Numerical Scour Prediction at Choranche Dam

Erik BOLLAERT, AquaVision Engineering, Champs-Courbes 1, CH-1024 Ecublens, SWITZERLAND

and a manufacture to be and a springer and the second

Benoit BLANCHER, EDF-CIH, B.P. 176, F-38042 Grenoble Cedex 9, FRANCE

Olivier CHULLIAT, EDF-CIH, B.P. 176, F-38042 Grenoble Cedex 9, FRANCE

Erédéric LAUGIER, EDF-CIH, B.P. 176, F-38042 Grenoble Cedex 9, FRANCE

- 2. The scour problem
- **3. Prediction of long-term hydrology**
- **Geomechanical characteristics** 4.
- 5. Comprehensive Scour Model (CSM)
- 6. Calibration numerical model
- 7. Numerical scour in 2083 by fracturing
- 8. Numerical scour in 2083 by block uplift
- 9. Scour hole shape in 2083 (left bank/right bank/center)
- **10. Influence of downstream wall heightening**
- **11.** Conclusions

Main characteristics

- 30 m high arch dam
- Bourne River (French Alps)
- Pont-en-Royans (between Valence and Grenoble)
- Constructed 1947-1950
- Operated by EDF
- Founded on limestone rock
- Central overflow spillway
- Catchment area 246-446 km2
- Karstic behavior during floods
- Original design flood 500 m3/s
- New design flood 720 m3/s

The scour problem

- since 1996 : several significant flood events in the catchment area
- Scour formation in plunge pool downstream
- Re-assessment of hydrology at the site since 1948
- Assessment of scour potential for NEW DESIGN FLOOD AT THE DAM = 720 m3/s

- HISTORY = 1963 – 2003

- separate reporting of historic peak values, GRADEX
- use of types of flood events recently recorded
- determination of shape /duration historic peak events
- accumulation of total flood durations
- total hours of overflow per discharge level

1963-2003											
Hours	Cumul hours	Discharge									
-	-	720									
-	-	660									
5	0-5	550									
20	5-25	450									
42	25-67	350									
103	67-170	250									
210	170-380	200									

- FUTURE

= 1963 - 2083 (+ flood events)

- Double repetition of past 40 years of events
- Addition of several low probability events + design flood
- FUTURE total hours of overflow per discharge level

1963-2083											
Hours	Cumul hours	Discharge									
0.4	0-0.4	720									
2.6	0.4-3	660									
25	3-28	550									
75	28-103	450									
140	103-243	350									
340	243-583	250									
660	583-1243	200									

Flood durations / total duration accumulation [hours]

RIGHT BANK SCOUR HOLE

15

LEFT BANK SCOUR HOLE

- layering clearly visible but disturbed by scour
- complete fracturing of rock into large blocks
- angular/cubic shaped blocks $\simeq 0.5\mathchar`-1.0$ m diameter
- progressive destabilization of bank
- rock mass is not resisting to overflows
- clear signs of recent scour formation

- layering clearly visible
- dip towards upstream
- block thickness ~ 0.2-0.5 m
- block length ~
 - ~ 1.0 m
- block width ~ 0.5-1.0 m
- rock fissures are mostly closed
- rock mass seems scour resistant
- no signs of recent scour formation

- destruction of downstream tailpond dam along right bank
- impact rock blocks d ~ 50-100 cm
- directly related to recent scour formation along right bank
- most probably durign one of the major flood events 1996-2003

Comprehensive Scour Model (CSM)

- use of <u>dynamic pressures</u> at plunge pool bottoms
- computation of <u>transient pressures</u> inside rock mass
- resistance of rock joints against fracturing

AquaVision

Engineering Sàrl

- computation of net <u>uplift pressures</u> on single rock blocks
- resistance of blocks against <u>uplift and peeling off</u>

Quasi-3D engineering model for evaluation of <u>ultimate</u> scour depth and <u>time evolution</u> of scour formation

