Investigation in modelling piping erosion with a coupled « lattice Boltzmann – discrete element » numerical method

Luc Sibille¹, Franck Lominé², Didier Marot¹

¹ L'Université Nantes Angers le Mans (LUNAM), Institut GeM, CNRS, France
² Université Européenne de Bretagne – INSA, LGCGM, EA3913, France

ICSE-6, Paris, Aug. 27-31, 2012
Internal erosion in soils
A fully solid-fluid coupled phenomena
The solid-fluid coupled numerical method

- Description of the solid phase at the particle scale
- Description of the fluid dynamic in the inter-particle space

Solid phase: Discrete Element Method
DEM, *Yade Software*

- Contact stiffnesses
- Contact friction angle
- Contact adhesion

Fluid phase
Lattice Boltzmann Method (LBM)

- Fluid viscosity
- Position of each solid particle explicitly described

Particle positions and velocities
hydro-dynamic forces

No assumption on fluid/solid interactions:
permeability, drag forces, etc... result from the coupling.
The solid-fluid coupled numerical method
The discrete element method (solid phase)

- Solid phase explicitly described by an assembly of particles

- Computation step:

 Computation of grain positions
 by integration of Newton's law for each grain.

 \[\ddot{x}_i = \frac{F_i}{m} \]
 \[\ddot{\omega}_i = \frac{M_i}{J} \]

 Computation of Contact forces
 Thanks to the interaction contact law defined for each contact.

 Computation of resulting force and torque acting on each grain

- Explicit integration scheme

- Open source software YADE (Wiki: yade-dem.org)
The solid-fluid coupled numerical method
Lattice Boltzmann method (fluid phase)

⇒ Based on the probability density or distribution function $f(\vec{x}, t)$
representing the probability of finding a molecule (or particle) around position \vec{x} at time t
with a given momentum.

⇒ The BGK (Bhatnagar-Gross-Krook, 1954) collision operator
describes the time and spatial evolution of a distribution function (i.e. of momentum):

$$f(\vec{x}, t^+) = f(\vec{x}, t) - \frac{1}{\tau} \left[f(\vec{x}, t) - f_{eq}(\vec{x}, t) \right]$$

with $\tau = 3 \nu dt / h^2 + 1 / 2$

⇒ Transfer of momentum from the solid particles to the fluid at solid boundaries
distribution functions affected by a term involving the solid boundary velocity \vec{V}_b

$$f_{-\sigma i}(\vec{x}_{FB}, t + dt) = f_{\sigma i}(\vec{x}_{FB}, t^+) - 2\alpha_i \vec{V}_b \cdot \vec{e}_i$$

⇒ Force applied by the fluid on the solid
results from the time derivation of the momentum exchange at solid boundaries

$$\vec{F}_\sigma(\vec{x}, t + \frac{1}{2} dt) = 2 \frac{\Omega}{dt} \left[f_{\sigma i}(\vec{x}, t^+) - \alpha_i \vec{V}_b \cdot \vec{e}_i \right] \vec{e}_{\sigma i}$$

boundary link σ
The solid-fluid coupled numerical method
The discrete element method (solid phase)

• Solid phase explicitly described by an assembly of particles

• Computation step:

 Computation of grain positions
 by integration of Newton's law for each grain.

 Computation of Contact forces
 Thanks to the interaction contact law defined for each contact.

 Computation of resulting force and torque acting on each grain

\[
\begin{align*}
\dot{x}_i &= F_i / m \\
\dot{\omega}_i &= M_i / J
\end{align*}
\]

with:

\[
\begin{align*}
\vec{F} &= \vec{F}^C + \vec{F}^H \\
\vec{M} &= \vec{M}^C + \vec{M}^H
\end{align*}
\]
Application to piping erosion
Model description

⇒ Simplified 2D Hole Erosion Test (HET):
- Cohesive frictional granular assembly:
 \[\phi_c = 20^\circ \quad C = -C_n = C_s \]
- Initial hole drilled in the granular assembly,
- Water flow under constant pressure gradient: \(\Delta P = P_1 - P_2 \).

⇒ Brittle cohesive inter-particle contacts:

![Diagram showing normal contact force (F_n) vs. shear contact force (F_s) with cohesion broken at C_n = C_s = 0.](image)

Lominé et al. IJNAMG, 2011
Application to piping erosion
Characterisation of erodability

⇒ Classical interpretation with respect to the hydraulic shear stress τ:

$$\dot{\epsilon} = k_d \left(\tau - \tau_c \right) \text{ if } \tau > \tau_c$$

(τ_c : critical shear stress
k_d : erosion coefficient.

⇒ Hydraulic shear stress computed along the hole border:

$$\tau = \nu \rho_0 \frac{dV_x}{dy}$$

$Lominé et al. IJNAMG, 2011$
Application to piping erosion
Influence of inter-particle cohesion

⇒ 7 values of cohesion tested, each one for 6 to 10 different values of ΔP:

$$C/d = 0.152; 0.177; 0.253; 0.506; 1.27; 2.53; 12.7 \text{ N/m}$$

→ τ_c directly affected by cohesion for cohesion values high enough ($C/d > 0.506 \text{ N/m}$).

→ k_d seems independent of the cohesion.
Application to piping erosion
Energetic interpretation

Energy supplied to the fluid is almost completely dissipated by viscosity:

\[Q \Delta P \approx \int_{V} \vec{\sigma}' \cdot \vec{D} \, dV \]

Shear stress \(\propto \vec{D} \)
Viscous fluid power \(\propto \vec{D} : \vec{D} \)

\(\Rightarrow \) Is the erosion rate linearly related to the square root of the viscous fluid power?
Conclusions

- The coupled discrete element – lattice Boltzmann method can be a versatile numerical method to improve the understanding of soil erosion phenomena complementary to experiments.

- Estimation of energy dissipated by the fluid flow may be easier than the determination of the fluid shear stress an could help in the evaluation of internal soil erosion hazards.