

Luc Sibille¹, Franck Lominé², Didier Marot¹

¹ L'Université Nantes Angers le Mans (LUNAM), Institut GeM, CNRS, France
² Université Européenne de Bretagne – INSA, LGCGM, EA3913, France

ICSE-6, Paris, Aug. 27-31, 2012

Internal erosion in soils

A fully solid-fluid coupled phenomena

PAYS DE LA LOIRE

The solid-fluid coupled numerical method

PAYS DE LA LOIRE

- Description of the solid phase at the particle scale
- Description of the fluid dynamic in the inter-particle space

<u>No assumption on fluid/solid interactions:</u> permeability, drag forces, etc... result from the coupling.

The solid-fluid coupled numerical method Lattice Boltzmann method (fluid phase)

\Rightarrow Based on the probability density or distribution function $f(\vec{x}, t)$

representing the probability of finding a molecule (or particle) around position \vec{x} at time *t* with a given **momentum**.

⇒ The BGK (Bhatnagar-Gross-Krook, 1954) collision operator

describes the time and spatial evolution of a distribution function (i.e. of momentum):

$$f(\vec{x},t^{+}) = f(\vec{x},t) - \frac{1}{\tau} [f(\vec{x},t) - f^{eq}(\vec{x},t)] \quad \text{with } \tau = 3 v \, dt / h^{2} + 1/2$$

\Rightarrow Transfer of momentum from the solid particles to the fluid at solid boundaries

distribution functions affected by a terms involving the solid boundary velocity V_b

$$f_{-\sigma i}(\vec{x}_{FB}, t + \mathrm{d}t) = f_{\sigma i}(\vec{x}_{FB}, t^+) - 2\alpha_i \vec{V_b}.\vec{e_i}$$

\Rightarrow Force applied by the fluid on the solid

results from the time derivation of the momentum exchange at solid boundaries

$$\vec{F}_{\sigma}(\vec{x}, t + \frac{1}{2} \mathrm{d}t) = 2 \frac{\Omega}{\mathrm{d}t} \left[f_{\sigma i}(\vec{x}, t^{+}) - \alpha_{i} \vec{V_{b}} \cdot \vec{e_{i}} \right] \vec{e}_{\sigma i}$$

Application to piping erosion Model description

⇒ Simplified 2D Hole Erosion Test (HET):

- Cohesive frictional granular assembly:

$$\phi_C = 20^\circ \qquad C = -C_n = C_s$$

- Initial hole drilled in the granular assembly,
- Water flow under constant pressure gradient: $\Delta P = P_1 P_2$.

800 solid particles; fluid lattice of 335 000 nodes

⇒ Brittle cohesive inter-particle contacts:

\Rightarrow Classical interpretation with respect to the hydraulic shear stress τ :

Application to piping erosion Characterisation of erodability

PAYS DE LA LOIRE

\Rightarrow 7 values of cohesion tested, each one for 6 to 10 different values of ΔP :

C/d = 0.152; 0.177; 0.253; 0.506; 1.27; 2.53; 12.7 N/m

→ τ_c directly affected by cohesion for cohesion values high enough (*C*/*d* > 0.506 N/m). → k_d seems independent of the cohesion.

Application to piping erosion Energetic interpretation

Energy supplied to the fluid is almost completely dissipated by viscosity:

$$Q\Delta P \simeq \int_{V} \overline{\sigma}' : \overline{\overline{D}} \, dV$$

Power dissipated by viscosity $\bar{\bar{\sigma}}': \bar{\bar{D}}$

Shear stress $\propto \overline{D}$ Viscous fluid power $\propto \overline{D} : \overline{D}$

⇒ Is the erosion rate linearly related to the square root of the viscous fluid power?

PAYS DE LA LOIRE

- The coupled discrete element lattice Boltzmann method can be a versatile numerical method to improve the understanding of soil erosion phenomena complementary to experiments.
- Estimation of energy dissipated by the fluid flow may be easier than the determination of the fluid shear stress an could help in the evaluation of internal soil erosion hazards

