

An experimental full-scale hydraulic earthen structure in lime-treated soil

Ministry of Ecology, Sustainable Development and Energy

WWW.cete-nc.developpement-durable.gouv.fr

Objectives

- Proving the feasibility of the specific lime treatment and placement procedure at an industrial scale
- Correlating the laboratory observations on lime-treated soil properties at a real scale
- Evaluating the benefits of lime treatment compared to natural soil (mechanical and hydraulic behavior)

Experimental dike with lime-treated soil

Specific characteristics of the treated soil with 2.5% quicklime :

 $\gamma d = 17.3 \text{ kN/m}^3 \text{ at WOMC} = 17.8 \%$

6th ICSE - 27th to 31st of August 2012 - Paris

Dike with natural untreated soil

 $\gamma d = 18.2 \text{ kN/m}^3 \text{ at WOMC} = 14.5 \%$

Experimental dikes construction Sept. 2011 – CER (Rouen / France)

Compaction control

- High homogeneity level of the lime-treated material
 - Water content
 - average = **19.4 %** (OMC + 1.6 %)
 - st dev = **0.7 %** (118 measurements)
 - Dry density (Variable-depth point gammadensitometer)
 - 96.7 % ρ_{d OMC}
 - objective was \geq 95 % $\rho_{d \text{ OMC}}$
 - Top layer : 98.5 % ρ_{d OMC}
 - st dev = **1.1 %** (42 measurements)

Compaction level recalculated from volumic weight measurements (gamma probe)

Measurements - 28 days & 6 months after construction

• Permeability

	Untreated	Lime-treated	
		28 days	180 days
In situ : Lefranc or Nasberg (drilled holes)	3. 10 ⁻⁹ m/s	8.10 ⁻¹⁰ m/s 1. 10 ⁻⁹ m/s	4. 10 ⁻⁹ m/s
On cored specimens Triaxial tests (CD)	1. 10 ⁻⁹ m/s	10 ⁻⁹ to 10 ⁻⁸ m/s	In progress

Measurements - 28 days & 6 months after construction

• Shear strength (triaxial tests)

	Untreated	Lime-treated	
c (kPa)	0 kPa (conventional)	61 kPa (CD, 75 days)	
φ(°)	35°	32° to 39°	

• In situ pressuremeter and dilatometer tests

	Untreated	Lime-treated	
		28 days	180 days
Pressuremeter :			
Limit pressure	0.25 MPa	3.77 MPa	4.23 MPa
Modulus	1.57 MPa	37.8 MPa	52.70 MPa
Dilatometer :			
Deformation modulus (G)	-	-	50 to 90 MPa
Young Cyclic Modulus (E)	-	-	400 to 480 MPa

Measurements - 28 days & 6 months after construction

Erosion test – Mobile Jets (in situ)

 $M_{600,lime-treated} = M_{600,untreated} / 25$

 $M_{2000,lime-treated} = M_{600,untreated} / 12.5$

I. Charles

Untreated soil (600 ml/min, 15 min)

Lime-treated (2000 ml/min, 5min)

Conclusion

- The results of the measurements on the experimental lime-treated dike in comparison with the natural dike show:
 - feasibility of producing the lime-treated soil with a high level of homogeneity
 - increase of mechanical performance parameters
 - preservation of the low hydraulic permeability level
 - increase of erosion resistance

