

Experience from internal erosion detection and seepage monitoring based on temperature measurements on Swedish embankment dams

Pontus Sjödahl, HydroResearch Sam Johansson, HydroResearch

Why measure temperature?

- Seepage is a fundamental parameter for internal erosion detection
- Temperature depends on the seepage flow
- Sensitive to detect small seepage anomalies
- More and more accepted and used especially with fiber optics
- High spatial resolution

Saturated and unsaturated flow

Heat conduction and convection

Geothermal flow

Simulation - a general example

- Slow internal erosion process
- Seepage zone 2 m
- 10 years, increasing hydraulic conductivity at h=50±1 m

Näs embankment dam

2012-08-31

• Sudden increase in seasonal temperature variation in 2000-2001 followed by a decrease to normal levels

HydroResearch (

• Interpreted as increased seepage flow (2-60 times)

Akkats embankment dam

- Low dam (<9 m) with visual seepage outflow
- Repair works (grouting)
- Seepage decrease
- Pressure decrease
- Temperature confirms decreased seepage

Optical fibre installations in Swedish dams

Tailings dams (3 sites, 7 dams)				
Aitik E-F		•	2002	
Aitik I-J			2005	
Hötjärnsmagasinet - F		•	2008	
Hötjärnsmagasinet - H		•	2008	
LKAB, CB			2010	
LKAB, KS		•	2011	
LKAD, Loussajärvi		•	2011	
Hydro Power dams				
(43 sites, 62 dams)				
Lövön			1998	
Sädva			1999	
Ajaure			2001	
Vargfors			2001	
Hylte dam and dyke			2002	
Suorva East			2003	
Suorva West			2003-05	
Bastusel (4 dams)			2004	
Porsi			2005	-
Ligga			2005	
Seitevare			2005	
Hällby			2005	
Gallejaure (left and right)			2005	
Vässinkoski			2005	
Hällby			2005	
Bergeforsen			2005	

Hydro Power dams								
(43 sites, 62 dams)								
Parki (left and right)			2006					
Randi (left and right)			2006					
Boden (left and right)			2006					
Porjus			2006					
Grytfors (left and right)			2006					
Näs main dam			2006					
Stensele (left and right)			2006					
Näverede (left and right)			2007					
Stadforsen			2007					
Hölleforsen			2007					
Rebnis			2007					
Näs new dam			2007					
Flåsjön			2007					
Grundsjön			2007					
Tänger			2008					
Ledinge			2009					
Furudal			2009					
Abelvattnet			2010					
Storjuktan			2010					
Halvfari			2011					
Akkats			2011					
Edensfors			2011					
Trångfors			2012					
Rätan			2012					
Gr <u>undfors</u>			2012					

HydroResearch 🖒

Optical fibre and DTS measurements

- Cable easily installed when constructing new drainage and toe berm
- Cable installed upstream of drainage

- Different measurement strategies
 - Reference measurement
 - Repeated measurements (at inspections or similar)
 - Short term monitoring (special occasions, seepage increases, reservoir filling)
 - Continuous monitoring

Aims at *measuring seepage* and *detecting seepage changes*

Simplified seepage evaluation using seasonal temperature variation

- The goal is to find q for a measured T
- Long term measurements
 - Seepage flow depends on the seasonal temperature variation, streaming path length, thermal properties, location, etc)
- More advanced methods can be applied, e.g. response curves for each cross-section

Detection of changes

- Detection of seepage increases is essential
- Important complement to seepage evaluation
- Temperature deviations from expected variation
- Temperature deviation from surrounding measuring points

Ledinge dam

- Dam length 4500 m
- Maximum dam height 12.5 m
- Fibre installations 3600 m in a ditch along the downstream dam toe
- Objective to monitor seepage and seepage flow changes

Application at Ledinge Dam

• Examples of measured temperature and calculated seepage

Information seen in operational centre

Conclusions

- Temperature measurements may be a complement to conventional seepage monitoring
- The method is rapidly gaining acceptance
- Examples from field measurements and modelling support the application
- Fibre optics data acquisition techniques well suited for dams.
- Temperature based seepage monitoring system is running at Ledinge dam and similar systems are under implementation for more dams.
 - Seepage calculation is based on seasonal temperature variation.
 Seepage levels have been stable, typically in the order of a few centilitres per second and meter.
 - Alarm/warning has been set on abnormal temperature changes aiming at early detection of sudden flow increases. After an initial testing period there has been no alarms
- Possibilities to develop the method further both regarding instruments and seepage evaluation.