Mechanism	Symbol	Functioning	Validity	Output
Comprehensive Fracture Mechanics	CFM	progressive break-up of existing rock joints due to jet impact	area of turbulent jet impingement	Time evolution of scour development
Dynamic Impulsion	DI	sudden vertical ejection of rock blocks generated by pressure differences over and under the block	area of turbulent jet impingement	Ultimate scour depth
Quasi-Steady Impulsion	QSI	peeling off of protruding rock plates due to wall jet generated by turbulent impingement	area between dam and location of turbulent jet impingement	Ultimate scour depth

Rock break-up mechanisms

Model calibration

Model calibration

-

ACTUAL POOL, floods 1963-2003

FUTURE POOL, floods 1963-2083

S01		(CALIBRATION based on LEFT BANK					CALIBRATION based on LEFT BANK							CALIB	RATIO	N based on	CENTRE	/RIGHT	BANK
		Q Duration		ation	AVER	ОРТ	CONS			Q	Du	ration	AVER	ОРТ	CONS					
1		[m ³ /s]	[h]	[h cumul]	[m asl]	[m asl]	[m asl]			[m ³ /s]	[h]	[h cumul]	[m asl]	[m asl]	[m asl]					
		-	0	0	283.2	283.2	283.2			-	0	0	283.2	283.2	283.2					
	1963-	500	15	15	282.5	283.2	277.4		1963-	500	15	15	278.8	283.0	264.2					
	2003	300	100	115	281.6	283.2	277.4		2003	300	100	115	278.7	282.8	263.2					
S01		200	265	380	281.6	283.2	277.4	S07		200	265	380	278.5	282.6	261.1					
501		-	0	0	283.2	283.2	283.2	507		-	0	0	283.2	283.2	283.2					
	1963-	720	20	20	282.1	283.2	275.1		1963-	720	20	20	277.0	282.9	260.2					
	2083	300	400	420	281.4	283.2	275.0		2083	300	400	420	276.7	282.2	257.0					
		200	850	1270	281.4	283.2	274.9			200	850	1270	276.2	282.2	251.0					
		0	D	ation	AVED					0	D		AVED	OPT						
		Q	Dui		AVER	-0.2	U M				Du		AVER		-2.36					
		[m [*] /s]	[h]	[h cumul]	[m asl]	[III as1]	[III as1]			[m [*] /s]	[h]	[h cumul]	[m asl]	[m asl]						
		-	0	0	-	-	-			-	0	0	278.0	278.0	278.0					
	1963-	500	15	15	-	-	-		1963-	500	15	15	277.9	278	264.1					
	2003	300	100	115	-	-	-		2003	300	100	115	277.8	278	263.1					
504		200	265	380	-	-	-	504		200	265	380	277.6	277.9	257.2					
504		-	0	0	-	-	-	504		-	0	0	278.0	278.0	278.0					
	1963-	720	20	20	-	-	-		1963-	720	20	20	277.0	278.0	260.2					
	2083	300	400	420	-	-	-		2083	300	400	420	276.7	278.0	257.0					
		200	850	1270	_	_	_			200	850	1270	276.2	277.9	251.0					

