of the bottom shear velocity in different cross-sections:

- Given time moment of the wave period the shear velocity is different in different cross-sections.
- Behavior over the wave cycle varies different locations in the surf zone.
Experimental results (2)

Variation of shear velocity on the bottom over the surf zone:
Experimental results (2)

Variation of shear velocity on the bottom over the surf zone:

- Time moment, when the measuring area was located entirely in the wave trough.

- The value of the shear velocity is nearly constant.
Experimental results (2)

Variation of shear velocity on the bottom over the surf zone:

- Approaching wave crest increases the values of bottom shear velocity.
- The value of shear velocity drops rapidly in the wave trough and levels after the passing of the wave crest.
- Shear velocity stays constant under the wave trough.
Conclusions

- Shear velocity under the breaking wave changes both in time and space – the common approach to describing the velocity in the boundary layer under a breaking wave is not adequate;

- U-pipe and open boundary flow experiments do not give same results – the presence of the free surface allows a rapid change of the cross-sectional area due to wave motion;

- The steady flow velocity distribution is not valid under the wave crest – this means that the mixing processes and momentum transfer are more effective in the described area.
Thank you for your attention!