DF

-1.60 m

ACTUAL POOL, floods 1963-2003

FUTURE POOL, floods 1963-2083

S01		(CALIBRA	ATION bas	sed on LE	FT BANK	ζ			CALIB	RATIO	N based on	CENTRE	C /RIGHT	BANK
2		Q	Dur	ation	AVER	ОРТ	CONS			Q	Duration		AVER	OPT	CONS
1		[m ³ /s]	[h]	[h cumul]	[m asl]	[m asl]	[m asl]			[m ³ /s]	[h]	[h cumul]	[m asl]	[m asl]	[m asl]
		-	0	0	283.2	283.2	283.2			-	0	0	283.2	283.2	283.2
	1963-	500	15	15	278.3	279.2	276.9		1963- 2003	500	15	15	278.3	279.2	276.9
	2003	300	100	115	278.3	279.2	276.9			300	100	115	278.3	279.2	276.9
S01		200	265	380	278.3	279.2	276.9	S07		200	265	380	278.3	279.2	276.9
501		-	0	0	283.2	283.2	283.2	507		-	0	0	283.2	283.2	283.2
	1963-	720	20	20	276.4	277.6	274.3		1963-	720	20	20	276.4	277.6	274.3
	2083	300	400	420	276.4	277.6	274.3		2083	300	400	420	276.4	277.6	274.3
		200	850	1270	276.4	277.6	274.3			200	850	1270	276.4	277.6	274.3
		0	D		AVED	-1.90 m				0	D		AVED	ODT	1 0
		Q 5 3/ 7	Dur	ation	AVER					Q Duration		AVER			
		[m [°] /s]	[h]	[h cumul]	[m asl]	[m as1]	[m ası]			[m [°] /s]	[h]	[h cumul]	[m asl]	[m asl]	[m as1]
		-	0	0	-	-	-			-	0	0	278	278	278
	1963-	500	15	15	-	-	-		1963-	500	15	15	278	278	276.9
	2003	300	100	115	-	-	-		2003	300	100	115	278	278	276.9
S04		200	265	380	-	-	-	S04		200	265	380	278	278	276.9
504		-	0	0	-	-	-	504		-	0	0	278	278	278
	1963-	720	20	20	-	-	-		1963-	720	20	20	276.4	277.6	274.3
	2083	300	400	420	-	-	-		2083	300	400	420	276.4	277.6	274.3
		200	850	1270	-	-	-			200	850	1270	276.4	277.6	274.3

0

12

18

16

14

RMS pressure fluctuations Pressure amplification in fissures 0.5 - Ervine et al. (1997) circular plunging jet 24 Franzetti & Tanda (1987) circular plunging jet rectangular slot Franzetti & Tanda (1987) circular submerged jet plunging jet 0.4 ----- May & Willoughby (1991) rectangular slot plunging jet 20 $= C^{+}_{pd} / C^{-}_{pa}$ - - Xu Duo-Ming (1983) circular oblique plunging jet - * Lencastre (1961) rectangular falling jet rectangular slot maximum curve 16 0.3 + - +- Castillo & Dolz (1989) rectangular falling jet Jia & al. 2001 submerged jet Actual circular best-fit C'p plunging jet 12 wall 0.2 rectangular plunging jet + 8 minimum curve 0.1 4 ratio at pool bottom ircular submerged ie ſ 0 11 12 13 14 15 16 0 8 9 10 12 16 18 20 0 2 10 14 Y/D Y/D_i[-] 720 500 450 350 650 550 m3/s m3/s m3/s m3/s m3/s m3/s 720 650 550 500 450 350 m3/s m3/s m3/s m3/s m3/s m3/s 0.5 —△— Ervine et al. (1997) circular plunging jet 24 -Franzetti & Tanda (1987) circular plunging jet rectangular s Franzetti & Tanda (1987) circular submerged jet plunging jet 0.4 20 $= C^{+}_{pd} / C^{-}_{pa}$ - - Xu Duo-Ming (1983) circular oblique plunging jet - * Lencastre (1961) rectangular falling jet rectangular slot maximum curve 16 Castillo & Dolz (1989) rectangular falling jet 0.3 Jia & al. 2001 submerged jet Actual circular best-fit C'p plunging jet Ο 12 wall 0.2 rectangular plunging jet + 2m 8 minimum curve 0.1 4 ratio at pool bottom circular submerged je n 0

11 12 13 14 15 16

0

9

8

Y/D

5 6

10

Conclusions

- Quasi no scour formation in center of pool since 1947
- Along left bank, local scour by 1.0-1.5 m
- Along right bank, scour by several metres, scour process still very active
- Left bank rock mass more resistant than right bank rock mass
- In general, relatively moderate ultimate scour depths
- Ultimate scour following calibration along left bank:

0.0 - 0.2 m (fracturing)

1.6 – 1.9 m (uplift)

• Ultimate scour following calibration along center/right bank:

1.4 – 2.3 m (fracturing)

1.6 - 1.9 m (uplift)

- Scour is valid for decreasing hydrology (computed period starts with design discharge)
- Scour by fracturing is 15-20% less when inversing hydrology; scour by uplift is not affected by inversion of hydrology
- Refinement of hydrological period does not increase ultimate scour depth
- A priori no direct danger to dam stability by scour regression on the long term at Choranche Dam